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PREFACE

1991 Interface Proceedings

The 23rd Symposium on the Interface between Computing Science and Statistics was held on April 21-
24, 1991, at the Seattle Sheraton Hotel, Seattle, Washington. The conference theme was "Critical
Applications of Scientific Computing: Biology, Engineering, Medicine, Speech...". The Symposium was
preceded by a workshop on Computational Molecular Biology.

Bellcore hosted the Symposium with Jon R. Kettenring serving as Program Chair. He assembled an
outstanding program with a committee that selected topics and invited speakers who collectively made
the Symposium a forum for the exchange of exciting new ideas and provided a spectrum of applications

for scientific computing. The members of the program committee were Mary Ellen Bock, Andreas Buja,
William DuMouchel, Nicholas Fisher, Gene Golub, Joe Hill, John McDonald, John Nash, Daryl

Pregibon, Werner Stuetzle, Michael Tarter, Luke Tierney, Paul Tukey, Paul Young, and myself. John
Nash devoted much time and effort to organizing a special multi-media session comprised of posters,
videos, and demonstrations. Tutorials were presented by Joe Hill, William Eddy and Mark Schervish.

The extremely successful workshop on Computational Molecular Biology was organized by Simon

Tavard and featured world-renowned speakers. The workshop served as a focused example of the very
real interface between biology, statistics, and computing science. This theme was evident in the keynote
address, "Opportunities for Statisticians and Computer Scientists in Biology", that was presented by Eric
Lander. Burton Smith transported those that attended the banquet into the computing world of tomorrow
by speaking on "Future Supercomputing". The talks presented in the workshop as well as the keynote and
banquet addresses are not included in these Proceedings.

Much of the success of a conference can be measured in terms of the number of attendees and the number
of contributed talks, which, for this Symposium, were approximately 400 and 116, respectively.
However, a significant indicator of the lasting enthusiasm that remains with the speakers after a

conference has ended is their commitment to undertake the task of completing the manuscripts that will
comprise the proceedings of that conference. These Proceedings include 78% of the contributed papers
and 65% of the invited papers that were given in Seattle - a more than adequate representation of the
work presented at the Symposium.

Organizing such a conference is an Herculean feat that necessarily requires the cooperation and
dedication of many people. I would like to thank all of those people at Bellcore and the University of
Washington who assisted in a myriad of ways. I would also like to thank Se ma Kaufman for servg as

Assistant Editor of these Proceedings. Accesion For
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Workshop in Computational Molecular Biology

9:00-9:05 S. Tavar6, University of Southern California.
Introduction

9:05-9:20 D. Galas, Department of Energy.
Overview

9:20-10:00 F. Cohen, UC San Francisco.
Computational aspects of the protein folding problem

10:00-10:40 T. Schlick, NYU.
New computational techniques for computing biomolecular
structures and their dynamics

10:40-11:10 Coffee Break

11:10-11:50 E. Branscomb, Lawrence Livermore National Labs.
Building physical genome maps by random clone overlap;
a progress assessment of work on human chromosome 19

11:50-12:30 E.A. Thompson, University of Washington.
Monte Carlo methods for linkage analysis and complex

modcls

12:30-1:50 Lunch

1:50-2:30 E.S. Lander, Whitehead Institute.
Dissecting complex inheritance: statistical and computational
issues

2:30-3:10 E. Myers, University of Arizona.
Practical and theoretical advances in sequence comparison

3:10-3:40 Coffee Break

3:40-4:20 R.J. Roberts, Cold Spring Harbor Labs.
Error detection in DNA sequences

4:20-5:00 M.S. Waterman, University of Southern California.

Computer methods for locating kinetoplastid cryptogenes



SYMPOSIUM SCHEDULE

Sunday, April 21, 1991

8:00 a.m. - 9:00 a.m. Registration (Pre - Function Area)
9:00 a.m. - 5:00 p.m. Workshop on Computational Molecular Biology (.sp .7en)
5:00 p.m. - 8:00 p.m. Registration (Area in front of Metropolitan Ballroom)
5:00 p.m. - 8:00 p.m. Board of Directors' Business Meeting and Dinner (Cedar)
8:00 p.m. - 10:00 p.m. Opening Reception (Metropolitan Ballroom)

Monday, April 22, 1991

8:30 a.m. - 9:45 a.m. Keynote Address: "Opportunities for Statisticians and Computer Scientists in Biology"
(Grand Ballroom C)

9:45 a.m. - 10:15 a.m. Break (Grand Ballroom A)

10:15 a.m. - 12:00 p.m. Invited A: Speech and Language (Grand Ballroom B)
Invited B: Scientific Computing Problems in the Aircraft Industry (Metropolitan Ballroom)
Invited C: Uncertainty and Graphical Models (West Ballroom)

Contributed A: Statistical Graphics (Douglas)
Contributed B: Multivariate Analysis (Juniper)
Contributed C: Random Number Generators - Simulation (Madrona)

12:00 p.m. - 2:00 p.m. Lunch

2:00 p.m. - 3:45 p.m. Invited A: Relational Databases: A Tutorial for Statisticians (Grand Ballroom B)
Invited B: Computing Problems in Environmental and Industrial Statistics (West Ballroom)

Contributed A: Software Testing (Douglas)
Contributed B: Computing and Graphics in Applications (Juniper)
Contributed C: Robustness (Madrona)

3:45 p.m. - 4:15 p.m. Break (Grand Ballroom A)

4:15 p.m. - 6:00 p.m. Invited A: Massive Databases (Metropolitan Ballroom)
Invited B: Engineering Applications of Computing-Intensive Methods (West Ballroom)
Invited C: Computational Methods in Spatial Statistics (Grand Ballroom B)

Contributed A: Artificial Intelligence - Belief Functions (Douglas)
Contributed B: Issues in Interactive Graphics (Juniper)
Contributed C: Time Series Prediction - Function Estimation (Madrona)

Tuesday, April 23, 1991

8:00 a.m. - 9:45 a.m. Invited A: Computationally Intensive Methods for Discrete Data (Grand Ballroom C)
Invited B : Data Visualization and Sonification (Grand Ballroom B)

Contributed A: Classification - Density Estimation (Douglas)
Contributed B: Statistical Inference (Juniper)
Contributed C: Genetics - DNA (Madrona)
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9:45 a.m. - 10:15 a.m. Break (Grand Ballroom A)

10:15 a.m. - 12:00 p.m. Invited A: Realistic Rendering : A Tutorial for Statisticians (Grand Ballroom B)
Invited B: Computer Modeling, Experimental Design and Data Analysis (Grand Ballroom C)

Contributed A: Neural Nets - Biological Systems (Douglas)
Contributed B: Bootstrap and Related Methods (Juniper)
Contributed C: Optimization - Genetic Algorithms (Madrona)

12:00 p.m. - 2:00 p.m. Poster/Video/Demo Session (.sp .7en)

2:00 p.m. - 3:45 p.m. Invited A : Virtual Interface Technology (Grand Ballroom C)
Invited B : Neural Networks (Grand Ballroom B)
Invited C : Computational Statistical Genetics (East Ballroom)

Contributed A: Tree-Based Methods (Douglas)
Contributed B: Information Retrieval - Record Linkage (Juniper)
Contributed C: Allocation Problems - Sequential Design (Madrona)

3:45 p.m. - 4:15 p.m. Break (Grand Ballroom A)

4:15 p.m. - 6:00 p.m. Invited A: Dynamic Statistical Graphics (Grand Ballroom B)
Invited B : Research Opportunities at the Interface of Biology, Statistics and Computing

(Grand Ballroom C)

Contributed A: Integration - Probability Computations (Douglas)
Contributed B: Databases and Information Processing (Juniper)
Contributed C: Problems Relating to Skewness and Kurtosis (Madrona)

6:30 p.m. - 7:30 p.m. Reception (Pre - Function Area)

7:30 p.m. - 10:00 p.m. Banquet (Grand Ballroom C)
Banquet Address: "Future Supercomputing"

Wednesday, April 24,1991

8:00 a.m. - 9:45 am. Invited A: Computational Problems in Biomedical Imaging (Grand Ballroom B)
Invited B : Parallel Computing: A Tutorial for Statisticians (Grand Ballroom C)

Contributed A: Spatial Data - Shape Analysis (Douglas)
Contributed B: Programming Environments (Juniper)
Contributed C: Estimation Problems I (Madrona)

9:45 a.m. - 10:15 a.m. Break (Grand Ballroom A)

10:15 a.m. - 12:00 p.m. Invited A : Multivariate Statistics and Visualization for Labelled Point Data (Grand Ballroom C)
Invited B: Statistical Computing Environments for the 21st Century (Cirrus)
Invited C : Bayesian Computing (Grand Ballroom B)

Contributed A: Image Analysis (Douglas)
Contributed B: Applications Areas (Juniper)
Contributed C: Estimation Problems II (Madrona)

12:00 p.m. End of Conference
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Abstract 2. Classification and Regression Trees

- We describe here the application of classification and re- An excellent description of the theory and implementa-
gression trees to some problems in speech and language. We tion of tree-based statistical models can be found in Classifi-
begin with a brief overview of the technique. We then de- cation and Regression Trees [L. Breiman, et al, 19841. A brief
scribe their application to: introduction to these ideas will be provided in this section

(1) End of sentence detection: The not-so-simple prob- for those who may not be familiar with them.
lem of deciding when a period in text corresponds to the Consider the not-so-simple problem for deciding when a
end of a declarative sentence (and not an abbreviation) is period in text corresponds to the end of a declarative sen-
produced with trees using the Brown corpus as input. The tence. This is not as trivial a classification problem as it
result is 99.8% correct classification. may first seem. While a period, by convention, must occur

(2) Segment duration modelling in speech synthesis: 400 at the end of a declarative sentence, one can also occur in
utterances from a single speaker and 4000 utterances from abbreviations. Abbreviations can also occur at the end of
400 speakers were used to build decision trees that predict a sentence. The tagged Brown corpus [Kucera and Francis
segment durations based on features such as lexical position, 1967] of a million words indicates that about 90% of periods
stress, and phonetic context. Over 70% of the durational occur at the end of sentences, 10% at the end of abbrevia-
variance for the single speaker and over 60% for the multiple tions, and about 1/2% in both. The two space rule after an
speakers was accounted by these methods, end stop is often ignored and is never present in many text

(3) Phoneme to phone prediction: A lattice of possible sources (e.g., the AP news).
close phonetic transcriptions given a phonemic transcription Figure 1 shows a classification tree for this problem
(from the orthography and a dictionary) is produced using trained on the Brown corpus. Let us first see how to use
the 4000 TIMIT database as input. The most likely phone such a tree for classification. Then we will see how the tree
corresponding to a phoneme can be predicted 83% correctly. was generated.
The five most likely phones can be predicted 99% correctly. The decision of when a period occurs at the end of a

sentence will depend on factors such as whether the word
following the period is capitalized or if the word containing

I. Introduction the period is a common abbrevation. Suppose we see the
text fragment "Smith. The". Does the period after "Smith"

Several applications of statistical tree-based modelling occur at the end of a sentence?
are described here to problems in speech and language. Clas- Starting at the root node in Figure 1, the first decision
sification and regression trees are well suited to many of the is whether the word after the period, "the" (case ignored
pattern recognition problems encountered in this area since here), is more likely than 27% of the time to occur at the
they (1) statistically select the most significant features in- beginning of a sentence relative to its frequency in text. The
volved, (2) provide "honest" estimates of their performance, answer is no (estimated from a database described below), so
(3) permit both categorical and continuous features to be the left branch is taken. The next split is whether the word
considered, and (4) allow human interpretation and explo- containing the period, "smith", is more likely than 1% to
ration of their result. First the method is summarized, then occur at the end of a sentence relative to its frequency in text.
its application to end-of-sentence detection in text, phonetic The answer is yes, so the right branch is taken. The next
segment duration prediction, and phoneme-to-phone classi- split concerns the case of the word after the period. Since it
fication are described. We conclude with some general re- is a capitalized word the left split is taken. Finally, the last
marks on the strengths and shortcomings of this method. question is whether the word containing the period, "Smith",
For other applications to speech and language, see (Lucassen is one of several common abbreviation types. Since it is not,
19841, [Bahl, et al 1987]. the left branch is taken to a terminal node that classifies this
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The first question - what stopping rule? - refers to
what split to take at a given node. It has two parts: (a)
what candidates should be considered, and (b) which is the
best choice among candidates for a given node?

A simple choice is to consider splits based on one x vari-
able at a time. If the independent variable being considered
is continuous -oo < x < oo, consider splits of the form:

55 s391102Do 42755142675
repr 1.04.5 x < k vs. x > k, Vk.

In other words, consider all binary cuts of that variable. If
the independent variable is categorical x E {1, 2,..., n =X,

3289/3547 8/ 67 Z.11consider splits of form:

next:ajase. e..upcas'onUM ZEA vs. ZEX-A, VA CX.

s a ' n In other words, consider all binary partitions of that variable.
More sophisticated splitting rules would allow combinations

5I5435~d 913/108 of a such splits at a given node; e.g., linear combinations of
/a " o continuous variables, or boolean combinations of categorical

l/psaeti.ul variables.
A simple choice to decide which of these splits is the

best at a given node is to select the one that minimizes the
513715283 133/152 estimated classification or prediction error after that split

based on the training set. Since this is done stepwise at each
node, this is not guaranteed to be globally optimal even for

Figure 1. Classification tree for end-of-sentence detection. the trining et.
the training set.

In fact, there are cases where this is a bad choice. Con-

sider Figure 2, whcre two different splits are illustrated for
case as indeed at the end of a declarative sentence.

In the training set, 5137 of the 5283 examples that
reached this node were correctly classified. This tree is a spLI1 sPLIn2
subtree of a better classifier to be described in the next sec-
tion; this example was pruned for illustrative purposes. go. 1: 1, N6. 1: 4

This is an example of a classification tree, since the deci- 4 3. 2
sion is to choose one of several classes; in this case, there are
two classes: I{end- of - sentence, not - end-of -sentence).

In other words, the predicted variable, y, is categorical. Trees
can be created for continuous y also. In this case they are
called regression trees with the terminal nodes labelled with V. 1: 300 so. 1: 100 N.. 1: 100 1: 00

a real number (or, more generally, a vector).
Classifying with an existing tree is easy; a more difficult

issue is how to generate the tree for a given problem. There
are three basic questions that have to be answered when Figure 2. Two different splits with the same misclassifica-
generating a tree: (1) what are the splitting rules, (2) what tion rate [after Breiman, et a]. 1984].
are the stopping rules, and (3) what prediction is made at
each terminal node?

Let us begin answering these questions by introducing
some notation. Consider that we have N samples of data,
with each sample consisting of M features, XhZ2,X3,- .. Z,. a classification problem having two classes (No. I and No.

In the end-of-sentence detection example, xj might be the 2) and 800 samples in the training set (with 400 in each

case of the word following the period, x2 the probability that class). If we label each child node according to the greater

the following word begins a sentence, etc. Just as the y (de- class present there, we see that the two different splits illus-

pendent) variable can be continuous or categorical, so can trated both give 200 samples misclassified. Thus, minimizing

the z (independent) variables. E.g., word case is categorical the error gives no preference to either of these splits [after

(can not be usefully ordered). while beginning word proba- Breiman, et al. 19841.
bility is continuous. The split on the right, however, is better because it cre-
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ates at least one very pure node (no misclassification) which
needs no more splitting. At the next split, the other node
can be attacked. In other words, the stepwise optimization
makes creating purer nodes at each step desirable. A simple
way to do this is to minimize the entropy at each node for En o Deltv Senteno Predcton
categorical y. Minimizing the mean square error is a common
choice for continuous y.

The second question - what stopping rule? - refers
when to declare a node terminal. Too large trees may match S
the training data well, but they won't necessarily perform
well on new test data, since they have overfit the data. Thusi
a procedure is needed to find an "honest-sized" tree. I

Early attempts at this tried to find good stopping rules I
based on absolute purity, differential purity from the par-
ent, and other such "local" evaluations. Unfortunately, good
thresholds for these are hard to find and vary from problem .

to problem.
A better choice is as follows: (a) grow an over-large tree -__"

with very conservative stopping rules, (b) form a sequence 0a a s

of subtrees, To,....T, ranging from the full tree to just 0.1

the root node, (c) estimate an "honest" error rate for each
subtree, and then (d) choose the subtree with the minimum
"honest" error rate.

To form the sequence of subtrees in (b), vary a from 0
(for full tree) to oo (for just the root node) in:

min [R(T) + arlTl. Figure 3.

where R(T) is the classification or prediction error for that

subtree and I T I is the number of terminal nodes in the Let us now discuss in detail the applications of these
subtree. This is called the cost-complexity pruning sequence. ideas to some problems in speech and language.

To estimate an "honest" error rate in (c), test the sub-
trees on data different from the training data, e.g., grow the 3. End of sentence detection
tree on 9/10 of the available data and test on 1/10 of the As the first example, let us look again at the end-of-
data repeating 10 times and averaging. This is often called sentence detection problem described above. A more com-
cross-validation. prehensive tree was generated using the the following fea-

Figure 3 shows misclassification rate vs. tree length for tures:
the end-of-sentence classification problem using a subset of 9 Prob[word with "." occurs at end of sentence]
the input features describe below. The bottom curve shows
misclassification for the training data, which continues to . Probword after '." occurs at beginning of sentence]
improve with increasing tree length. The higher curve shows @ Length of word with "."

the cross-validated misclassification rate, which reaches a * Length of word after ""

minimum with a tree size of about 20 and then rises again
with increasing tree length. * Case of word with ".": Upper, Lower, Cap, Numbers

The last question - what prediction is made at a termi- e Case of word after '.": Upper, Lower, Cap, Numbers
nal node? - is easy to answer. If the predicted variable is o Punctuation after "." (if any)
categorical, choose the most frequent class among the train-
ing samples at that node (plurality vote). If it is continuous, * Abbreviation class of word with ".":
choose the mean of the training samples at that node. - e.g., month name, unit-of-measure, title, ad-

The approach described here can be used on quite large dress name, etc.
problems. We have grown trees with hundreds of thousands The choice of these features was based on what humans
of samples with a hundred different independent variables, appear to use (at least when constrained to looking at a
The (expected) time complexity, in fact, grows only linearly few words around the "."). Facts such as "Is the word after
with the number of input variables (worst case is quadratic). the '.' capitalized?", "Is the word with the '.' a common
The one expensive operation is forming all binary partitions abbreviation?", "Is the word after the "." likely found at
for categorical z's. This increases exponentially with the the beginning of a sentence?", etc. can be answered with
number of distinct values the variable can assume, these features.
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The word probabilities indicated above were computed values as voiced fricative, unvoiced stop, nasal, etc. Conso-

from the 25 million words of AP news, a much larger (and in- nant manner takes on values such as bilabial, dental, velar,

dependent) text database. (In fact, these probabilities were etc. "Vowel manner" takes on values such as monopthong,

for the beginning and end of paragraphs, since these are ex- diphthong, glide, liquid, etc. and "vowel place" takes on val-

plicitly marked in the AP, while end of sentences, in general, ues such as front-low, central-mid-high, back-high, etc. All
are not.) can take on the value n/a if they do not apply; e.g., when a

The resulting classification tree correctly identifies vowel is being represented, consonant manner and place are

whether a word ending in a "." is at the end of a declar- assigned n/a. In this way, every segment is decomposed into

ative sentence in the Brown corpus with 99.8% accuracy. four multi-valued features that have acceptable complexity

The majority of the errors are due to difficult cases, e.g. a to the classification scheme and that have some phonetic jus-

sentence that ends with "Mrs." or begins with a numeral (it tification.

can happen). The word frequency was included as a continuoulsy
graded "function word" detector and was based on six

4. Segment duration modelling for speech synthesis months of AP news text. The stress was obtained from a
dictionary (which is easy, but imperfect). The last two fea-

400 utterances from a single speaker and 4000 utter- tures were used only for the multi-speaker database. The di-

ances from 400 speakers (the TIMIT database [Fisher, et alect information was coded with the TIMIT database. The

al. 19871) of American English, both which are manually speaking rate is specified as the mean duration of the two

hand-segmented and phonetically labelled, were used sepa- calibration sentences, which were spoken by every speaker.
rately to build regression trees that predict the duration of Over 70% of the durational variance for the single
the phonetic segments. Predicting these durations is impor- speaker and over 60% for the multiple speakers were ac-
tant both in work on speech synthesis and recognition. The counted for by these trees. Figure 4 shows durations and

following features were used: duration residuals for all the segments together. The large

* Segment Context: tree sizes here, many hundreds of nodes, make them somr

- Segment to predict what uninteresting to display.
These trees were used to derive durations for a text-

- Segment to left to-speech synthesizer. This approach offers a promising al-

- Segment to right ternative to heuristically derived duration rules (e.g., Klatt

aStress (0, 1, 2)

*Word Frequency: (rel. 25M AP words) sgrnnt Duratons

* Lexical Position: I

- Segment count from start of word

- Segment count from end of word

- Vowel count from start of word

- Vowel count from end of word I

* Sentence Position:

- Word count from start of sentencee

- Word count from end of sentencee 0_

* Dialect: N, S, NE, W, SMid, NMid, NYC, Brat Duration Re~uals

* Speaking Rate: (rel. to calibration sentences)
Coding the phonetic context required special considera-

tions since more than 50 phones (using the TIMIT labelling)
can precede a stop in this context. If this were treated as a

single feature, more than 250 binary partitions would have to "
be considered for this variable at each node, clearly making
this approach impractical. Chou [19871 proposes one solu-
tion, which is to use k-means clustering to find sub-optimal,
but good paritions in linear complexity.

The solution adopted here is to classify each phone in

terms of 4 features, consonant manner, consonant place,
.vowel manner", and "vowel place", each class taking on Figure 4.

about a dozen values. Consonant manner takes on the usual
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1976]. Since tree building and evaluation is rapid once the Would your name be Tom?
data are collected and the candidate features specified, this
technique can be readily applied to other feature sets and to Phoneme Prob Phone
other languages.

This approach is very data-intensive, though. Our w 97.9 w 1.7 -
uh 79.9 uh 9.2 ix 2.2 uw 2.0 ax

databases have tens or hundreds of thousands of segments. d 59.4 dc jh 28.1 dcl d 9.4 dcl 3.1 jh
We believe really good duration modelling will involve at y 76.1 y 22.8 -

least an order of magnitude more data. This presents not Uh 79.9 ub 9.2 ix 2.2 uw 2.0 ax
so much a computational problem, given the efficient algo- er 52.6 axr 23.2 r 15.8 er 6.3 -

n 79.8 n 18.6 nx 1.5 -
rithms for tree construction available, but a data collection ey 95.7 ey 1.3 eh 0.8 ih 0.7 ix

problem. We believe that automatic transcription [Ljolje A] 96.1 m 3.4 -
and Riley] may ultimately be the way to proceed. b 87.5 bcl b 4.5 pau b 3.9 bcl 2.5 b

iy 90.5 iy 4,9 ix 2.3 ih 1.2 -
t 92.9 tcl t 5.6 dx 0.6 t

5. Phoneme-to-phone prediction U 82.3 aa 7.4 ao 3.4 axt 2.2 ab
rn 96.1 m 3.7 -

The task here is given a phonemic transcription of an
utterance, e.g., based on dictionary lookup, predict the pho-
netic realization produced by a speaker [see also Lucassen,
et. al. 1984; Chou, 1987; Riley 1989, 1991; Chen 1990;
Randolph 19901. For example, when will a T be flapped (as Figure 5. Phonetic alternatives for "Would your name be
in American English pronunciation of 'pretty') or released Tom?
(as in phrase-initial T's). We used the following features to
decide this problem extracted from the TIMIT database:

e Phonemic Context:
- Phoneme to predict tions. This can be used, for example, to greatly constrain the

number of alternatives that must be considered in automatic

- Three phonemes to left segmentation when the orthography is known.

- Three phonemes to right These a priori probabilities, however, do not take into
account the phonetic context, only the phonemic. For ex-

eStress (0, 1, 2) ample, if DCL JH is uttered for the phoneme D in the ex-

* Word Frequency: (rel. 25M AP words) ample in Figure 5, then the Y is most likely deleted and not

* Dialect: N, S, NE, W, SMid, NMid, NYC, Brat uttered. However, the overall probability that a Y is uttered
in that phonemic context (averaging both D going to DCL

* Lexical Position: JH, D, etc.) is greatest. The point is that to incorporate the

- Phoneme count from start of word fact that "D goes to DCL JH implies Y usually deletes" is

- Phoneme count from end of -d that transition probabilities should be taken into account.
This can be done by including an additional feature for

* Phonetic Context: phone predicted to left the phonetic identity of the previous segment. The output
The phonemic context was coded in a seven segment win- listing then becomes a transition matrix for each phoneme.

dow centered on the phoneme to realize, again using the 4 The best path through such a lattice can be found by dy-
feature decomposition described above. The other features namic programming.
are similar to the duration prediction problem. Ignore the This, coupled with a dictionary, can also be used for
last feature, for the moment. letter-to-sound rules for a synthesizer (when the entry is

The tree for all phonemes grown on these features pre- present in the dictionary). The effect of using the TIMIT
dicts on the average 83% of the TIMIT labellings exactly. A database for this purpose is a somewhat folksy sounding syn-
large percentage of the errors are on the precise labelling of thesizer. Having the D "Would your" uttered as a JH may
reduced vowels as either IX or AX. be appropriate for fluent English, but it sounds a bit forced

A list of alternative phonetic realizations can also be pro- with existing synthesizers. Too much else is wrong. A very
duced from the tree, since the relative frequencies of different carefully uttered database by a professional speaker would
phones appearing at a given terminal node can be retained, give better results for this application of the phoneme-to-
Figure 5 shows such a listing for the utterance, Would your phone tree.
name be Tom? . (We use the TIMITBET phonetic sym-
bols in these examples [Fisher, et al. 1987]). It indicates, 6. Discussion
for example, that the D in "would" is most likely uttered On the whole, we have found classification and regres-
as a DCL JH in this context (59% of the time), followed by sion trees quite useful in modelling a variety of phenonema
DCL D (28%). On the average five alternatives per phoneme in speech and language. In part, it is their ability to ban-
are sufficient to cover 99% of the possible phonetic realiza-
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die both categorical and continuous inputs and outputs that
makes them attractive to us. The fact that they offer ef-
ficient algorithms, a well-established cross-validation proce-
dure, and a relatively perspicuous representation makes them
more appealing to us than, say, back-propogation neural net-
works for the problems we have described.

The principal difficulty we have found with this and sim-
ilar statistical approaches is that while the trees classify well
most of the time, they occasionally make egregious errors.
When noticed, it is possible to correct these errors by hand
modification of the trees. This is, however, quite tedious.
Further, if new data are used or new input features are tried,
the editing has to be redone (if the error remains).

What would be most appealing to us would be tech-
niques that would allow easy mixing of statistical learning
with hand specification. The user could hand specify what
he is sure of and leave to the statistics to fill in the rest the
best it can, letting us have our cake and eat it too.
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Abstract ment, the score is computed by taking the product of the
- Text analysis is a hot topic, and for good reason. prior probability, Pr(W ), and the channel probability,

Text is more available than ever before. Just ten years Pr(W I W). This procedure can be written as:
ago, the one-million word Brown Corpus (Francis and ARGMAXPr(W,) Pr( I  W )
Kucera, 1982) was still considered large, but even then, 1K
there were much larger corpora in use such as the 18 where ARGMAX finds the argument with the maximum
million word Birmingham Corpus (Sinclair 1987a, score.
1987b). These days, there are many places that regu-
larly use samples of text running into the hundreds of Thele prior probability, also known as the language
millions of words. And it is very likely that billions of model, is the probability that the e would be input towords will be available very soon. the channel. For example, in the speech recognition

application, it is the probability that someone would
All of this data provides a great research oppor- utter W,., whereas in the spelling correction application,

tunity; it easier these days to corpus data much more it is the probability that someone would type W. in
effectively than it was in the 1950s, the last time that practice, the prior is approximated by computing various
empiricism was in fashion. Text analysis focuses on statistics over a large sample of text.
broad (though possibly super':z.2) coverage of unres- The channel probability is the probability that the
tricted text, rather than a deep analysis of a restricted channel probabilty ise e p iito thedoman. Tis ragmtic view towrd cverge ad ~channel would transform the word sequence 1I~ into thedom ain. This pragm atic view to w ard coverage and per- s q e c . h si e ai e y h g f W s t e s m
formance distinguishes text analysis from so-called sequence 1. This relatively high if W is the same
"intelligent" approaches such as natural language as or ery similar" to d n, where the definition of
understanding. This approach has produced a number of "similar" depends on the application. The channel for
tools such as spelling correctors and part of speech speech recognition, for example, will have a high proba-
taggers that work on unrestricted text, with reasonable bility of mapping words that sound similar (e.g.,
accuracy and efficiency. -.- "writer" and "rider" in many American dialects) into

the same output representation. However, in other
1. Recognit Applicatlons applications such as optical character recognition,

"writer" and "rider" are unlikely to be confused by
Recognition applications are perhaps the most the channel because these words are optically quite dis-

obvious applications for large bodies of text. Three tinct. Thus, the channel model clearly depends on the
examples of recognition applications will be mentioned application as illustrated in the Table 1.
here: (1) Speech Recognition, (2) Optical Character
Recognition (OCR), and (3) Spelling Correction. Table 1: Examples of Channel Confusions

Imagine a noisy channel, such as a speech recog- in Different Applications

nition machine that almost hears, an optical character Application Input Output
recognition (OCR) machine that almost reads, or a typist Speech writer rider
that almost types. Good text (W,) goes into the chanrel, Recognition here hear
and corrupted text ( W) comes out the other end. Optical all all (A-one-L)

Noisy Chaynel - WCharacter of of
Recognition form farm

How can an automatic procedure recover the good input Spelling government goverment
text, W, from the corrupted output, W? In principle, Correction occurred occured
one can recover the most likely input by hypothesizing commercial commerical
all possible input texts, W, and selecting the input text
with the highest score. Using a classic Bayesian argu-
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It is convenient to partition the prior and the chan- Table 2 also shows that the judges are significantly
nel in this way, so that the same prior can be used for a better than all of the programs, indicating that there is
variety of recognition applications including speech room for improvement.
recognition, optical character recognition and spelling Table 2: Evaluation of Correct
correction. The channel, of course, generally cannot be Method Discrimination
ported from one application to another.

correct 286/329 87 ±41.9

2. Spelling Correction Judge 1 271/273 99 ±0.5

1 have found that spelling correction is a good Judge 2 271/275 99 ±0.7

application to look at because it is analogous to many Judge 3 271/281 96 ±1.1

important recognition applications based on a noisy channel-only 263/329 80 ±2.2

channel model (such as speech recognition), though prior-only 247/329 75 ±2.4

somewhat simpler and therefore possibly more amenable chance 172/329 52 ±2.8

to detailed statistical analysis. In (Kernighan, Church, The program, of course, is not making use of con-
and Gale, 1990), we described a program called correct text whereas the human judg, , did have access to a con-
which inputs a misspelled word such as absurb, and out- cordance line. The following examples show that the
puts a list of candidate corrections sorted by probability: task is extremely difficult without context
absorb (56%), absurd (44%). The probability scores are
the novel contribution; there are have been many pro- Table 3: Hard without Context
grais in the past that generated a (long) list of candi- Typo Choice 1 Choice 2
date corrections, but few have attempted to score the actuall actual actually
candidates by a stochastic model of the prior probability constuming consuming costuming
of observing the candidate correction Pr(c) and a chan- conviced convicted convinced
nel probability of observing a particular typo given the confusin confusing confusion
candidate correction Pr(t Ic). Both of these probabili-
ties were estimated from about 50 million words of Of course, the task becomes much easier if the context
Associated Press newswire (which includes about 15,000 is provided as demonstrated by the following four con-

typos which are used to train the channel model). cordance lines.

In evaluating the program, we restricted our atten- 1. in determining whether the defendant actuall will

tion to 564 typos that had exactly two candidate correc- die. In the 1985 decision, the...

tions. A panel of three judges were given the typo (e.g., 2. on Friday night, a show as lavish in constunning
absurb), the two candidate corrections (e.g., absorb and and lighting as those the late Liberace used to...
absurd) and a concordance line (e.g., it is absurb and 3. of the area. "When we're conviced and the Peru-
probably obscene for...), and were asked to select one of vians are convinced (the base camp)...
the two corrections (or none-of-the-above). The judges
found this task more difficult than they had anticipated, 4. The political situation grew more tin tody,
and very time consuming (it took each judge about four with an official media report indicating...
hours to grade the 564 examples). In addition, the Both (Mays et al., 1990) and (Church and Gale,
judges felt that the task would have been much harder 1991a) have found that statistical n-gram models of con-
without the concordance line, suggesting that context text can help considerably, although performance is still

should be incorporated into the program. far below that of the human judges. A quick look at the

Table 2 shows that correct agrees with the major- concordance lines above shows (a) that the relevant con-

ity of the judges in 87% of the 332 cases of interest.1 In textual clues are often fairly close to the typo, and (b)
order to help calibrate this result, we compared correct that there are relatively few cases that make use of
to three inferior methods: channelonly, prior-only and long-distance syntactic dependencies. (a) suggests that
chance. Table 2 shows that both the channel-only and simple n-gram methods might work fairly well in many

the prior-only models provide a significant contribution cases, and (b) suggests that more complicated "intelli-

over chance, and that correct, which is a combination of gent" parsing methods might. not be worth the trouble.

the two, is significantly better than either in isolation. 3 The T* M

I We restrirted our attention to thse cases where at least two One of the simpler and more popular priors is the
judges selected one or the two candidate corrections, and they n-gram model. This model makes the simplifying
agreed with each other. assumption that, word probabilities depend on only the

previous n-I words, and that long-distance dependences
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which extend beyond this limited window can be entropy.
igrored. Jelinek (1985) uses the example shown in
Table 4 to illustrate the power of the trigram model. In 4. Word Frequencies and Word Association Nm- s
the sentence, We need to resolve all the important issues The trigram model does a good job of modeling
within the next two days, most of the words are word frequencies which are very important, as any
extremely predictable from the trigram context (the psycholinguist knows. Generally speaking, subjects
current word plus the previous two). Note that we is the respond more quickly and more accurately to a high fre-
9't most likely word to begin a sentence in his model; quency word (e.g., a word that appears relatively often
the words the, this, one, ..., in are more likely to begin a in a sample of text such as the Brown Corpus) than to
sentence than we. The word need is found to be the 74 a saple owfteuc a the worpus)ociantoan unusual low frequency word. The word association
most likely word to follow we; the words are, will, ..., effect is similar except that it involves pairs of words.
do are more likely than need. And so on. Jelinek uses In general, subjects respond more quickly and more
this example to argue that the rank is usually very small accurately to a word like doctor if it follows a highly
in comparison to the vocabulary size, which was 20,000 associated word such as nurse (Meyer, Schvaneveldt and
words in this example. Ruddy, 1975, p. 98).

Table 4: Example of Trigrams (Jelinek, 1985 Word frequencies are fairly easy to estimate from
The This One Two A Three Please In We 9 a sample of text such as the Brown Corpus. Hanks and

are will the would also do need 7 I have argued that word associations should also be
to 1 estimated by computing various statistics over large cor-

know have understand ... resolve 98 pora (Church and Hanks, 1990). It is more common in
the this these problems ... all 9 the psycholinguistic literature to find a study like

issues problems the 3 (Palermo and Jenkins, 1964); they estimated word asso-
necessary data information ... important 641 ciation norms for 200 words by asking a few thousand

role thing that ... issues 9 subjects (psychology undergraduates) to write down a
and from in to are with ... within 66 word after each of the words to be measured. Results

the 1 were reported in tabular form, indicating which words
next I were written down, and by how many subjects, factored

be two 2 by grade level and sex. The word doctor, for example,
meeting months years ... days 7 is reported on pp. 98-100, to be most often associated

with nurse, followed by sick, health, medicine, hospital,
Note that function words (e.g., to, the) are gen- man, sickness, lawyer, and about 70 more words.

erally more predictable than content words (e.g., resolve,
important). This turns out to be important in speech 5. Strength and Weaknesses
recognition because the shorter function words are more The main advantage of the trigram model is that it
easily confused by the channel model and so it is for- has very low entropy, 1.76 bits per character (Brown Ct
tunate that they are more predictable from context. al., 1991). Parsers generally don't do as well because

Some of the content words also have relatively they tend to ignore word frequencies. The trigram
small ranks. Consider, the content word issues, for model is also able to capture some collocations and
example. It turns out that there are relatively few words word associations.
that follow the word important (at least, in the sub- The most obvious weakness with the tigram
domain of IBM office correspondences). This kind of model is the lack of syntax; the model makes no attempt
collocational (or co-occurrence) 2 constraint between to capture long-distance dependencies such as syntactic
words are often not captured very well with a syntactic agreement, conjunction and wh-movement, In fact, the
parser. Perhaps this is the reason why igran models lack is syntax is probably not the most serious problemhave tended to out-perform so-called "intelligent" with the model. The sparse-data problem is extremely
approaches, when pxformance is measured in terms of serious since many tzigrams do not appear very often in

2 HaJliday (19M6, p. 150) was v-ry interested in the difference the training corpus, if at all. In addition, the tnigram
between strong and powerful. Although both words have very model assumes that trigrans have a binomial distribu-
similar syntax and semantics, there do seem to be some contexts tion, an assumption which is often violated in practice.
where one word is much more appropriate than the other, e.g.,
strong tea vs. powerful drugs. The terms collocation, co-
occurrence and lezia have been used to describe these kinds or
constraints on pairs of words.
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B. Parsers May Nt Help Very Much pie code does almost as well as the Unix(TM) compress

It has been common practice, especially during program, which uses the Lempel-Ziv algorithm (Welch,

the first Darpa Speech Understanding Project (Klatt, 1984).

1977), to try to use a syntactic parser to take advantage In general, models based on words achieve much
of contextual constraints. Unfortunately, there has not better compression than models based on characters. A
been very much success. If I tell you that the next word unigram model (a Huff man code based on word proba-
is going to be a noun, then I really haven't told you bilities) requires about 2.1 bits per character (Brown,
very much. The following example illustrates the prob- personal communication). Note that the unigram model
lem. out-performs Lempel-Ziv by a considerable margin,

In the Optical Character Recognition (OCR) appli- indicating that the standard Unix(TM) compress pro-

cation, it is likely that the words form and farm might gram could be improved significantly.

be confused by the channel model. Imagine, for exam- The trigram model achieves even better compres-
ple, that they were found in one of the following two sion, 1.76 bits per character (Brown et al., 1991). This
contexts: last model is remarkably close to Shannon's estimate for

Sfarm crethe entropy of English. However, it isn't exactly fair to
federal farm credit compare these estimates since Shannon's estimate was

farm o based on a 27 character alphabet whereas these other
so me or J of estimates are based on a 256 character alphabet.

Nevertheless there does seem to be some reason to
Most people would have little trouble deciding that farm believe that the trigrain model is doing quite well, and
is much more likely in the first context and that form is that it might be almost as good as native speakers in
much more likely in the second context. In fact, trigram predicting the next letter.

models also have little difficulty with this example.

However, a syntactic parser wouldn't help very much. Table 5: Entropy of Various Language Models
The parser might tell us that the missing word is a noun, Model Bits /char
but that wouldn't help distinguish between form and Ascii 8
farm because they are both nouns. In general, if one Huff man code each char 5
were to compare the relative importance of local context Lempel-Ziv (Unix(T4) compress) 4.43
versus long-distance dependencies, one would almost Unigram 2.1
certainly find that the local context is much more impor- Trigram 1.76
tant, at least in terms of predicting the next word. Shannon's Estimate 1.25

The linguistic notion of syntax (constraints on
nouns, verbs, subjects, objects, phrases, etc.) was not 8. spaxm [ata "Fixes"
intended to be used in a noisy channel model. Chomsky
has always been more interested in linguistic com- as i a the s ars dta poe is
petence (an idealization of syntax) than performance probably the most serious weakness with the trigram
(deviations that are found in the real world including: model. In fact, there are eusually many more parameters
word frequencies, word association norms, collocations, than data points. Let V be the number of types in the
statistical preferences, memory and computational limi- vocabulary and N be the number of tokens in the
tations, etc). It should not be surprising that perfor- corpus. Then there are V3 parameters, which is gen-
mance issues are important in recognition applications, etly much much larger than N, the size of the training
and consequently, models that are based too closely on st Fo eap, i the Bron Corpus, te e
idealized notions of syntactic competence are likely to 15 tr ioryms, on N 10b tokens
run into trouble when they are tested on real dat. to train from. Obviously, most. of the possible trigrams

will not be observed in the training corpus.

7. Entropy One might think that one could fix the sparse data

It is common practice to evaluate a language problem by collecting more data, but ironically V3 gen-
model on the basis of its entropy. The standard ascii erally grows much faster than N. That is, if you collect

code uses 8 bits to represent a character. Obviously, a larger corpus (more tokens), then you will also find

many of these bits are unnecessary since some letters more types (vocabulary items). It isn't exactly clear

are much more common than others. If one were to how these two function grow, but I believe that the

take advantage of letter frequencies using a Htuffman vocabulary grows almost linearly with corpus size. In

code to encode each letter one at a time, then it would any case, V 3 grows much much faster than N, so col-

take alb,ut 5 biL, to code each character. This very sim- lecting more data is not a solution to the sparse data
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problem. The first method, ADDI (Jeffreys, 1948), simply

Something has to be done about the sparse data. adds one to all of the observed counts and then adjusts
Katz (1987) suggests "backing-off" from the trigran the total appropriately by multiplying by N/(N+S)
estimates when there isn't enough data. Basically, the where S is the number of types (e.g., V3 ). This method

idea is to replace trigram estimates with a combination is generally a disaster, especially when S is much larger

of unigram, bigram and trigram estimates. This is obvi- than N, which is most of the time. In a spelling correc-

ously a good idea. tion application, Gale and I have found that this method
produced very misleading estimates and concluded thatOne can also try to reduce the number of parame- estimating the context badly can be worse than not

ters by grouping words into classes (e.g., parts of estimating the context al can e 1990).

speech, synonym sets, etc.) Brown et al. (1990b) sug-

gest building classes with a self-organizing procedure The second method, GT (Good, 1953), depends
which joins words based on a mutual information cri- only on the modest assumption that ngrains have bino-
terion. The criterion has the effect of joining together mial distributions. Unfortunately, even this modest
words that have similar distributions (e.g., days of the assumption turns out to be highly problematic. Words
week, months of the year, etc). Although this particular and ngrams are like busses in New York City; they are

suggestion is very intriguing, it probably won't help too social animals and like to travel in packs. The word
much with the sparse data problem because it isn't pos- earthquake, for example, has a very bursty distribution
sible to determine that two words have a similar distri- in the Associated Press (AP) Newswire, depending on
bution unless you have a fair number of examples of whether or not there has recently been an earthquake.
both words. The real problem is what to do with words The word turkey also has a bursty distribution in the
that you haven't seen very often in the training set. AP, with a burst appearing once a year in late
Worse, what do you do with words that you haven't November. In fact, one can show that the binomial
seen at all. The criterion for joining words cannot assumption is often seriously off depending on what
depend on data that is unavailable, happens to be in the news, among other things.

The last method, HO held-out estimate (Jelinek
9. MLE, ADD1, GT and HO and Mercer, 1985), assumes the least, merely that the

Finally, one can "adjust" frequency counts, espe- training and test corpora are generated by the same pro-
cially when they are small. In principle, n-gram proba- cess. This method splits the text into two halves and
bilities can be estimated from a large sample of text by uses the first half to determine N,, the number of types

counting the number of occurrences of each n-gram of that occur r times, and the second half to determine
interest and dividing by the size of the training sample. their total mass C,. r* is then simply set to C,/A4.

This method, which is known as the "Maximum Likeli- For example, to determine 0*, the adjusted count for
hood Estimator," (NLE) is very simple. However, it is ngrams that did not occur in the first half, one would
unsuitable because n-grams which do not occur in the compute Co, the total count in the second half for
training sample are assigned zero probability. This is ngrams that did not appear in the first half, and divide
qualitatively wrong for use as a prior model, because it by No, the number of ngram types that did not appear in
would never allow the n-gram, while clearly some of the the first half.
unseen n-grans will occur in other texts. For non-zero In (Church and Gale, 1991b), we compared the
frequencies, the NLE is quantitatively wrong. GT and HO methods for estimating bigrain frequencies

Three alternatives will be mentioned here. These in 22 million words of Associated Press Newswire and
methods all take the observed counts (r) and produce an found that the GT method was slightly better when the
adjusted count (r*). The last two methods also make binomial assumption was appropriate. Tables 6 and 7
use of N, the number of types that occur exactly r show that both methods produce remarkably similar esti-
times. mates for r*.

r* r NILE Table 6: Good-Turing (GT) Estimate
r Nr r*

r* -(r +1) N +5 ADDI 0 74,671,100,000 0.0000270
N 1 2,018,046 0.446

r* =(r+1) N,+ GT 2 449,721 1.26
N 3 188,933 2.24

r Q,/N, HO 4 105,668 3.24

r* = C, /N, H
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Table 7: Held-Out (HO) Estimate methods appear to work remarkably well when the

r Nr Crassumptions are met, but unfortunately, there are serious

S74,671,100,000 2,019,187 0.0000270 problems with the assumptions. There has recently been
1 7 ,1,040 92,08 0.0 0 some interest in adaptive models, models that can take
1 2,018,046 903,206 .448 advantage of recency effects and forgetting effects. If
2 449,721 564,153 1.25 words were binomially distributed, then the probability
3 188,933 424,015 2.24 of a word should be independent of how long it has
4 105,668 341,099 3.23 been since it was last mentioned. In the AP wire, it

The agreement of the two methods, though, is appears that the probability increases dramatically when

partly due to the fact that we took extraordinary meas- a word has been mentioned recently, and drops fairly

ures to control for the New York City bus effect That consistently with the length of time since the last men-
tion.

is, we spit the text into two samples by randomly

assigning each bigram to one of the two samples. This 1 Applications
effectly destroyed any time structure that might have
existed in the two samples. If we had split the text into Section 1 discussed the use of noisy channel
two halves sequently by assigning the first six months of methods in recognition applications. This section will
the newswire to the first half and the second six months show how the same methods can be used to address
to the second half, then we would have observed translation applications such as Machine Translation
significant differences due to the non-binomial nature of (MT). The approach was first suggested by Weaver in
the news. 1949 and is currently being revived by Brown et al.

Table 8 shows that there is considerable agree- (1990a). If you would like to translate words in a

ment when the text is split randomly. The t-scores are source language, K, (e.g., French) into words in a target

possibly somewhat larger than we would like, but they language, W (e.g., English), you imagine that the

are really not too bad considering that we are dealing source words W, were the output of a noisy channel.

with extremely infrequent events. The I-scores are com- The translation task is to find the most likely input to

puted using an estimate of variances which is described the noisy channel given the observed outputs.

in (Church and Gale, 1991b). Table 9 shows that there t' - Noisy Channel -. IV
is considerable disagreement if the texts are split Viewed in this way, translation is very similar to recog-
sequentially. nition. In principle, one can recover the most likely

Table 8: Split Text Randomly input by hypothesizing all possible target language texts,
r HO GT t Wt, and selecting the target text with the highest score,

0 .000027041 .000027026 -. 7 where scores are computed by basically the same for-
1 .4476 .4457 -2.9 mula as above:
2 1.254 1.260 2.5 ARGA Pr( I) Pr( I, I IV)
3 2.244 2.237 -1.5 Wt
4 3.228 3.236 1.0
5 4.21 4.23 1.8 This information theoretic approach to machine
6 5.23 5.19 -2.8 translation is extremely controversial among researchers

in machine translation because it questions many of the

Table 9: Split Text Sequentially basic assumptions that have dominated the field since

r HO GT t the 1950s when Chosky (1957) and others pointed out

0 0.00001684 0.0001132 479.4 that statistical n-gram methods are incapable of model-

1 0.4076 0.5259 113. ing certain syntactic constraints such as agreement over

2 1.0721 1.2378 47.0 long distances. Brown et al. (1990a) argue that the sta-

3 1.9742 2.2685 37.8 tistical approach is more tractable than it was in the

4 2.8632 3.1868 26.4 1950s. Computers are certainly faster than they were

5 3.7982 4.2180 25.8 then. In addition, and probably much more importantly,

6 4.7822 5.2221 15.4 it is now possible to find large amounts of parallel text,
text such as the Canadian parliamentary debates which

In summary, there are quite a number of very are available in multiple languages. Brown et al. esti-
powerful techniques such as CT and HO for estimating mate Pr(Wt) and Pr( W8 I Wt) by computing various
the probability of an n-gram that did not appear very statistics over these parallel texts. Although the
many times in the training corpus, if at all. These approach may be deeply flawed for many of the reasons
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that were discussed in the f950s, there is, nevertheless, tagged text as possible to estimate the parameters, and
a growing community ofO researchers in corpus-based one should resort to re-estimation only when it is not
linguistics such as (0avans and Tzoukermann, 1990) possible to find a sufficient amount of tagged training
who are becoming convinced that the approach is worth material.
pursuing because there is a very good chance that it will There are, of course, many other "translation"
produce a number of lexical resources that could be of applications that are very analogous to machine transla-
great value to their research. tion and part of speech tagging where one wants to

transduce one tape of symbols into another. In speech
11. Part cf Speech Tagging recognition, for example, it is common to use these

This description of the machine translation prob- noisy-channel methods to translate a sequence of acous-
lem is fairly general and can be applied to quite a tic labels (e.g., the output of a filter bank) into a
number of transduction problems. Consider, part of sequence of phonetic labels (e.g., consonants and
speech tagging, for example. A part of speech tagger vowels).
takes an input sequences of words such as 7he table is
ready. and outputs a sequence of parts of speech such 12. Conclusions
as: Article Noun Verb Adjective. The problem is non- Quite a number of applications have been men-
trivial because it is well-known that part of speech tioned in just a few pages: spelling correction, speech
depends on context. The word "table," for example, is recognition, optical character recognition, text compres-
usually a noun, but it can also be a verb in some con- sion, machine translation and part of speech tagging. Of
texts such as: 7he chairman will table the motion. course, there are many other applications that should

The tagging problem can be viewed as a transla- have been discussed, especially information retrieval
tion problem, not unlike machine translation. Imagine (Salton, 1989) and author identification (Mosteller and
that we have a sequence of parts of speech P that go Wallace, 1964), but there just wasn't enough space to
into the channel and produce a sequence of words W. say everything.
Our job is to try to determine the hidden parts of speech All of this work points very strongly to the fact
P given the observed words W. that 1950-style empiricism is back in fashion. I have

P - Noisy Channel - W been asked to explain why, and I'm not sure that I have
a good answer. Of course, it is possible that the current

As before, in principle, one can hypothesize all possible interest in empiricism is just a fad that will soon fade
inputs to the channel and score them by: away. But, I would like to believe that there are good

ARGMAXPr(P) Pr( WIP) reasons for the revival. One can point to huge advances
P in computational power since the 1950s. But, even

Again, the parameters in this model are generally more importantly, the electronic culture has now per-
Amat , bmeated the publishing sector to such an extent that it is

estimated by computing various statistics over large

bodies of text, Both Church (1988) and DeRose (1988) no longer difficult to find hundreds of millions of words

have used the Tagged Brown Corpus (Francis and of text in electronic form. And there is promise of bil-

Kucera, 1982) for this purpose, which is particularly lions of words in the very near future. he availability

convenient because it comes with parts of speech that of data on such a massive scale has made it possible to

were check by hand. deMarcken (1990) used the carry out experiments that just weren't possible back in

Tagged Lancaster/ Oslo-Bergen Corpus (LOB) which the 1950s. Indeed, many of the experiments discussed

also comes with parts of speech. Others such as Jelinek in this paper would not have been possible without the

(1985) have used the Baum-Welch Algorithm (Baum, availability of very large corpora.

1972) to estimate the parameters from raw untagged Referetnes
text.

I have always felt that hand-tagged text produces Brown, P., Cocke, J., Della Pietra, S., Della Pletra, V.,
more reliable estimates, and recently Merialdo (1990) Jelinek, F., Lafferty, J., Mercer, R., Rossin, P.

performed an experiment which seems to back-up my (1990a), "A Statistical Approach to Machine

suspicion. He estimated the parameters using some Translation," Computational Linguistics.

hand-tagged data and then ran the re-estimation pro- Brown, P., Della Pietra, V., deSouza, P., Lai J., Mercer,
cedure and compared performance before and after re- R. (1990b) "Class-based N-gram Models of
estimation. One might have thought that re-estimation Natural Language," unpublished ms., IBM.
ought to improve performance, but he found just the Brown, P., Della Pietra, S., Della Pietra, V., Lai J.,
opposite. He concludes that one should use as much Mercer, R. (1991) "An Estimate of an Upper
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Bound for the Entropy of English," submitted to Katz, S. M., (1987), "Estimation of probabilities from
Computational Linguistics. sparse data for the language model component of

Chomsky, N. (1957) Syntactic Structures, The Hague: a speech recognizer," IEEE Transactions on

Mouton & Co. Acoustics, Speech, and Signal Processing, v.

Church, K. (1988) "A Stochastic Parts Program and ASSP-35, pp. 400-401.

Noun Phrase Parser for Unrestricted Text," Kernighan, M., Church, K., Gale, W. (1990) "A Spel-

Second Conference on Applied Natural Language ling Correction Program Based on a Noisy Chan-

Processing, Association for Computational nel Model," Coling, Helsinki, Finland (proceed-

Linguistics, Austin, Texas. ings are available from the Association for Com-
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Norms, Mutual Information, and Lexicography,' Klavans, J., and E. Tzoukermann (lq90) "The BICORD
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Abstract provide all of these, particularly a criterion for
"- Adaptive resonance theory (ART) neural networks are measuring the similarity of geometrical shapes.

being developed for application to the industrial
engineering problem of group technology -- the reuse of In the following, we will address the general application
engineering designs. Two and three dimensional of neural networks to the group technology problem,
representations of engineering designs are input to ART- where the designs are derived from a CAD system. Later
1 neural networks to produce groups or families of in the paper, we will discuss the results of a specific
similar parts. These representations, in their basic form, neural database architecture that finds similar marker (ie.
amount to bit maps of the design, and can become very decals) designs. Markers are found in the passenger
large when the design is represented in high resolution. compartments and service bays of commercial airliners,
We describe a "neural database" system under and indicate locations of services, warnings, and
development. This system demonstrates the feasibility restrictions to people who move and work in and around
of training an ART-i network to first cluster designs the aircraft. In this specific system, the data is not
into families, and then to recall the family when derived from a CAD system, but is acquired from paper
presented a similar design. This application is of large drawings of the markers with the help of a PC based
practical value to industry, making it possible to avoid optical scanner, and is transferred to the network in raster
duplication of design efforts. format.

Introduction In the next section, we describe how a specific artificial
Money and time can be saved by manufacturing neural network can meet all of the requirements of a
companies when engineering designs are reused. This is group technology implementation. We will assume that
particularly true in companies producing large systems, there exists an electronic description of the design
such as aircraft, that must be customized to varying information. First we will introduce the ART-I
layouts. Often the same design is inadvertently algorithm. We will then discuss the process of
redesigned at great expense. This can happen frequently information translation into the binary representations
in large systems which involve teams of designers. A needed for input to the network. A modification of the
new designer will have no knowledge of a previous simulation is mentioned that makes use of data
designer's work unless the technology exists to retrieve compression techniques. Finally, the markers retrieval
and compare designs. In industrial engineering, the system will be described.
study and implementation of such retrieval systems is
referred to as group technology. ART-I Algorithm

The adaptive resonance theory (ART) neural network
Several basic requirements must be met for the practical model was developed by Carpenter and Grossberg1 . The
implementation of group technology. First, the designs version of this model that processes binary input
must exist in, or be convertible to, an electronic patterns is referred to as ART-1. The ART-I neural
description. Second, an appropriate criterion must be network model is canonically represented by a coupled
designed to determine similarity of designs. Third, the set of ordinary nonlinear differential equations1 . If
search algorithm must exceed a threshold of performance appropriate assumptions are made about the relationship
on the host computer to provide timely responses for the between the learning rates and the dynamical time
user. Fourth, a retrieval system should output the best constants, this system of equations can be replaced by a
few matches for consideration by the human designer.
Fifth and final, the database must be easily maintainable procedural algorithm2 . This "fast learning" mode ofand updateable. Few traditional database technologies learning requires that the learning process stabilize each

time before the next input pattern is presented. The
impact of this assumption on both hardware and
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software implementation is large: the computational groupings, • is the dot product, and I . I is the L1 norm.
steps of the algorithm can now be directly mapped onto During learning, the conjunction of the template and the
an algorithmic processor. For this model, there is no input vector must be calculated as well. That is,
need to become embroiled in the implementation issues Tk +- (1 n Tk),
of dynamical systems. where n is bit-wise "and". These calculations constitute

The basic functionality of this algorithm is to a major portion of the processing load of the ART-I

autonomously place input patterns into clusters or algorithm.

families. These patterns are represented as binary The Neural Network Approach
vectors. Clusters are formed and modified during the
training process, often referred to as "self-organizing" Healy and Caudell have further developed the
learning. The number of clusters is not preset at the understanding of the logical functionality of the ART-I
beginning, but is determined by the underlying structure network and have developed a methodology for the
of input patterns used during training and by a small set design of macrocircuits of ART-I network modules 4 .
of network parameters. After training, the network is Through the study of these logical architectures, we have
used as a "neural database", being queried by new input applied ART-I to the group technology problem. In
patterns to find the closest family. Again, the input this application, the network is trained on design
patterns must be represented as binary vectors, representations derived directly from descriptions

generated by such computer aided design (CAD)
A characteristic of this self-organizing neural network is packages such as CATIA and CAD-KEY. Two, three,
the formation of memory templates or archetypes during and higher dimensional descriptions are being used to
the repeated exposure of the network to the training set. represent features of designs.

A template isolates a conjunctive generalization3 of the
attributes representing the member patterns in that The CAD system usually stores a "constructive
cluster. If the input pattern, denoted 1, is found to be a description" of the part. That is, a list of instructions
member of an existing cluster after a search of neural that tell a graphics rendering program how to draw a
memories, then this pauern is added to the membership diagram of the part. The diagram tells the design
list for that cluster, and the template associated with this engineer how this part fits into the overall system, the
cluster is updated to include the features of the new manufacturing engineering how to design the
pattern. The updated template is a conjunction, or an manufacturing process for the part, and the field service
"and", of the matching template and the newly added engineer how to maintain the part in the system. From
member input vector, this constructive description, a transformed

representation must be produced by a preprocessing

On the other hand, if I is new to the system's system to become the input for the neural network. The

memories, then a new cluster is formed with I being the description of the design may come in other forms,
first member. In this case, the new template including raster scanned images as mentioned above. In

representing the new cluster becomes I. (That is, the this later case, no preprocessing is required.

archetype for a group with one member is the member
itself). This process proceeds automatically with no For a 2D designs, such as a sheet metal floor stiffener in
outside supervision, finding order and structure in the an aircraft, the simplest transformed representation is a
stream of input patterns. For the learning process to binary pixel map or silhouette; ones where there is solid
stabilize, the training set of input patterns is repetitively material and zeros where there is none, defined over a
presented to the network. In summary: when a new predefined 2D graphical view port. This is shown in
input vector is presented, it is then either placed into Figure Ia. The view port is a window on 2D space.
one of the existing clusters, or classified as a novel The binary pixel map is strung-out or rasterized into a
pattern and added to a new cluster, binary vector by concatenating rows of pixels from the

view port. This vector is subsequently fed to the ART-I

During the search of the memory templates, the dot neural network simulator for clustering into families.

product of each memory template with the input vector
is computed, as are the vector norms of each template Other forms of information may be represented as binary
and the input vector. That is, patterns. For example, Figure lb illustrates how the

position of fastener holes can be represented in a view
III port with the same dimensions of the silhouette, but

Tk ' II _<k! nc  with ones in the neighborhood of a hole, and zeros
otherwise. The locations and degree of metal bends can

(I * Tk), l!k:nc} be represented in a three dimensional "Hough Space",
where I is the current input vector, Tk is the kth  where the first two axis code the slope and intercept of
memory template, nc is the current number of the bend line, while the third axis codes the bend angle.
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In this case, each bend line would be represented as a sophisticated techniques are available, it is the low
single point in a 3D space. If the angle of the bend is conversion overhead and basic simplicity of run-length
not important, then a bend line could be represented encoding that makes it ideal for this application. A run-
directly in a viewport as with the silhouette. This is length algorithm returns a list of integers that represents
shown in Figure Ic. the lengths of runs of consecutive l's and/or O's in the

binary vector. Efficient linear algorithms exist to
compress data into this format. With the assumption
that the starting value of the list is known, the fact that
the l's and O's alternate allows this list to be stored
without the actual values of the runs.

(() )(C) 00000011111111111111111000000001111111111110000

Bkwy vaw

Figure 1. Three representations of features of ai Is
design. (a) is the silhouette of the part, (b) is the *n :.
location of fastener holes, and (c) is the location of
bend lines. Each of these are converted into linear
binary vectors for input to the neural network. Figure 2. An example of a short binary vector. The

run-length code C for this string Is {6,17,8,12,5) with
byte compression ratio of 8/5. This ratio assumes that

The limitation of this type of sparce representation is in the uncompressed vector is stored in compact form in
the explosion of the length of the binary input vector. 8-bit bytes, and that the maximum length of a single
The resolution of the pixelization determines the overall run is 256. The bar above the vector symbolically
length of the binary input vector. The resolution also indicates the location of strings of O's and l's, and is

used to explain the compressed algorithms later in thedetermines the accuracy of the object representation, and text.
if too coarse it will strongly affect the way the network
groups the designs. Even though the bits in the binary The ART-I simulation used for this research was
vector can be "packed" into 32 bit integers for storage modified to include compressed versions of the vector
and manipulation, when many clusters are formed, the operations described above. The input patterns are
total size of the vectors will tax the limits of small compressed before presentation to the network. The
engineering workstations. memory templates are created and updated directly in

compressed form. Data compression ratios and
In our normal simulation of the ART-i algorithm, the execution times were measured for both compressed and
vectors and templates are in binary form before the dot uncompressed versions of the simulations. In these
products, norms, and conjunctions are calculated. A experiments, compression ratios of up to 20 were found
practical group technology parts retrieval system might using 2-D CAD designs. In addition, speedups of the
be expected to require many ART-I modules running ART-i algorithm of upwards of 100 were measured for
with many hundreds of memory templates each. A 3-D CAD designs. These improvements are important
compounding fact is that the range of engineering to the developers and end-users of these neural retrieval
workstations on which the system might possibly be systems because it makes deployment of practical
deployed include relatively low-end PCs. The following applications on existing engineering workstations
section briefly introduces a modification to the ART-1 possible.
algorithm that allows direct operation on data
compressed input vectors and memory templates. Neural Database Architecture

For the group technology applications considered so far
A Compressed ART-i Algorithm in our research group, a generic system architecture is
There are significant advantages to applying data emerging. This can be seen in Figure 3. The basic
compression techniques to the binary representations components are 1) CAD System Interface, 2) Parser, 3)
used in this ART-i system. First of all, there is no Representation Generator, 4) Neural Network
random "noise" in designs, making accurate compression macrocircuits, and 5) User Interface.
possible. Second, a bit map of a design will quite
frequently have long strings of l's and O's as the material In a group technology system the lists of parts which
of the part is transited, producing potentially large data form each cluster are maintained during training. When
compression ratios. Finally, the neural network the user queries the system with a new design, that
simulation will have fewer actual numbers to process design is presented to the network and the list of parts
per part, reducing the execution times. which previously grouped in the same cluster are
In this work, standard run-length encoding is used. For returned.
an example, see Figure 2. Although other more
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The functionality of the Parser is to extract the salient structure of the macrocircuit strongly effects the range of
information from the CAD System Interface. Typically, functionality provided by the neural database. (See
this interface is an ASCII data file containing the Figure 6 for a diagram of the macrocircuit used in the
constructive description of the part. It may also be a demonstrations system discussed in the following
raster file of an image. The extracted information might section.)
be a list of lines and arcs defining the border of the part,
the location of fastener holes, or a bit map of the design.
Unfortunately, the structure of the data files usually
depends on the style and consistency of the user of the
CAD program, making multiple searches of the data -Lve3
necessary. Sometimes information on a substructure of * * * .
the part will be distributed in many locations in the
CAD file. The Parser is the only component specific to
the brand of CAD program being used, and must be LJ . .. e2

redesigned for each new system.

---------- ' 4V I

CAD ---- M~W~ftE" Figure 4. An example of a ART Tree database
structure. Each cube represents a macrocircult of
ART-1 neural networks to provide "don't care" option
to query.

Another user requirement might be the ability to vary
the degree of the family discriminators, allowing on-line
specification of the closeness of a match in the search
for similarity. This can be implemented with a
hierarchical abstraction tree of macrocircuit modules, as

Figure 3. A schematic of the components of a neural shown in Figure 4. Each module in the tree is trained
database syrtem for group technology. The User separately with the input patterns associated only with
Interface provides control of the level of abstraction of that branch cluster, and each module receives the
recall in the network. complete set of representations. The modules at the top

of the tree have the greatest discrimination, while the
The Representation Generator converts and compresses one at the bottom has the least. When a query occurs,
the information extracted by the Parser into a form the lowest module places the design into one of its
usable by the neural network. This includes operations families or clusters. Families at this level represent the
such as the generation of the 2D viewports, generating most general abstraction of the possible set of designs
silhouettes by filling in boundaries, computing the stored in the system. When a winning cluster is selected
location of points in Hough spaces, and the compression at the first level, the module up the branch of the tree
of each representation into run-length codes. This associated with this group is activated. This module
component is independent of the type of CAD program then places the design into one of it's clusters, and the
used in design generation, but will vary depending on process repeats. The user selects the level of abstraction
the types of representations required to capture the at retrieval time according to the current requirements.
significant features that best discriminates the design
families. An Application to Marker Retrieval

As an illustration of the types of systems currentlyThe structure of the ART-I Macrocircuits component is under development, more detail will be given on the

also dependent on the representations, and will vary marker design retrieval system. Figure 5 gives two

according to requirements of the database users. A markers that are similar in size and textual content, but

macrocircuit is a collection of neural network modules, differ in the graphical information. It is possible that
connected together in a larger and more functional dfe ntegahclifrain ti osbeta

nected Toeheear ncessarif a r ea ore ftiona only one of these need be saved. Often new markers are
network. These are necessary if a network is to give the needlessly designed because no retrieval system exists to
user a range of query options. For example, the user aid the designer. The markers designs are produced andmay choose to query the database for designs that have strdo shes fparbun in oums

the same general size, represented by a bounding stored on sheets of paper bound in volumes,

rectangle or box. After limiting the choices of families complicating electronic access.

by this step, the user may next want to discriminate For this demonstration, approximately 50 markers were
according to the the specific shape of the object. The digitized on a Macintosh optical scanner to capture the
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graphical shape. These images were then converted to entered into a database could be used prior to graphical
raster file bit maps for input to the neural network. In grouping.
addition, the cut-out die size and textual content of the
marker were recorded with the image. Figure 6 gives the This demonstration system mentioned above is
details of how sets of ART-1 modules are connected to implemented in the C language on Sun SPARC
implement the database system. workstations. Training for this small system takes less

than ten minutes, and retrieval time for a new design is
The detailed structure of this macrocircuit evolves during less than a second. The ART Tree structure has not
the learning process, where a training set of marker been implemented for this application. Figure 7 shows
designs are repetitively presented to the network. The a screen-dump of a trained network.
die size and textual information are used to form
families. When a new size/text family forms, an ART- I A neural network grouping system for airplane markers
module is created to cluster the graphics associated with could be used in a number of ways. The existing
this family into subfamilies of similar shapes. In Figure markers could be grouped and then the groups examined
6, the shape representation is considered last by the by a human to locate and purge duplicate markers. This
highest ART-I module. would save money in maintenance. Also, such a system

could be used for group technology to return the closest
One advantage of this sort of hierarchical structure is existing markers to a new one being designed. This
that it could be easily incorporated into a traditional would help avoid the future proliferation of duplicate
database system. The categorization that occurs before markers. Finally, additions to traditional databases could
presenting the graphical images to the neural network be constructed which would graphically group the
could be performed by querying an existing database. markers returned to the user in response to a query.
Thus, any attributes of the markers that have been

NO SMOKING NO SMOKING
IN LAVATORY IN LAVATORY

Figure S. Two markers that are the same size and have the same message, but contain different
graphical Information.



20 T.P. Caudell, SD.G. Smith, and S. Tazuma

4 N

AR

T I

Parts 203PP63412

Figure 6. The macrocircult of ART-i modules that implements the markers design retrieval system.
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Figure 7. A screen dump from a Sun SPARCI simulation of the sheet metal floor stiffener retrieval
system. The three representations of shape, holes, and bends appear In vlewports across the top of the
Image. The set of silhouettes In the upper middle of the figure are the memory templates for the shape
ART-I module. The lower set of rectangular windows show the results or the holes and bends modules
for each shape cluster.
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Conclusions proceedings of Northcon/88, Vol II, Western
Artificial neural networks have been applied to design Periodicals Co., Oct. 1988.
retrieval. ART-I networks are used to adaptively group
together similar engineering or graphical designs. The 4. Healy, MJ. and Caudell, T.P., "On the Semantics of
information used to group is coded into a binary Pattern Recognition Neural Networks", in the
representations which, in their basic form, amounts to proceedings of Northcon/88, Vol II, Western
bit maps of design descriptors. We have used this Periodicals Co., OcL 1990.
technology to build neural databases for the retrieval of
two and three dimensional engineering designs. We
have discussed in detail a feasibility level system that
learns to group airliner markers into families, and then
to recall the family when presented a similar marker.
The input to these networks may be generated directly
from CAD designs of the parts or other sources of object
features.

An addition to the algorithmic form of ART-i was
introduced that allows it to operate directly on run-length
encoded vectors, and to generate compressed memory
templates. When compared to the regular uncompressed
algorithm on real engineering designs, the performance
of this compressed algorithm demonstrated a significant
savings in storage of the input vector and the memory
templates. A surprising result was the size of the speed
up in execution of the simulation on larger input
vectors. Issues of object scale, orientation, and
reflection have not been discussed here, although they
have been dealt with in the working systems. The code
for a system that groups aircraft floor stiffener sheet
metal parts has been transferred to a PC based
engineering workstation for beta testing. The application
of neural networks to group technology is of large
practical value to industry, by making it possible to
avoid duplication of design efforts and save many down
stream costs.
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Abstract alternative approach [Fung and Shachter, 19911. Both

This paper discuses multiple Bayesian networks repre- schemes employ asymmetric independence to ease the

sentation paradigms for encoding, asymmetric indepen- elicitation and improve the quality of probabilistic mod-

dence assertions. We offer three contributions: (1) an in- els.

ference mechanism that makes explicit use of asymmetric This article offers three contributions: (1) an infer-

independence to speed up computations, (2) a simplified ence mechanism that makes explicit use of asymmetric

definition of similarity networks and extensions of their independence to speed up computations, (2) a simplified

theory, and (3) a generalized representation scheme that definition of similarity networks and extensions of their

encodes more types of asymmetric independence asser- theory, and (3) a generalized representation scheme that

tions than do similarity networks, encodes more types of asymmetric independence asser-
tions than do similarity networks.

Introduction These contributions address problems of knowledge
representation, inference, and knowledge acquisition. In

Traditional probabilistic approaches to diagnosis, classi- particular, Section 2 describes Bayesian multinets and
fication, and pattern recognition face a critical choice: how to use them for inference, Section 3 describes knowl-
either specify precise relationships between all interact- edge acquisition using similarity networks and how to
ing variables or make uniform independence assumptions convert them to Bayesian multinets, Section 4 extends
throughout. The first choice is computationally infeasi- these representation schemes to the case where hypothe-
ble except in very small domains, while the second, which ses are not mutually exclusive and section 5 summarizes
is rarely justified, often yields inadequate conclusions, the results. We assume the reader is familiar with the

Bayesian networks offer a compromise between the two definition and usage of Bayesian networks. For details
extremes by encoding independence when possible and consult [Pearl, 1988[.
dependence when necessary. They allow a wide spectrum
of independence assertions to be considered by the model Representation and Inference
builder so that a practical balance can be established be-
tween computational needs and adequacy of conclusions. Bayesian Multinets

Although Bayesian networks considerably extend tra- The following example demonstrates the problem of rep-
ditional approaches, they are still not expressive enough resenting asymmetric independence by Bayesian net-
to encode every piece of information that might re- works:
duce computations. The most obvious omissions are A guard of a secured building expects three types of
asymmetric independence assertions stating that vari- persons to approach the building's entrance: work-
ables are independent for some but not necessarily for ers in the building, approved visitors, and spies. As
all of their values. Such asymmetric assertions cannot a person approaches the building, the guard notes
be represented naturally in a Bayesian network. Sev- its gender and whether or not the person wears a
eral researchers observed this limitation, however, until badge. Spies are mostly men. Spies always wear
recently no effort was made to remove it. badges in order to fool the guard. Visitors don't

Similarity network paradigm is the first major effort wear badges because they don't have one. Female-
towards the r "resentation of asymmetric independence workers tend to wear badges more often than do
[Heckerman, 1 ,90[. Contingent influence diagrams is an male-workers. The task of the guard is to identify

the type of person approaching the building.
'This paper is reprinted from the poceedings of the 7th

Uncertainty in Artificial Intelligence conference, Los Angeles, A Bayesian network that represents this story is shown
California. in Figure 1. Variable h in the figure represents the cor-
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rect identification. It has three values w, v, and s re- tation requires 11 parameters while the representation
spectively denoting worker, visitor, and spy. Variables g of Figure 2 requires only 9. This gain, due to asym-
and b are binary variables representing, respectively, the metric independence, 'could be substantially larger for
person's gender and whether or not the person wears a real-sized problems because the number of parameters
badge. The links from h to g and from h to b reflect the needed grows exponentially in the number of variables,
fact that both gender and badge-wearing are clues for whereas the overhead of representing multiple networks
correct identification, and the link from g to b encodes grows only linearly.
the relationship between gender and badge-wearing. We call the representation scheme of figure 2, a

Unfortunately, the topology of this network hides the Bayesian multinet.
fact that, independent of gender, spies always wear Definition Let {u1 ... u,} be a finite set of variables
badges and visitors never do. The network does not each having a finite set of values, P be a probability dis-
show that gender and badge-wearing are conditionally tribution having the Cartesian product of these sets of
independent given the person is a spy or a visitor. A values as its sample space, and h be a distinguished vari-
link between g and b is drawn merely because gender able among the uj's that represents a mutually-exclusive
and badge-wearing are related variables when the per- and exhaustive set of hypotheses. Let A,..., Ak be a
son is a worker. partition of the values of h. A directed acyclic graph

Di is called a local network of P (associated with Ai)
h if it is a Bayesian network of P given that one of the

hypotheses in Ai holds, i.e., Di is a Bayesian network of
P(ui ... un jA1 ). The set of k local networks is called a

b g Bayesian multinet of P.'

In the secured-building example of Figure 2,
{{spy, visitor}, {worker}} is a partition of the values of

Figure 1: A Bayesian network for the secured-building the hypothesis node h, one local network is a Bayesian
example. network of P(h, b, g1 worker) and the other local network

is a Bayesian network of P(h, b, gj {spy, visitor}). 2

The fundamental idea of multinets is that of condition-We can more adequately represent this story using two in;each localnewrrpestsadticstuio

Bayesian networks shown in Figure 2. The first net- ing; eahlclnetwork represents a distinct situation
B s nworkents hown ases Fre ers app ng- conditioned that hypotheses are restricted to a speci-
work represents the cases where the person approaching fled subset. Savings in computations and space occur
the entrance is either a spy or a visitor. In these cases, because, as a result of conditioning, asymmetric inde-
badge-wearing depends merely on the type of person ap- pendence assertions are encoded in the topology of the
proaching, not on its gender. Consequently, nodes b and local networks. In the example above, conditional inde-
b are shown to be conditionally independent (node h pendence between gender and badge-wearing is encoded
blocks the path between them). The links from h to as a result of conditioning on h.

b and from h to g in this network reflect the fact that Notably, conditioning may also destroy independence

badges and gender are relevant clues for distinguishing relationships rather then create them iPearl, 1988].

between spies and visitors. The second network repre- However, if the distinguished variable is a root node (i.e.,

sents the hypothesis that the person is a worker, in which Hode ith distingis , vari ionod ie.,

case gender and badge-wearing are related as shown. a node with no incoming links), conditioning on its val-
ues never decreases and often increases the number of in-
dependence relationships, resulting in a more expressive

Spy/Visitor Worker graphical representation. Other situations are addressed

below where the hypothesis variable is not a root nodeh or where more than one node represents hypotheses.

Representational and Computational

b g Advantages

The vanishing dependence between gender and badge-
wearing is an example of an hypothesis-specific indepen-

Figure 2: A Bayesian multinet representation of the dence because it is manifest only when conditioning on
secured-building story.

'A Bayesian multinet roughly corresponds to an
hypothesis-specific similarity network as defined in Hecker-

Figure 2 is a better representation than Figure 1 be- man's dissertation (1990, page 76).
cause it shows the dependence of badge-wearing on gen- 2The conditioning set {spy, visitor} is a short hand nota-
der only in context in which such a relationship exists, tion for saying that h draws its values from this set, namely,
namely, for workers. Moreover, the former represen- either h = spy or h = visitor.
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specific hypotheses, that is, for spies and visitors, but Suppose the guard sees a male (g) wearing a badge (b)
not for workers. The following variation of the secured- approaches the building and suppose the guard doesn't
building example demonstrates an additional type of notice whether or not' the person arrives in a limousine.
asymmetric independence that can be represented by A computation of the posterior probability of each possi-
Bayesian multinets as well. ble identification (executive, worker, visitor, spy) based

on the Bayesian network of Figure 1 simply yields theThe guard of the secured building now expects four chaining rule:

types of persons to approach the building's en-

trance: executives, regular workers, approved vis- P(hJg, b) = K P(h) P(glh)- P(blg, h). (1)
itors, and spies. The guard notes gender, badge-
wearing, and whether or not the person arrives in where K is the normalizing constant.
a limousine (1). We assume that only executives Using the representation of Figure 3, however, the fol-
arrive in limousines and that male and female ex- lowing more efficient computations are done instead:
ecutives wear badges just as do regular workers (to
serve as role models). P(spylg, b) = K P(spy) . P(gispy) -P(bspy) (2)

This story is represented by the two local networks P(visitorlg, b) K P(visitor) P(givisitor).
shown in Figure 3. One network represents a situation P(bvisitor (3)
where either a spy or a visitor approaches the building, P(workerig, b) = K P(worker) P(glworker).
and the other network represents a situation where either
a worker or an executive approaches the building. The P(bg, worker) (4)
link from h to I in the latter network reflects the fact that P(g, blexecutive) = P(g,blworker). (5)
arriving in limousines is a relevant clue for distinguishing
between workers and executives. The absence of this Equations 2 and 3 take advantage of an hypothesis-
link in the former network reflects the fact that it is not specific independence assertion, namely, that g and b
relevant for distinguishing between spies and visitors, are conditionally independent given, respectively, that

The vanishing dependence between gender and the hy- h = spy and h = visitor. Equation 5 uses a subset inde-
pothesis variable h when h is restricted to a subset of pendence assertion, namely, that b and g are independent
hypotheses (worker, executive) is an example of subset of h restricted to (worker, executive}.
independence. Similarly, badge-wearing is independent More generally, calculating the posterior probability of
of h when restricted to {worker, executive), and arriv- each hypothesis based on a set of observations el, ... , em
ing in limousines is independent of h when restricted to is done in two steps. First, for each hypothesis 14, the
{spy, visitor}. 3 probability P(e 1 ,..., emIhi) is computed via standard al-

Subset independence is a source of considerable corn- gorithms such as Spiegelhalter and Lauritsen's (88) or
putational savings. For example, in lymph-node pathol- Pearl's (88). Second, these results are combined via
ogy less than 20% of the potential morphological findings Bayes' rule:
are relevant for distinguishing any given pair of disease P(hile...em) = K p(hi)P(el...ekIhI). (6)
hypotheses (among over 60 diseases) [Heckerman, 1990]. Notably, the computation of Plei ... eklhi) in the first

step uses the local networks as done in Eqs. (2) through
Spy/Visitor Worker/Executive (5) and does not use a single Bayesian network as done

h in Eq. (1). Consequently, when the values of h are prop-
h_ erly partitioned, the extra independence relationships

encoded in each local network could considerably reduce
computations.

b (. 7 ( The parameters needed to perform the above compu-
_ __ ~tations consist, as we shall see next, of the prior of each

hypothesis hi and the parameters encoded in the local
Figure 3: A Bayesian multinet representation of the aug- networks:
mented secured-building story. Theorem 1 Let {ui . . u,} be a finite set of variables

each having a finite set of values, P be a probability dis-
Below we demonstrate these computational savings tribution having the Cartesian product of these sets of

using the simple secured-building example; more say- values as its sample space, h be a distinguished variable
ings are obtained in real domains such as lymph-node among the uis, and M be a Bayesian multinet of P.
pathology. Then, the posterior probability of every hypothesis given

any value combination for the variables in {ul ... un}
3Heckerman coined the terms subset independence and can be computed from the prior probability of h 's values

hypothesis-specific independence in his dissertation. and from the parameters encoded in M.



Probabilistic Reasoning 25

According to Eq. 6 above, the only parameters needed idential variables (such as gender, badge-wearing, and
for computing the posterior probability of each hypoth- limousines). In our example, this network would be eco-
esis h,, aside of the priors, are p(v2 ... v,,jh,) where nomics -+ h +- military. Then, use this network to revise
V2 ... vn are arbitrary values of u2 ... u,n (assuming with- the a priori probabilities of the different hypotheses. Fi-
out loss of generality that h = ul). Let Di denote a local nally, construct local networks ignoring a priori factors
network in M, Ai be the hypotheses associated with Di, (as done in Figure 2) and use the resulting multinet with
and hi be an hypothesis in A1. Clearly, p(v2 ... vn Ihi) the revised priors of h to compute the posterior proba-
is equal to p(v2 ... vnl Ihi, Ai) because hi logically implies bility of h as determined by the evidential clues. This
the disjunction over all hypotheses in Ai. The latter decomposition technique works best if a priori factors
probability is computable from the local network Di by are independent of all clues conditioned on the different
any standard algorithm (e.g., (Pearl, 19881), thus, the hypotheses. That is, in situations that can be modeled
former is also computable as needed. El with Bayesian networks of the form shown in Figure 4

where all paths between a priori factors ri's and eviden-
For example, P(glworker, {worker, executive}) is tial clues fi's pass through h.

equal to the probability P(gJ worker) because worker log-
ically implies the disjunction worker V executive. In
fact, P(glworker, {worker, executive}) is also equal to
P(g{ worker, executive}) because g and worker are inde-
pendent given {worker, executive) as shown in Figure 3.
In this example, the needed probability P(glworker) is
equal to the given one P(gl{worker, executive)), how- r2  r3
ever in general, the needed probabilities are computed
via standard inference algorithms.

Overcoming some Limitations h

The multinet approach described thus far is especially
beneficial when the hypothesis variable can be modeled
as a root node because, then, no dependencies are ever (if
introduced by conditioning on the different hypotheses.
However, the hypothesis node cannot always be modeled
as a root node. For example, in the secured-building f3

story, suppose there are two independent reports indi-
cating possible spying, say, for military and economical Figure 4: A Bayesian network where all paths between a
reasons respectively. Such a priori factors for correct priori factors ri's and evidential clues fi's pass through
identification are modeled as parent nodes of h, called, h.
say, economics and military having no link between them
to show their mutual independence. The resulting net-
work in this case is simply economics -* h - military. When a network of this form cannot serve as a jus-

However when h assumes the value spy, an induced tifiable model, another approach can be used instead;
link is introduced between its parents economics and compose a Bayesian multinet ignoring a priori fac-
military; one explanation for seeing a spy changes the tors, construct a Bayesian network from the local net-
plausibility of the other explanation, thus making the works by taking the union of all their links (e.g., the
two variables economics and military be not indepen- union of all links in Figure 2 yields the Bayesian net-
dent conditioned on h = spy. Consequently, an induced work of Figure 1). Finally, add a priori factors to
link must be drawn between the economics and military the resulting network. This approach was proposed in
nodes in the local network for spies vs. visitors to ac- [Heckerman, 1990).
count for the above dependency. This link would not The disadvantage of this method is that in the pro-
appear in the full Bayesian network because economics cess of generating a Bayesian network from a multinet,
and military are marginally independent (they become one encodes asymmetric independence in the parame-
dependent only when conditioning on h = spy). Such ters rather than in the topology of the Bayesian network.
induced links are often hard to quantify and therefore, Consequently, these asymmetric assertions are not avail-
constructing a single local network is sometimes harder able to standard inference algorithm to speed up their
than constructing the full network, as is the case in the computations.
above example. Nevertheless, this approach is still the best alterna-

One approach to handle this situation is to first con- tive for decomposing the construction of large Bayesian
struct a Bayesian network that represents only a priori networks having topologies more complex than that of
factors that influence the hypotheses, ignoring any ev- Figure 4. Such decomposition techniques are crucially
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needed due to the overwhelming details of real-life prob- relationship, however, is included in the local networks
lems. Additional issues of knowledge acquisition are dis- for visitors vs. workers because it helps distinguish be-
cussed below. tween these two hypotheses. The reason for not loosing

needed information is that the three local networks are
Knowledge Acquisition/ Representation based on a connected cover of hypotheses (rather than a

Similarity Networks partition).

Recall the guard that must distinguish between workers,
executives, visitors and spies. In this story, some vari- Spy/Visitor Visitor/Worker
ables do not help distinguish between certain hypotheses.

For example, gender and badges do not help distinguish
between workers and executives, and limousines do not h h
help distinguish between spies and visitors. In richer do-
mains, large numbers of variables are often not relevant
for distinguishing between certain hypotheses.

Unfortunately, the Bayesian multinet approach re-
quires full specification of all variables in each local net-
work even when they are not relevant to distinguish be-
tween the hypotheses associated with that local network.
For example the relationship between b and g is encoded Worker/Executive
in the local network for spies vs. visitors although these
variables do not help distinguish between this pair of hy- h
potheses (Figure 3). Assessing such relationships, in con-
texts where they are not relevant, imposes insurmount-
able burden on the expert consulted as is demonstrated
by the following quote [Heckerman, 1990]:

"When the expert pathologist was asked questions
of the form

Given any disease, does observing feature x Figure 5: A similarity network representation of the
change your belief that you will observe feature secured-building story.
y?

the expert sometimes would reply

I've never thought about these two features at Definition A coverof aset A is a collection {AI, ... , Ak}

the same time before. Feature x is relevant to of non-empty subsets of A whose union is A. Each cover
only one set of diseases, while feature y is only is a hypergraph, called the similarity hypergraph, where
relevant to another set of diseases. These sets the As's are edges and elements of A are nodes. A cover

of diseases do not overlap, and I never confuse is connected if the similarity hypergraph is connected.

the first set of diseases with the second." In Figure 5, {spy, visitor}, {visitor, worker}, {worker,

The solution is to simply include in each local network executive) is a cover of the hypotheses set. This cover is

only those variables that are relevant for distinguishing connected because it is simply a four-nodes chain spy-

between the hypothesis covered by that local network. visitor-worker-executive which, by definition, is a con-
However, by doing so, valuable information for cor- nected hypergraph. The set {{spy, visitor}, {worker,

rect identification might be lost. For example, the rela- executive)) is also a cover but it is not connected. The

tionships between badge-wearing and gender in Figure 3 set {{worker, executive, visitor}, {visitor, spy}} is an ex-

would be lost. To compensate for such losses of informa- ample of a connected cover that is a hypergraph which

tion, additional local networks must be constructed. is not a graph.

For example, the secured-building can be represented Definition Let U = {ul ... u,,) be a finite set of vari-
with three local networks shown in Figure 5 rather than ables each having a finite set of values, P be a probability
two as in Figure 3. One network is used to distinguish distribution having the cross product of these sets of val-
between spies and visitors, another between visitors and ues as its sample space, and h be a distinguished variable
workers, and a third between workers and executives. In among the u2's that represents a mutually-exclusive and
each local network we include only those variables rel- exhaustive set of hypotheses. Let A,,..., Ak be a con-
evant to distinguishing the hypotheses covered by that nected cover of the values of h. A directed acyclic graph
local network. In particular, the relationship between Di is called a comprehensive local network of P (associ-
badge-wearing and gender is not included in the local ated with Ai) if it is a Bayesian network of P assuming
network for workers vs. executives as in Figure 3. This one of the hypotheses in Aj holds, i.e., Di is a Bayesian
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network of P(ul ... u,, jA,). The network obtained from Let Di denote a local network in S, A. be the hy-
Di by removing nodes that are not relevant to distin- potheses associated with Di, and h, be an hypothesis in
guishing between hypotheses in Ai is called an ordinary Ai. There are two cases; either uj is depicted in Di or
local network. The set of k ordinary local networks is it is not. Let Ai, Ai+ 1 ... Am be a path in the similarity
called an (ordinary) similarity network of P. hypergraph where Am is the only edge on this path asso-

For example, the local networks of Figure 5 are ordi- ciated with a local network that depicts uj as a node. If
nary, and together form an ordinary similarity network. uj is depicted in Di, then the path consists of one edge

Notably, hypotheses covered by each local network are Ai which is equal to Am. If uj is not depicted in any
often similar (e.g., spies and visitors), 4 a choice that local network, then ut does not alter the posterior prob-
maximizes the number of asymmetric independence re- ability of any hypothesis and is therefore omitted from
lationships encoded. the computations.

atohipenc (19)hwta ndrLet Dk be the local netowrk associated with Ak for
Heckerman (1990) shows that under several assump- k =i + 1 . .. m and let hix, h,+2 . .. hm be a sequence

tions, if a cover is connected, one can always rem ove from k = ypot eses. uc ta t h 1 Ate- . h .b e e

each local network variables that do not help distinguish of hypotheses such that hk E Ak-i n Ah. Due to the

between hypotheses covered by that local network and definition of similarity networks, since uj is not depicted
yet not loose the information necessary for representing in Dk where k < m, the following equality must hold:

the full joint distribution. These assumptions consist of p(vifv 2 ... vj_ 1 hk-1) = p(v3I1v2 ... v- 1 h;).
1) the hypothesis variable is a root node, 2) the cover
is a graph and not a hypergraph, 3) the local networks Since this equation holds for every k between i + 1 and
are constrained by the same partial order, and 4) the m, we obtain,
distribution is strictly positive. Theses assumptions are p(vjv 2 ... v 3 _ hi) = p(v, ... vy- Im).
relaxed below.

Theorem 2 Let {ul ... u} be a finite set of variables Moreover,

each having a finite set of values, P be a probability dis- p(vjIv2 ... vj- 1 hm) = p(vIlv' ... v1 hm)
tribution having the Cartesian product of these sets of
values as its sample space, h be a distinguished vari- where u ... u are the variables depicted in Dm (a subset
able among the uis, and S be a similarity network of P. of {u2 ... uji}) because, due to the definition of sim-
Then, the posterior probability of every hypothesis given ilarity network, the variables deleted are conditionally
any value combination for the variables in {u, ... u,} independent of vj, given the other variables; they are
can be computed from the parameters encoded in S pro- disconnected from all the other variables in Din. s
vided p(hi) $ 0 for every value hi, of h. Finally,

To prove the above theorem, it suffices to consider p(vjv' .., v hm) = p(vjlv' ... v h,, Am),
the case where h is a root node in all the local net- because h, logically implies the disjunction over all hy-
works of S because, otherwise, arc-reversal transforma- potheses in Am.
tions fShachter 1986] can be applied until h becomes one. The latter probability is computable from the lo-

Also note that since the similarity hypergraph is con- cal network Dm by any standard algorithm (e.g.,
nected, it imposes n - 1 independent equations among [Pearl, 19881), thus, due the three equalities above,
the following n: p(hi) - p(hilAi) "EhEA, p(hj, i = p(v3 Iv 2 . .. vj- hi) is also computable as needed. 0
1.. .n. In addition, E' p(hi) = 1. The values for p(hi)
are the unique solution of these linear equations provided For example, to compute P(g, b, lspy) we use the fol-
p(hi) ) 0 for i = 1...n. lowing two equalities implied by Figure 5: From the

Aside of the priors, the only remaining parameters first local network, P(g, b, llspy) = P(glspy) P(blspy).
needed for computing the posterior probability of each P(llspy) and from the absence of I in the first and
hypothesis hi, are p(v2 .. .vnIhi) where v2 ... vn are ar- second local networks, P(lspy) = P(lworker). Thus,
bitrary values of u2... un (assuming without loss of P(g, b, Ifspy) = P(gspy). P(bspy) • P(llworker), where
generality that h = ul). Due to the chaining rule, all the needed probabilities are encoded in the similar-
p(v 2 ... vnhi) can be factored as follows: ity network. In fact, the proof of Theorem 2 provides

a general way of factoring any desired probability, thus,
p(v2 ... vnlh) = P(v2 1h) • P(v 3 Iv 2 hi)... the full joint distribution P(g, b, 1, h) is encoded in the

p(vnvi .. . v, t' hi). ordinary similarity network of Figure 5.
Similarity networks have another important advantage

Thus, it suffices to show that for each variable uj, not mentioned so far: protecting the model builder from
p(vj v 2 . .. vj- hi) can be computed from the parame- omitting relevant clues. For example, suppose workers
ters encoded in S.

'Geiger and Heckerman (1990) discuss weaker definitions4Hence the name: similarity network. of being irrelevant other than being disconnected.
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and executives often arrive with a smile to work (because is relaxed. We allow several variables to represent hy-
the secured building is such a great place to be in) while potheses, as needed by the following example:
spies and visitors arrive seriously. Such a clue, smile, is Consider the guard'of Section 2 who has to distin-
likely to be forgotten when constructing the local net- guish between workers, visitors, and spies. A pair of
works for spies vs. visitors and for visitors vs. executives people approach the building and the guard tries to
because it does not help distinguish between these pairs classify them as they approach. Assume that only
of hypotheses. However, when constructing the similar- workers converse (c) and that workers often arrive
ity network of Figure 5, which includes a local network with other workers (because they must car-pool to
for distinguishing visitors from workers, smile is more conserve energy).
likely to be recalled because the distinctions between vis- A Bayesian network representing this situation is
itors and workers are explicitly in focus. shown in Figure 6 where nodes h, and h2 stand for the

Redundancy respective identity of the two persons. (The direction of

Basing the construction of local networks on covers of the link between h, and h2 is arbitrary.)

hypotheses raises the problem of redundancy, namely,
that some parameters are specified in more than one lo-hi2
cal network. For example, in Figure 5, the parameter
P(gJ visitor) should, in principle, be specified both in the gi 92

first and in the second local network. This problem is
particularly crucial because local networks are actually
constructed from expert's judgments rather than from a2
coherent probability distribution as implied by the defi-
nition of similarity networks.

One way to remove redundancy is to automatically- Figure 6: A Bayesian network with two hypothesis nodes

translate a similarity network as it is being constructed h, and h 2.
to a Bayesian multinet which is never redundant. For
example, instead of storing Figure 5, we can actually Alternatively, we can represent this example using a
store Figure 3 which contains no redundant information, generalized similarity network, or a generalized Bayesian

The translation is done by the following algorithm. multinet.

Conversion Algorithm Definition Let {ul ... un) be a finite set of variables

Input: A similarity network S of a probability distribu- each having a finite set of values, P be a probabil-

tion P. ity distribution having the cross product of these sets

:A Bayesian multinet of P. of values as its sample space, and H be a subset of
distinguished variables among the ui's each represent-

1. For each ordinary local network L in S: ing a set of hypotheses. Denote the Cartesian prod-

* Add a node for each variable not represented in L. uct of the sets of values of the distinguished variables

" For each added node z, set the parents of x in L by domain(H). Let A 1,..., Ak be a connected cover of

to be the union of all parents of x in all other lo- domain(H). A directed acyclic graph Di is called a com-

cal networks where x originally appeared, excluding prehensive local network of P if it is a Bayesian network

variables that were originally in L. of P(ul ... unlAi). The network obtained from Di by
removing nodes that are not relevant to distinguishing

2. Remove enough local networks from S and enough between hypotheses in Ai is called an ordinary local net-
hypotheses from the remaining local networks until a work. The set of k local networks is called a generalized
Bayesian multinet is obtained, similarity network of P. When A1 , ..., A, is a partition

(A finer version of this algorithm is forthcoming). of domain(H), then the set of k comprehensive local net-
Notably, the user of a similarity network need not works is called a generalized Bayesian multinet.

know about the conversion to a Bayesian multinet which For example, the secured-building story is represented
can be thought of as an internal representation. The in the generalized similarity network of Figure 7. Note,
user benefits from both the advantages of similarity net- H = {hi, h 2} and domain(H) consists of nine ele-
work for knowledge acquisition, and from an inference ments (x, y) where both x and y are drawn from the set
algorithm (Section 2) that uses the Bayesian multinet {w, v, s). A connected cover of domain(H) upon which
produced by the conversion algorithm. Figure 7 is based consists of: {(s, s) (v, s) (s, v) (v, v)},

{(v, v) (w, v) (v, w) (w, w)}, and {(s, s) (s, w) (w, s)}.
Generalized Similarity Networks This cover is connected.

Previous sections assume all hypotheses are mutually ex- Most asymmetric independence assertions encoded in
clusive and are, therefore, represented as values of a sin- Figure 7 were either explained in previous sections or are
gle hypothesis variable denoted h. Here this assumption obvious from the verbal description of the story.
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Like any Bayesian network, local networks possess pre-
Spy/Visitor Spy/Visitor cise semantics in terms of independence assertions and

these can be used to verify 1) whether the network faith-
h, h2 fully represents the domain and 2) whether the input is

91 -*.Gconsistent.
92N Multiple local networks have several advantages com-

pared to a single Bayesian network. The elicitation of
several small networks is easier than eliciting a single

bi 0 full-scale Bayesian network because the expert can focus

his/her attention to particular subdomains, and hence,
provide more reliable judgments. Multiple networks rep-

Visitor/Worker Visitor/Worker resent a domain better because more knowledge about
independence is qualitatively encoded. Algorithms for
finding the most likely hypothesis run faster when using
multiple networks. And finally, the overall storage re-
quirement of multiple networks is often smaller than that
of a single Bayesian network because as independence as-
sertions become more detailed, less numeric parameters
are needed for describing a domain.

Notably, when independence assertions in the domain
are symmetric, a single Bayesian network is preferable.

The challenges remain to 1) devise additional graphi-
Spy Spy/Worker cal representation schemes of salient patterns of indepen-

dence assertions, (2) provide computer-aided elicitation
hprocedures for constructing these representations, andi1 (3) devise efficient inference procedures that make use

92 of the encoded assertions.
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1 Introduction in which the two discrete variables are conditionally inde-

A pendent, and likewise the two continuous variables. With

In a multivariate Gaussian model, the presence of a zero other models for these four variables the graphical rep-
in the inverse variance matrix, or in the partial corre- resentation breaks down, but the hypergraph represen-
lation matrix, implies that the two variables are inde- tation does not. CG models provide some of the most
pendent given the rest. Thus the dependence between exciting applications of graphical modeling; we focus on
variables can be fully represented by a graph, in which the special case of ANOVA, allowing heterogeneous vari-
the absence of an edge implies conditional independence. ances.
This leads to the term graphical Gaussian model, and fur- The Gibbs-Markov equivalence says that if a strictly
ther to theorems concerning the equivalence of the local, positive distribution satisfies the conditional indepen-
global and pairwise Markov properties of the graphical dences induced by a graph (through graph separation),
model. For discrete distributions (or other multivariate then this distribution is the product of functions carried
continuous distributions), this graphical representation is by the cliques of the graph, and vice-versa. Later in the
ambiguous, as the interactions may involve more than paper we will reformulate this equivalence in terms of hy-
two variables at a time. By convention, the presence of pergraphs as follows. We will replace the conditional in-
a clique of k variables in a graph representing a cross- dependences with their equivalent factorizations into two
classified multinomial distribution implies that the joint factors (2-factorizations), and we will introduce the meet
distribution includes a term in all k variables. The dis- operation on hypergraphs, which will allow us to com-
tribution does not in general factorize into (k) pairwise bine several 2-factorizations into one factorization with
components. However, a hypergraph gives a natural, un- n > 2 factors. This has two advantages: First, it will show
ambiguous, representation. C-. - that only certain factorizations can be described through

A hypergraph comprises a set of nodes (or variables) the conditional independences they induce. Second, us-
together with a set of hyperedges. Each hyperedge is ing methods from the theory of relational databases, we
a subset of the set of nodes, with the constraints that give conditions that generalize the equivalence in a weaker
no hyperedge is the empty set (0), and the union of all form to distributions that are not strictly positive.
hyperedges is the set of nodes. Thus, the presence of a
given hyperedge implies a corresponding factor, involving
one or more variables. 2 Conditional Gaussian models
-To demonstrate the flexibility and utility of hyper-

graphs, we consider hypergraph representations of graph- The conditional Gaussian model (Edwards, 1990, Whit-

ical association/conditional Gaussian (CG) models for taker, 1990) specifies the joint distribution of a set I com-

both discrete and continous variables (Lauritzen and Wer- prising k discrete variables and a set Y comprising q con-

muth, 1989), and their generalization to hierarchical in- tinuous variables to be
teraction/CG models (Edwards 1990). Edwards (1990,
p.5) gives the example of two discrete and two Gaussian fiy(i,y) = fj(i) fyi1(yli), (1)
variables and draws the independence graph for the model

________________the product of a cross-classified multinomial distributions

*Supported by Columbia University and Army Research Office fl and a multivariate Gaussian density fylj separately in
grant DAAL03-88-K-0045 to Princeton University each cell i. The moment parametrization of (1) is

tSupported by Office of Naval Research grany N00014-85-K-
0745, Army Research Office grant DAAL03-86-K-0042, and Na- I

tional Science Foundation grants DMS85-03362 and DMS85-04332 f 11 (i, y) fj(i) (2)
to Harvard University (V2/ll)i Iii
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exp ( -f_ T -1 (Y - jAi) (Figure 1) corresponds to a maximal discrete or linear

2xp part in (4). A type 1 hyperedge containing only discrete
variables corresponds to some A? with a maximal. Aand the canonical parametrization is I
type 1 hyperedge containing k' discrete and q' continuous

fjy(i, y) = exp + 1 T  (3) variables corresponds to a q' _< q subvector of 1 where
DiY lal = kV. By convention, the presence of two or more

continuous variables in a type 1 edge does not imply an
where each scalar parameter included in (ai,3i, Di) is association between them. A type 2 hyperedge (Figure 2)
expanded using all subsets of 1, also includes both discrete and continuous variables, and

corresponds to a maximal quadratic part V' . When there

aCI aCI 1 aCI is more than one continuous variable in a type 2 edge, the
pairwise interactions are implied. Type 2 edges must be

These are called the discrete, linear and quadratic parts nested inside type 1 edges, and where type 1 and type 2
respectively. Models are specified by restricting some el- edges coincide, the type 1 edge may be omitted.
ements of the AI, ?1 , and to zero. If the marginality principle were to be dropped, two

Lauritzen and Wermuth (1989) develop CG graphical types of edges would suffice, but the nesting property
association models, for which a graphical representation would fail, and a reduced hypergraph could not be used.
suffices (with the clique convention for discrete variables).
The attractiveness of a graphical association model is
that the complete set of conditional independence state- 3 Analysis of variance
ments can be read from the graph (hence the term inde-
pendence graph). The model is fully specified by these To illustrate the hypergraph representation, and to mo-
ternary statements of the conditional independence of tivate the use of hierarchical interaction models, we turn
pairs of variables given the rest. However, graphical as- to the CG regression setting, that is, the conditional part
sociation models are unnecessarily restrictive. Edwards fyIi(ily) keeping fi(i) fixed. With a single continuous
(1990) gives the theoretical basis for the analysis of con- variable Y and k factors, this is the analysis of variance
ditional independence in hierarchical interaction models. model. Our principal concerns have a practical flavor:
He defines the hierarchical interaction models to be the
CG models that satisfy the marginality principle. Briefly, 1. The set of possible models includes the lattice of 2 k

if A? is not identically zero, then neither is each of Ab for models for the linear part, each multiplied by some1 1

b C a. If the rth element 17? of q? is not identically zero number of models for the quadratic part. How is

than neither are i/t and At for b C a. If the rsth element backward or forward model selection to be viewed as
or I b "local operations" on hyperedges?of 0? is nonzero, then neither are V)?, ilt

,,t , and At for b C a. 2. Graphical models, fit by maximum-likelihood, are

commonly compared using the analysis of deviance.
Hypergraph representation of hierarchical inter- How adequate are the X2 approximations when exact
action models. We demonstrate that hierarchical in- F-ratios are available?
teraction models can be represented using hypergraphs
(although, as will be seen, the quadratic parts cause some 3. Hierarchical interaction models allow unequal vari-
difficulties). In Section 4 we carry across some of the ba- ances to be modeled readily. How important is this
sic properties of independence graphs to hypergraphs. In feature?
so doing, we argue that it is better to emphasize factor-
izations, read directly from the set of hyperedges than 4. In the classical approach to ANOVA, the experimen-

conditional independence statements. In particular, in tal design places restrictions on the models to be se-
modeling data by ANOVA it is natural to think in terms lected. What is the analog for graphical models?

of several overlapping subsets of mutually dependent vari-
ables, each a hyperedge. 5. What useful information is contained in the indepen-

The marginality principle allows us to use the reduced dence structure of fj(i)?
hypergraph, that includes a hyperedge corresponding to
each maximal subset of variables. The hierarchical inter- Example 1. Pilot plant data. Box, Hunter and
action model is especially demanding, and requires that Hunter (1978) give pilot plant data, of chemical yield Y
there are two types of hyperedges. A type 1 hyperedge measured at two replicates of a 2' design, with factors
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Figure 1: ANOVA of pilot plant data using hypergraphs

temperature T, concentration C, and catalyst K. Con- 1. Start with the hypergraph containing the single max-
ventional ANOVA (Table 1) shows that T, C, and TK imal edge {Y, I}.
are significant at 1%.

2. Replace in turn each maximal hyperedge, containing
k' discrete variables and Y, with k' hyperedges each

Table 1. Pilot plant ANOVA containing k' - 1 discrete variables and Y. (This
eliminates the k'-factor interaction.)

DF SS F-ratio P-value
T 1 2116 265 0% 3. Choose the model at step 2 with the minimum de-

C 1 100 13 1% viance difference. If that difference is statistically

K 1 9 1 32% significant, stop. Otherwise, reduce the resulting hy-

TC 1 9 1 32% pergraph and return to step 2.

TK 1 400 50 0.01% Modifications are available when q > 1, and for forward
CK 1 0 0 100% selection, or a stepwise procedure. The backward elimina-
TCK 1 1 0.1 73% tion algorithm can be implemented using a graphical user
Error 8 64 interface (see Figure 1), and then the use of hypergraphs

would eliminate the need for difficult modeling formulaeWe model these data using hypergraphs, with constant (dad 19)adWitkr(90)

variance (t~=1/0,2 , V)? = 0 otherwise). Each hyperedge (Edwards (1990) and Whittaker (1990)).
1 Figure 1 shows backward elimination for the pilot

includes Y and some subset of T, C, and K. We always plant data. The three steps are (1) UL to UR: eliminate
include the complete model for the discrete variables, that TCK interaction (with Y); (2) UR to LL: eliminate CK
is, the hyperedge {T, C, K}, so that the deviance in com- interaction and reduce; (3) LL to LR: eliminate TC in-
paring the fry(i, y) is a comparison of the fyj;(yji). teraction and reduce. Notice that the hyperedge TCK

is shown at UR, but is implicitly included in the models
Backward elimination algorithm, at LL and LR also. The arrows are annotated with the
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P-values from both the analysis of deviance and F-ratios Table 2. Analysis of deviance for dental golds
(Table 1). The two sets of P-values are reasonably close. (The P-value compares each deviance
Each model is also referred to the original model (X2 and to the first, homogeneous model)
X3 respectively). As the design is balanced and complete, Quadratic Deviance Deg.Free P-value
independent tests of the two-way interactions CK and Y 674 119 -
TC are available from conventional ANOVA (Table 1). YM 671 117 27%
Modeling with hypergraphs leads to a hierarchical inter- YD 666 115 9%
action model that includes the K main effect (contrary YMD 651 105 6%
to Table 1). Notice that because the hyperedge TCK is
implicitly present, we may not conclude from Figure 1, Role of experimental design. Just as in the classical
LR that C I KIY. approach to ANOVA, the experimental design limits the

models that can be considered. A k-factor factorial design
without replication includes no (k + 1)-vertex hyperedge.

Example 2. Dental golds data. Hoaglin, Mosteller Model selection by backwards elimination in the dental
and Tukey (1991) and Goodall and De Veaux (1990) in- golds example begins with four three-factor interactions.
dlude extensive analyses of data on the hardness Y of When there is confounding we assume that some

dental gold, produced using three methods M at three terms typically the high order interactions, are zero. For

temperatures T from two alloys A by five dentists D. A erms, t he hio intractions, ar with

mode fo th linax artis JMTD YMD}. igue 2example, the resolution V 25-1 fractional factorial withmodel for the linear part is {YMTD, YMAD}. Figure 2 defining relation I = 12345 confounds 1 and 2345, 12 and
shows hypergraphs with four choices of quadratice part. 345, etc. The maximal model includes (') three-vertex
The analysis of deviance is given in Table 2. The linear
part may be refined further. Each choice in Table 2 is hyperedges (a factorization). The resolution IV 2'-' de-permissible with linear part YMTD, YMA} but the sign with I = 1234 confounds 1 and 234, 12 and 34, etc.
fourth is not with lYTD, YMA}. Setting the three-way interactions and three two-way in-

teractions to zero leaves four maximal models each with

three two-way interactions.
M x In the design of experiments, a preliminary fac-

torization of the variables n.ay be used to decide on an
appropriate design. For example, if it is believed that

T 11o A e the two-way interaction 12 is zero, but the three-way in-
teraction 345 is non-zero, the resolution V design above

I --//may be used with a different initial maximal model in
'M)D the backwards elimination algorithm. In a future paper

we will discuss the relationship between factorization and
M M experimental design in greater detail.

IJJ '~ IFactorizations of the discrete part. Given two dis-
T YIX A I T flr- crete variables A and B each at two level, suppose pro-

I / , portional allocation, that is, fj factorizes. Then it is easy
/ to show that the estimates of A and B main effects are

D
/  

independent (in a main effects only model). More general7 ',=-statements are true: These relate the factorization of fj
to independence statements about /3, the regression coef-
ficients, since var/3 = (XTX)- i, where X is the matrix
of dummy variables.

4 Hypergraph Factorizations

Factorizations in graphical models. Graphical
models are usually defined in terms of conditional in-

Figure 2: Models for heterogeneous variances in dental dependence, and are represented using either directed
golds data or undirected graphs (see for example Whittaker, 1990,

or Pearl, 1988). However, any conditional independence
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statement is equivalent to a factorization of the overall (1990) or Pearl (1988). We give four axioms, which we
distribution (or one of its margins) into two factors. This call the coarsening, projection, substitution, and intersec-
equivalence can be exploited to give a new graphical rep- tion axioms respectively. Let X, Y, Z, W be four disjoint
resentation of conditional independence statements and subsets of variables in U. Writing XY for X U Y, the
the rules that govern them. Such representations are axioms are
based on hypergraphs instead of graphs, which gives them
several advantages: (1) Hypergraphs are mathematically 1. X Il YW I Z X 1L Y I WZ

simpler than the ternary conditional independence rela-
tion. (2) It is natural to consider factorizations involving
more than two factors, but conditional independence does 3. X _L Y [WZ and X _ L LW Z = X IL YW Z
not allow for such a generalization. (3) Factors can be
identified with independent but overlapping subsystems 4. X _L Y I WZ and X IL W j YZ =: X _L YW Z
where the variables outside the overlap are independent,
offering a convenient modeling paradigm. The last axiom holds only if the joint distribution fxywz

We argue that the concept of factorization forms is strictly positive. For completeness, two additional ax-

a more general and more convenient mathematical foun- iomas must be added to the set of four (Pearl 1988). These

dation for the theory of graphical models than does con- are the symmetry axiom, XILYIX =:. YILXIZ, and the

ditional independence. This point of view has been pur- trivial independence axiom, XIL-IZ. Notice also that

sued in Thoma (1989) in a different context and will be Axioms I and 2 provide the converse to Axiom 3, and

the subject of a forthcoming paper by the authors. Axiom 1 the converse to Axiom 4.

Below we will focus on two important aspects of
this idea. First we will show how conditional indepen- Graphical Representation. The conditional inde-
dence relations, respectively their equivalent factoriza- pendence statement X L Y I Z can be represented
tions, can be represented graphically. Secondly we will fo- graphically via its equivalent factorization as in Figure 3.
cus on the description of arbitrary factorizations through If the two factors together cover all the variables under
sets of conditional independence statements. This is thc
content of the Gibbs-Markov Equivalence, a fundamental
result in the theory of graphical models. The equivalence .

holds only for strictly positive distributions. Using ideas ' " I
from the theory of relational databases it is possible to KIi I
extend the equivalence, in a weaker form, to arbitrary -.-
distributions.C 

I

Conditional Independence. Consider the set U =

C V1,..., V} of random variables. To avoid difficulties
with regularity of the underlying measure, and thus to fo- Figure 3: X IL y I Z
cus on the hypergraph representation, we assume that all
variables have finite outcome spaces. However, all prop- consideration (the set U, left side of Figure 3) the factor-
erties discussed below can be extended to very general ization is full. If they cover only a subset (right side of
distributions, including hierarchical invoraction models. Figure 3), the factorization is embedded since this implies
Let X, Y, and Z be three disjoint subsets of variables that only a margin of the overall distribution factors.
in U. Set X is independent of Y given set Z, written as It is possible that fu = fA - fB, where A and
X 1L Y I Z, if fxylz = fx1z' fyz. If X and Y are B are two subsets of U, but A and B do not cover U.
conditionally independent given Z, then there exist twa In this case the variables not in A U B have no influence
functions gxz and hyz, such that fxyz = gxz • hyz. on fu. This leads to a small problem with our graphi-
Here gxz and hyZ are functions that depend only on cal representation, since we can no longer tell whether a
some of the variables, those in X U Z in the case of gxz, factorization is full or embedded by looking at the set of
and those in Y U Z for hyz. We will say that these func- variables covered. Thus, we distinguish the two cases by
tions are carried by their respective sets of variables. Note using a different color or line style to represent embedded
that gxz and hyz are usually not margins of fxvz. factorizations, as shown in Figure 3.

There are a number of well known rules that gov- The conditional independence X IL Y I Z is
ern conditional independence. See for example Whittaker equivalently described through the two sets XZ and YZ,
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which indicate the factors of the corresponding factoriza- Axiom 3 shows that we can replace one factor
tion. The set {XZ, YZ} is called a scheme. The term with a factorization that covers the same variables. One
is borrowed from the theory of relational databases. A of the resulting three factors can then be absorbed and
scheme is equivalent to a reduced hypergraph with two we end up with a two-component scheme again.
(or more) hyperedges. We will use bold capitals, A, B,

to designate schemes.
No conditional independence relation will result

in a scheme where one component is a subset of the other.
The two components of the scheme are always incompa- *

rable. However, we can consider factorizations where one =< I
factor is carried by a subset of the other factor. For ex- 1=-.:k
ample fxYz = fz • fxlI'z. Since it is always possible
to factor in this fashion, from the factorization point-of-
view we need only consider maximal factors, and therefore
the reduced hypergraph. However, additional factors may Figure 6: Axiom 3, Substitution
aid in interpretation, for example main effects in ANOVA
with interactions present.

To formulate Axiom 4 we introduce the following
definitions: If R is an arbitrary set of subsets of U then

Graphical Representation of Axioms. Using fac- W. is its reduction, i.e. the set of maximal elements of R
torizations and their schemes we can represent the axioms (a component is maximal if it is not strictly contained in
given above in graphical form, in the following four fig- another component). The meet of two schemes A and B
ures. The following terminology is convenient: The key of is the set AAB := {AfnB IA E A,B E B}0 . i.e. the
scheme A = {A 1 , A2 } is the set A1 nfA 2 , and sets A1 \A 2 reduction of all intersections of components of A and B.
and A 2 \ A1 are the wings of the scheme. Axiom 4 says that if the distribution is strictly positive,

Axiom 1 says that from a given factorization we we can infer from two given factorizations a new one, the
can derive a new one by moving wing elements to the meet of the given schemes. The two schemes must share
key. 'This simply adds variables to the factors that do not a component to ensure that the meet comprises only two
influence the distribution, components.

ZI

Figure 4: Axiom 1, Coarsening

Axiom 2 says that we can derive a new factor-
ization by clipping elements from the wings of a given Figure 7: Axiom 4, Intersection
one. However, the new scheme will cover fewer variables.
There are simple example showing that we do not derive
valid new schemes if we clip elements of the key. 5 General Factorizations

Gibbs-Markov Equivalence. We now consider fac-
llv torizations that involve more than 2 factors, and, corre-

) _-~.-" spondingly, schemes with more than two components. To
V distinguish the general factorization and schemes from

those involving two factors, we will use the terms 2-
factorization and 2-scheme for the latter. Our overall

Figure 5: Axiom 2, Projection strategy is described in the Introduction.
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The Gibbs-Markov Equivalence, one of the cen- of 2-factorizations? (2) Which sets of 2-factorizations de-
tral results for graphical models, says that for strictly fine a factorization? In addition, we need to know how
positive distributions a set of conditional independence to determine the set of 2-schemes that is equivalent to a
statements (2-factorizations) is equivalent to a factoriza- given factorization, and how to determine the scheme of
tion involving more than two factors. a factorization from a given set of 2-schemes.

Consider the following example. Let f = g • h • k
be defined over the set of variables U = {A, B, C, D, E}.
Let g be carried by margin {A, B}, h by {B, C, D}, and Results. The results differ depending on whether the
k by {D, E}. The distribution f factors into three corn- overall distribution is strictly positive or not.
ponents, but it is easy to derive th- following three 2- If the distribution is strictly positive, i.e. fu > 0,

factorizations simply by multiplying two of the factors: then any set of 2-factorizations (all involving the same set
of variables) combine to give a factorization with at least

f = (g-h)-k two factors. Its scheme is the meet of all 2-schemes of
f = g. (h-k) the given 2-factorizations. Furthermore, for any factor-

ization with a conformal scheme 1 there is an equivalent
f = (g " k) h set of 2-factorizations. The corresponding 2-schemes can

be determined as follows: Divide the components of the
Figure 8 shows the corresp ., Ang 2-schemes. n-scheme into two groups, and determine for each group

the union of its members. The two resulting sets form a

2-scheme. Each possible way of forming two groups will
C C determine a 2-scheme. Some groupings may not yield a vi-

able 2-scheme, and some groupings may yield the same 2-
scheme, but overall they will determine a set, of 2-schemes
whose meet coincides with the scheme of the original fac-

torization.
If the distribution is not strictly positive, i.e.

fu > 0, than any conflict-free 2 set of 2-factorizations
(all involving the same set of variables) can be combined

Figure 8: Derived 2-Schemes into one overall factorization. Its scheme is the meet of
the given 2-schemes, and it is acyclic 3. Furthermore, for

In this particular situation we can reconstruct any acyclic factorization there is an equivalent set of 2-

the original factorization from the three 2-factorizations factorizations. The 2-factorizations can be found using

as follows: First clip the element E from the wing of the the same method as in the strictly positive case.

second 2-scheme, then use the resulting scheme to replace Distributions that are not strictly positive have

the larger component of the first 2-scheme. The result is a support (the set of arguments for which the distribu-

the original factorization. In fact, the third 2-scheme is tion has non-zero probability) that does not cover the

superfluous. Note that this reconstruction is possible even entire outcome space. Such a distribution will not factor

if the distribution is not strictly positive, unless its support factors too. It is therefore not sur-

It is not always possible to proceed as in the ex- prising that the factorization properties of arbitrary dis-

ample. Figure 9 shows an example where it is not possible tributions are closely related to those of sets. The set

to derive any 2-factorizations. case has been studied extensively in the theory of rela-
tional databases, and both, terminology and results, can
readily be extended from the set to the distribution case.
The support of a strictly positive distribution is the entire

IA scheme is conformal if its components are equal to the cliques
of a graph over the same set of variables, or equivalently, if the
scheme is the meet of a set of 2-schemes (Thoma 1989).

2 For a definition of coAffict-free sets of 2-scheme we refer the
reader to the influiential paper by Beeri et al. (1983) and to the

Figure 9: Simple Cyclic Scheme forthcoming paper by the authors, which will give a more detailed
discussion of the issues involved.

3 A scheme is acyclic if there is a triangulated graph over the
We are therefore faced with the following ques- same set of variables, such that the cliques of the graph coincide

tions: (1) Which factorization can be replaced by a set with the scheme components.
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outcome space, and these distribution are therefore not
subject to the restrictions that apply to sets.
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TESTGRAF: Some Graphics Tools for the Analysis of
Examination Data

J. 0. Ramsay
Department of Psychology, McGill University

Montreal, Quebec, Canada

1 Objectives more efficient than the traditional percentage
correct estimates.

TESTGRAF is a program designed to graph TESTGRAF also has a module aimed at
the performance of examination questions in showing examinees how much information is
a way meaningful to statistically naive exam- provided by the exam about their ability or
iners. It was developed with the college or proficiency in the subject being tested.
university instructor in mind who has given a
multiple choice exam to a class of a hundred
or more students, and who wants to evaluate 2 Characteristic Curves
test items with a view to

* deciding whether or use or reject an item The central concept in the modern statistical
in determining the final grade, theory of tests is the item or option charac-

teristic function, shown in Figure 1. Ability
* getting information that will help in the is viewed as a latent variable which indexes

rewriting of items for future use, the probability that a specific answer or op-
tion will be chosen among those presented for

* identifying items which might be added to a given test item. The function Pi,.(0) plot-
a pool for constructing subsequent exams, ted in Figure 1 for each of the five options for

" determining aspects of student perfor- Item 1 is the probability that option m will

mance on the test as a whole. be chosen for item i by examinees at or near
ability level 0.

The program also generates examinee abil- In Figure 1 the solid line indicates the prob-
ity estimates which are optimal in the sense ability that the option is chosen that is des-
that they use the subtantial information pro- ignated by the examiner as correct, and as
vided by which wrong options were chosen one might hope, it shows that examinees with
for incorrectly answered questions. The abil- low ability have a small probability of getting
ity estimates are also optimal in a statisti- the item correct, but that this probability in-
cal sense (maximum likelihood conditional on creases rapidly over ability values 55 to 70, af-
item characteristics), and thus automatically ter which the probability of chosing the correct
weight test items by their efficiencies. These answer is very high. The dashed curves show
ability estimates are therefore substantially the corresponding probabilities that the vari-
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if = g(O), then defining P* = P o g- I im-
Iem 1 plies P*() = pfg-l( )] = P(9). 'INis means

that the essential task is to estimate the rank
I I ~i 1 ii of examinee a,a = 1,...,N, after which the

C _ability values 0. can be assigned by any con-
D I venient order-preserving transformation of the

N ranks.
-I Consequently, ability values are assigned as

I I I follows:

I I I Step 1: Use some statistic T. to order ex-
JI I I I Iaminees. By default TESTGRAF uses

I . I I the conventional proportion correct to do
N_. - I. " Xthis, but TESTGRAF also permits the
I ' user to input any set of values, includ-

- ing the result of some other type of scor-

30 40 50 60 70 80 90 100 ing of the exam, results from other ex-
ams, or ability estimates from a previous
TESTGRAF analysis.

Figure 1: Option Characteristic Curves Step 2: Assign the quantiles of the standard

Gaussian distribution 0. = Z. to the or-

ous wrong options will be chosen, and we ob- dered examinees. Since most examination

serve that option 2 is especially popular with administrations tend to produce approx-

the weakest examinees, while option 3 tends imately Gaussian exam scores, this per-

to attract those with high ability and hardly mits the ability values to roughly reflect

anyone chooses option 5. The 5%, 25%, 50%, the statistical properties of familiar exam

75%, and 95% quantiles of the actual distribu- scores.

tion of percentage correct (the traditional and
usual scoring scheme) are indicated by the ver- 4 Estimation of Pm(0)
tical dashed lines. Vertical bars on the correct
answer curve show 95% pointwise confidence The option characteristic function is estimated
limits for this function. by kernel smoothing of the bivariate relation-

ship between ability 0. and the binary variable
yi,a taking the value 1 if examinee a of abil-

3 Ability 0 ity 0a chose option m for option i, and zero
otherwise. Kernel smoothing with Gaussian

It should be appreciated at the outset that otherwise. aton we ig i Gass ian

the latent variable 0 designed to capture uni- Nadaraya-Watson weights is employed, so that

dimensional variation among examinees in

knowledge, proficiency, or ability is not an in- Pm(O) = aU'Za(0)yir

dependent variable, but rather an index for a - a wo(0)
family of Bernoulli probability distributions, where
As such it is only defined to within an arbi-
trary order-preserving transformation g, since w.(O) = exp -((0. - 0)/hJ2 /2.
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Since the number of examinees N may num-
ber in the thousands, the Fast Fourier Trans- Examinee 2
form (HMirdle, 1987) is used to keep the number .
of calculations to O(N + M log M), where M
is the number of equally spaced values of 0 at
which the functions Pim are to be evaluated. 0

Extensive experience indicates that the
bandwidth parameter h may be set to N - 11 '
in general, although the user can override this
default. However, since a constant bandwidth ='
tends to be somewhat inefficient when the in- C;
dependent variable is not equally spaced, and 0
since Gaussian quantiles become sparse in the c CY
tails, this first smoothing step tends to pro- o6
duce rather variable curve values for 101 2.
Consequently, a second smoothing step is then Q.
used: 020 30 40 50 60 70 80 90 100

Per Cent Correct

Step 4:
The estimated function values Am(O) are Figure 2: Relative Credibility Curves
now smoothed over the M equally spaced
values of 6 using the variable bandwidth unity, and are referred to as relative credibility

h* = h exp(0 2/8)/2.0. curves. Figure 2 shows an example. For exam-
inee 2 taking a 100-item test, we see that the

Finally, most instructors are familiar with most likely ability value is 61%, even though
percentage correct as an indicator of abil- the observed percent correct is only 56% (in-
ity rather than the admittedly artificial stan- dicated by the vertical dashed line). The dis-
dard Gaussian values. Consequently, indicat- crepancy is due to the fact that the maxi-
ing the curve for the correct option by Pic, mum credibility curve estimate takes account
the transformation 17(0) = i Pc(O), which of wrong option choices and of the efficiency of
is nearly certain to be strictly monotonic, in items answered correct, and hence uses more
effect transforms Gaussian abilities into the information than simply counting correct an-
expected number of correct items, and, when swers. The curve also indicates, by the two
reexpressed as a percentage, tends to be more dashed lines under the curve, that about 95%
intuitive for most instructors, of the posterior probability falls between 56%

and 68%.

5 Credibility Curves for 0 6 PCA Display
TESTGRAF can also plot the posterior den-
sity function for ability 0 for selected exami- As a summary display TESTGRAF shows
nees, conditional on the estimated option char- each correct option curve 5iA(O) plotted at a
acteristic curves. For clarity of plotting, these position defined by the principal components
curves are normalized to have a maximum of scores for ., principal components analysis of
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function 1(0), defined as the expected Hessian
with respect to ability 0,

_)[aP(,)/O]2

I(0) = Ez [E P- (0)8]
(i M

This function indicates the amount of informa-
tion about 0 provided by the test for each level
of ability, and can be used to show the ability

-- .-- ranges to which the test tends to be "tuned".
ZThe program can also create a file contain-

ing the maximum likelihood estimates of abil-
E ity for each examinee. These can be used( ~to score the exam, and can also be input to

S -TESTGRAF to provide a more efficient basis
for ranking examinees.

'-90 -70 -50 -30 -10 10 30 50 70 Finally, TESTGRAF can create a file of
Component i commands which are subsequently processed

by another program, TESTLASR, to produce
Figure 3: Principal Components of Correct Postscript commands for laser printer hard
Option Curves copies.

The program and documentation are avail-
curve values. In this analysis, the M values of able from the author. A small fee is requested
O used to plot the curves play the role of the to cover the cost of reproduction and distribu-
variables in a conventional analysis, while the tion. A more complete discussion of technical
cases or replications are the items. Curve val- aspects of TESTGRAF can be found in Ram-
ues are weighted by the inverse of pointwise er- say (1991).
ror variances in computing the cross-products
matrix on which eigcnalysis is performed. 8 References

Figure 3 shows a display for a 100-item test.

Here we see that the very difficult items an- Hairdle, W (1987). Resistant smoothing us-
swered correctly by very few examinees are ing the fast Fourier transform. Applied
clustered at the lower left, while the extremely Statistics, 36, 104-111.
easy items are found at the lower right. Items
with flat or even descending correct option Ramsay, J. 0. (1991). Kernel smoothing ap-
curves show up at the lower edges of the plot, proaches to nonparametric item charac-
while steeply increasing, and hence highly ef- teristic curve estimation. Psychometrika,
ficient, items are found in the upper regions. To appear.

7 Other Results

TESTGRAF also can plot other useful func-
tions. One of these is the test information
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A GRAPHICAL DISPLAY FOR

CHOOSING A TRANSFORMATION

Patrick J. Burns*
92- 19522 Statistical Sciences, Inc.

1700 Westlake Ave. N., Suite 500
Seattle, WA 98109

1 Abstract Carroll (19. 1982), and nonparametric transformations
are explained ii. Hastie and Tibshirani (1990).

There are three primary reasons to transform data: lack An advantage of the display being introduced is that it
of symmetry, nonconstant variance, and interaction be- shows the effect of transformation on each of the criteria
tween factors. We present a display that has separate individually. See Sampson and Guttorp (1991) for an
graphics designed to diagnose each of these conditions, example in which it is desirable to attain symmetry and
The user is thus free to weigh the importance of each of constant variance without destroying interaction.
these three criteria for the problem at hand, and then to
choose the transformation that seems most suitable. As
is the practice of many data analysts, this system uses 3 Symmetry
only a few select transformations rather than transfor-
mations to arbitrary powers. Symmetry is diagnosed graphically by producing a plot

Although this system is demonstrated with data from based on the residuals from the fit for a particular trans-
designed experiments, it may also be used for regression formation. As is done in the other plots, the residu-
problems ... als from a robust fit are used by default, but the least

KEYWORDS: robustness, symmetry, running scale squares residuals may optionally be used.
estimation. Let r(,) be the ith order statistic of the residuals scaled

by the (Gaussian-consistent) median absolute deviation,
let n be the number of residuals and let M be the median

2 Introduction of the scaled residuals. For each i between n/2 and 1,
the quantity

Transformation can often achieve the assumptions im-
plicit in a regression or other estimation problem. Such (r(i) + r(n.i))/2 - M
assumptions include: the distribution of the errors is
symmetric (or Gaussian), and the variance is constant. is plotted versus the value of i. If the distribution is

At times a transformation can also produce a more par- symmetric, this will tend to be a fiat line at zero.
simonious model. Since the points in this plot are dependent, the sym-

In the present paper we use the power transformations metry plots typically show a curve even when samples
of Box and Cox (1964). This family of transformations, come from a symmetric distribution. It thus becomes im-
which includes the logarithm, embraces those most com- portant to have a minimum range that the y-axis spans.

monly used. We also use robust estimation to ensure A glance at the asymptotic distribution of the points in
that the results are not unduly swayed by a few outliers, the plot (Stuart and Ord, 1987, p.452) and the inspec-

For background on transformations, see chapters 4 and tion of plots for several sample sizes and distributions led

8 (written by Emerson and Stoto) of Hoaglin, Mosteller to forcing ±4/V/7 to appear in the plot (a dashed line

and Tukey (1983). Also, the Box and Cox (1964) pa- is drawn at these two values). When several points fall
per (and its discussion) contains many interesting corn- outside the dashed lines and they form a definite curve,

ments. Robustness of transformations is discussed in then asymmetry may be assumed.
The plot described above is similar to plots proposed

*Research supported by NSF grant ISI 88-61156 by several people; these are reviewed in Fisher (1983).
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4 Homoscedasticity try plot and parsimony plot. The allowable transforma-
tions are square, identity, square root, cube root, loga-

To diagnose heteroscedasticity, we plot running scale es- rithm, inverse square root and inverse. An implementa-
timates of the residuals versus the fit. The running scale tion of the display was made in S-PLUS.
estimate sorts the fitted values into ascending order. A
certain fraction of the data enter into the estimation at oAll four plots are viewed for a single transformation, or
each step (we have used one-half in the examples). The one type of plot is viewed for up to four transformations.
location for a step is considered to be the mean of the In preparation for the display, the model is fit for each
fitted values that are being used. Both the standard transformation both with least squares and with a robust
deviation and a robust scale estimate of the residuals technique. For the examples, the L1 solution was used.
(corresponding to the fitted values used) are computed This has a high breakdown point for balanced designs,
at each step. The robust estimate that is used is the but moderately low efficiency at the Gaussian model. A
A-estimate of scale based on the bisquare that has an different algorithm should be used for the general regres-
efficiency of 80 percent at the Gaussian distribution, see sion problem since leverage becomes more of an issue. A
Burns and Martin (1991). high-breakdown, high-efficiency algorithm is preferred.

The test of the null hypothesis that the residuals are The user may also choose whether to use the robust
homoscedastic is the Spearman rank correlation test of residuals (the default) or the least squares residuals.
the fit versus the absolute value of the residuals. This
test was proposed by Horn (1981).

5 Parsimony 7 Example

In designed experiments it is possible to make plots of
the interaction of two factors; such plots were not chosen We use the poison data discussed in Box and Cox (1964),
for two reasons: simplicity and generality. Since there and in many subsequent papers on transformation. This
can be a great number of pairs of factors (not to men- dataset consists of 4 observations on each combination
tion triples and so on), the display of interactions is a of 3 poisons and 4 treatments. The parsimonious model
complicated task best suited to a specialized procedure. that is used is the additive one - the response is modeled
Additionally, the general regression problem is not of- as poisons plus treatments.
ten thought of in terms of interactions. By producing a
different plot, both designed experiments and general re- Figure 1 shows the display for the response in the orig-
gression problems can benefit from the same set of plots. inal units. There is clearly non-constant variance, andWe selected a barchart that tells how well a simple unevenness of the bars in the parsimony plot indicates

We sleced barhar tht tels ow ell siple that there is a problem with non-Gaussian errors. Both
(user-specified) model does. For both the least squares that hr syamproblem dwth n-asian erros Bot
and the robust fit there is both a standard and a robust the plot for symmetry and the "residual versus fit" plot
estimate of the fraction of variability eyrhiined. The indicate that there is not symmetry. When the least

standard method is the fraction of the sum of squares squares residua,. are used, there is slightly less indica-

explained by the model. The robust method uses a r- tion that a transformation is needed; the symmetry plot

estimate of scale based on a Huber function with tuning is especially degraded.

constant 1.7 (Burns and Martin, 1991). Let r denote Figure 2, using the inverse of the response, is close
this scale estimate with the median used as the location to the ideal. The fraction of variability explained is
estimate, and let y and r denote the response and the much higher and virtually the same on all four bars.
residuals, respectively. Then the fraction of variability The symmetry plot is bent down slightly, indicating that
explained is the inverse transform could be too strong. The running

2 ' scale still has some tendency of a positive slope, which
maxr)1 - would indicate a transformation that is not quite strongI Tr(Y),I0J 

enough.

Symmetry plots for four transformations are shown in
6 The Display figure 3. Only the plot for the identity transform shows

a definite trend - the other three plots are indicating no
The ingredients of the display are the four types of plot or very slight asymmetry. The inverse square root seems
- "residual versus fit", heteroscedasticity plot, symme- to be close to the optimal transform for symmetry.
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Survival.time
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P-value, constant scale: 0.007 Fraction of Variability Explained

CR 0.795

0.35 0.40 0.45 0.50 0.55 LS fit Rob. fit LS fit Rob. fit
SS SS Rob. scale Rob. scale

Figure 1: Poison Data, Original Scale

8 Discussion the Royal Statistical Society, Series B 42 71-78.

Transformation is a common data analysis task. With Carroll, R. J. (1982). Two examples of transformations
the graphical display introduced in this paper a data when there are possible outliers. Applied Statistics 31
analyst can quickly decide on an appropriate transfor- 149-152.
mation or see that transformation will have little effect Fisher, N. I. (1983). Graphical methods in nonpara-
on the analysis. metric statistics: a review and annotated bibliography.

The types of plots presented may also be used individ- International Statistical Review 51 25-58.
ually to explore data even when transformation is not
being considered. In particular, the plot for symmetry Hastie, T. J. and Tibshirani, R. J. (1990). Generalized
presented here is more usable than those previously pro- Additive Models. Chapman and Hall; London.
posed because of the additional lines that indicate the Hoaglin, D. C., Mosteller, F. and Tukey, J. W. (1983).
significance of a curve in the plot. Understanding Robust and Exploratory Data Analysis.

Wiley; New York.
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Series B 26 211-252.
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Burns, P. J. and Martin, R. D. (1991). One-sample ro- mations and tests of environmental impact as interaction
bust scale estimation in contaminated models. (in prepa- effects. American Statistician 45 83-89.
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Figure 2: Poison Data, Inverse Scale

-............................ ..

to ** .............. CO
0. .................................. . ................... ---

center quartiles tails center quartiles tails

Survival.time inverse square root of Survival.time

CD ___ ______ ______ __ CD..............___

o. .....................................................................

center quartiles tails center quartiles tails

logarithm of Survival.time inverse of Survival.time

Figure 3: Symmetry Plots for thie Poison Data



AD-P007 103

EXPLORATORY GRAPHICAL TECHNIQUES FOR RANKED DATA
Georgia Lee Thompson92D- 19523 Deparment ofSt92'19523 Southern Methodist University11tH I fIE IlI III Dallas, Texas 75275

to be compatible with both Kendall's r and
Graphical methods are developed for frequency Spearman's p. Hence, for n>4, the problem of

distributions of fully ranked data with pseudoranks. visualization of points on a polytope in higher
The proposed graphical techniques use permutation dimensions must be addressed. One approach to this
polytopes, and are compatible with both Spearman's problem is to explore a higher dimensional polytope
p and Kenmdall's 7. The problem of visualization in by examining its three and four dimensional faces.
higher dimensions is also addressed. By defining a permutation polytope as the solution to

a finite set of linear inequalities, all of the faces can be
1. INTRODUCTION characterized. In particular, it is shown that all two-

"-Graphical methods are critically needed to dimensional faces are combinatorily equivalent to
display frequency distributions for fully ranked data. either squares or hexagons, and all three dimensional
Fully ranked data occur, for example, when judges are faces are combinatorily equivalent to either truncated
asked to rank n items, possibly with pseudoranks, in octahedrons, cubes, or hexagonal prisms.
order of preference. Each observation is a
permutation of the n distinct pseudoranks, and the 2. PERMUTATION POLYTOPES FOR n=3,4
resulting set of frequencies is a function on Sn, the Before developing the concepts needed for the
symmetric group of n elements. Because Sn does not proposed graphics for either n>4 or for pseudoranks,
have a natural linear ordering, graphical methods such we illustrate the proposed technique with ordinary
as histograms and bar graphs cannot be used to ranks for n=3 and n=4. Ranked datn cn be recorded
display frequency distributions for ranked data. either as an ordering or as a ranking. Items are
Other existing graphical methods for rankings include labeled with letters, and orderings are denoted by
multidimensional scaling, minimal spanning trees, and permutations of the first n letters, bracketed by < >.

nearest neighbor graphs as discussed by Diaconis For example, <b,c,a,d> means that item b is ranked
(1988). Cohen and Mallows (1980) propose graphical first, and item d last. A ranking is a permutation of
methods based on multi-dimensional scaling and n values written as a row vector ir = (wl, 7rn)
biplots. Cohen (1990) presents alternate exploratory where iri is the rank of the ith it. - Th rakn

biplots i tem. The ranking
data techniques for ranked data. corresponding to <b,c,a,d> is (3,1,2,4).

In this paper, graphical methods are developed Figure 1 shows the orderings and rankings of the
to display frequency distributions of fully ranked data 6 elements of S3. Two adjacent points are connected
by using permutation polytopes. A polytope is the by an edge if their orderings differ by a pairwise
convex hull of a finite set of points in Rn, and a adjacent transposition, or equivalently, if their
permutation polytope is the convex hull of the n! rankings differ by the inversion of two consecutive
points in Rn whose coordinates are the permutations values. Hence, the minimum number of edges that
of n pseudoranks. To represent a set of ranked data, must be traversed to get from one vertex to another is
the frequencies with which the permutation are chosen equal to Kendall's r. Formally, if i- and o are two
are displayed, not on a line as is done with rankings, then r(?,q) is the number of pairs (ij) such
histograms, but on the vertices of the permutation that 7r.<wr, and o.>a. This is equivalent to the
polytope. The resulting graphical displays are minimum number of pairwise adjacent transpositions
especially useful as diagnostic tools because they are needed to change the ordering corresponding to v into
compatible with two commonly used metrics on Sn: the ordering corresponding to o,. The placement of
Kendall's r and Spearman's p. Both the r and p are the vertices in Figure 1 is also compatible with
easily interpreted on the permutation polytope. Spearman's p: n

The permutation polytope on which the n! p(nq) = (ri - .2 )1/2
frequencies are displayed is inscribed in a sphere in an
n - I dimensional subspace of Rn, as noted by If the edges of the regular hexagon are all of length
McCullagh (1990) for ordinary ranks, in such a way 42, then Spearman's p is the Euclidian distance
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between two vertices. Note that the two vertices on a frequencies of the 38 pre-course rankings are shown in
common edge have the same item ranked either first Figure 4a and the 38 post-course rankings are shown
or last. in Figure 4b. Most obviously, the frequencies do

These ideas extend to n=4 by placing the 24 change a great deal between the two sets of rankings.
permutations on the vertices of a truncated First, there is an increase in the frequencies at the 6
octahedron, as shown in Figure 2 [ Yemelichev et. al. vertices that correspond to orderings that begin with
(1984)). The truncated octahedron has 8 hexagonal c. The post-course ranking do not seem to have
faces and 6 square faces. As in Figure 1, r is the moved toward the teacher's preferred ranking,
minimum number of edges that must be traversed to <p,c,a,t>, but as concluded by Critchlow and
get from one vertex to another, and p is the Euclidian Verducci (1989), they appear to be, over all, closer to
distance between two vertices if each edge has length <p,c,a,t> than are the pre-course rankings. The
42 [cf. Schulman (1979)]. On the truncated orderings seem to have moved toward <c,p,t,a>.
octahedron, the 4 vertices of a square have the same 2 McCullaugh and Ye (1990) illustrate a similar
items ranked in the first 2 positions and the other 2 conclusion by plotting the vectors of the average pre-
items ranked in the last 2 positions. Similarly, the 6 and post-course ranking on a truncated octahedron.
vertices of a hexagon all have the same item ranked Other observations are 1) the frequencies at the 6
either first or last. The idea that each face has a vertices corresponding to the ordering ending in (c)
"defining property" is fundamental in the proposed decrease; 2) style (a) is rarely chosen as either a first
graphical methods for n>4. or second choice after the course is completed; and 3)

For n = 3, consider the data of Duncan and the incidence of style (t) as a first choice decreases.
Brody (1982) in which 1439 people ranked city, To make the plots perceptually accurate, the
suburban, and rural living in order of preference. The areas of the circles in Figures 3 and 4 are based on
current residence is also recorded as a covariate. For Steven's Law which says that the perceived scale, p, of
each covariate, the relative frequencies of each the size of an area is
permutation were calculated. In Figure 3 these p x (area) 7

relative frequencies are plotted on the vertices of 3 (Cleveland, 1985). Hence, the areas of the circles are
hexagons. Each hexagon corresponds to a covariate, calculated as
and the sizes of the circles at the vertices indicate the area cx f
relative values. It is immediately obvious that rural where f is the frequency. If the areas are proportional
and suburban residents are similar to each other, but to the values, i.e., area oc f, then small circles appear
are both different from city dwellers. Those who too large and large circles appear too small.
prefer the city most seem to live in the city. Conversely, if the radius of the circle is proportional
Relatively few rural and suburban dwellers prefer to the frequency, i.e., area oc f2 , then large values are
their current location least, while many city dwellers magnified and small values are minimized.
would rather be anyplace else. For n = 3, this
proposed graphical technique is similar to the graphics 3. PERMUTATION POLYTOPES FOR n > 4
of Cohen and Mallows (1980) in which circles with Instead of using the integers from 1 to n, some
areas proportional to the frequencies are placed at the applications use pseudoranks in which a ranking is a
ends of 6 vectors radiating from the origin, vector whose elements are a permutation of n distinct

The plotting of ranked data with n = 4 on values, and an ordering is a permutation of the n
truncated octahedrons is illustrated by the following items such that the ith item is assigned the ith

example. At the start of a literary criticism course, smallest pseudorank. Without loss of generality,
38 students read the short story and ranked 4 assume that the psuedoranks are al>a2 >...>an > 0.
different styles of literary criticism in order of The ordinary ranks are ai = n-i + 1. To extend
preference. At the end of the course, they read Spearman's p to pseudoranks, let a(jr) = (a(rl),
another short story and again ranked the same four a(7r2 ), ..., a(vn)) and a(q) = (a(al), a(o' 2 ), ...., a(on))
styles of literary criticism. The 4 styles were be two rankings where r and q, are elements of Sn.
authorial (a), comparative (c), personal (p), and Then n 2)1/2
textual (t); and the question of interest was whether p(a(1r),a(q) ) = ( (a.- a l
or not the post-course rankings had moved in the =
direction of the teacher's own preferred ordering Next, as in Schluman (1979), consider the set of
<p,c,a,t> [see Critchlow and Verducci (1989)]. The vectors in Rn whose elements are permutations of the
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pseudoranks. These points lie in the intersection af also extends Kendall's r to pseudoranks in an obvious
the sphere n I manner that warrents more study. Similarly,

(x- = - j (ai -i) 2  Theorem 3.4 shows that every 2-face is either a
i=1 i-1 hexagon if all Q have one element except one which

and n - 1 dimensional hyperplane has 3 elements (so that all but 3 of the orderings are
n 1n fixed), or a square if all Q have one element except

xi = n W where -9=n- ai  for 2 of them which each have 2 elements. The 3-
i=1 i~1 faces correspond to truncated octahedrons if all Q

The permutation polytope is the convex hull of these have one element except one (so that all but four o
points, ar.- it can be mapped into Rn- 1 via the the orderings are fixed), to cubes if all Qk have one
Helmert trisformation. Because it is an orthonormal element except 3 which have 2 elements each, and to
mapping, it preserves distance and angles, so that the hexagonal prisms if all Qk's have one element except
polytope is still inscribed in a sphere in Rn-land 2, one which has 2 and one which has 3 elements.
Spearman's p (which is the Euclidian distance Thus, all 3-dimensional faces of any permutation
between two points) is preserved. When ii=4 and polytope can be characterized and the data can be
a i = n - i + 1, calculations show that the resulting illustrated by a sequence of 3-dimensional polytopes in
polytope is a truncated octahedron whose vertices are which the frequencies are plotted on the appropriate
exactly the vectors of permutations and whose edges vertices. Frequently, it is useful to also plot portions
are all of length -. of the 4-dimensional polytopes.

For n > 4, the proposed graphical methods
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Nome Uses of Quantile Plots to Enhance Data Presentation

David M. Shera
428 Broadway #3, Somerville MA 02145

Abstract dimensional which crosshairs, X's, and asterisks are
Quantile plots are used to display data for better not. The hollowness allows points to overlap

understanding and comparison of distributions. Splitting the without much loss of ink area.
quantile plot by a categorical variable helps one visualize an • For reference, crosshairs are plotted at the quantiles of
analysis of variance. Plots of of rank-transformed data .05, .25, .50, .75, and .95. They are slightly larger
corresponds to non-parametric methods and can also aid in than the diamonds, so as to show up in plots with
the analysis of categorical data. As less abstract and more many points, but do not add any more two-
direct presentations of data than, for example, box plots, dimensional images to the picture.
quantile plots can be more effective, in particular, when * Small dots are placed at the corners of the "box" of
presenting to non-statisticians. the traditional box plot. (These dots may be too

small to show well in this printing.)
Defi nit ion • At the far left are five cross-hairs which represent the
This paper will present quantile plots as a method of mean and one and two standard errors (not standard

plotting actual data side by side in a way that is easily deviations). The choice to plot both one and two
prcscntable to anyone, regardless of their statistical training, standard errors was to make it unambiguous as to
One simply plots the data points as an empirical quantile how many standard errors were represented.
function [Parzcn, Cleveland] which is the plot of the value • At the far right, the crosshairs indicate the endpcints
of each observation on the vertical scale against the rank of a non-parametric 95% confidence interval for the
within the sample on the horizontal scale. The idea is that median.
the random variable V is a function on the unit interval, * A reference line of dots lies on the diagonal for visual
10,11. It is closely related to the empirical cumulative anchoring. The diagonal line can he a great aid in
distribuition of V with the horizontal and vertical axes comparing different quantile plots.
flippcd. One should be careful not to confuse the meaning The primary purpose of these plots is to emphasize the
of "quantilc plot" in this paper with the common "quantile- overall shape of the distribution and adding too many extra
uauilc plot" or "q-q plot" which has a slightly different symbols wiil distract the eye from this purpose. There are

dclition and different use. Here, the former is a speciol other common statistics which are left out:
ca.ses of the latter, i.e., a q-q plot with uniform quantiles on • The standard deviation: First, for skewed data, the
the horizontal axis. This paper also pertains only to the use standard deviation marks could extend over the
of quantile plots and does not involve quantile functions or boundary of the plot on the high or low side,
their estimation. (IParzen] has more sophisticated uses for possibly onto other sections of the graph. Second,
quantile functions and related constructs.) all information on the variability is contained in the

In Figure 1, "Score at Week 3", each observation is a quantile plot itself and the information from the
single diamond. When N gets to be very large, the points standard deviation will be redundant. If it is
tend to meld together, depending on the resolution of one's important to a specific presentation, the standard
graphics device. But with such large N, the empirical deviation is easy to add.
distribution should be closer to the true distribution. Any * Quantile points at a variety of locations (.05, .15,
(Lu:Intilc of the distribution is readable from this graph, in .25, ...). When included in a narrow range between .4
particlar, the median, which is the quantile at .5 . The and .6, these points tended to clutter the plot.
local dcnsity is the inverse of the local slope of the quantile * Altering shapes, coloring, and shading of points was
function so that ranges where the slope of the points is low rejected in favor of having all points have equal visual
arc regions of higher density. Extreme outliers and multiple impact and thus, equal importance.
modes are often obvious to the eye. The use of points * Including a smoothed version of the quantile function
makes the amount of ink used to print the points is certainly possible, but then one must make a
proportional to the size of the sample, a desirable properly. choice of smoothing method. A recent example of
Connecting the points with lines w )uld confuse this one such method can be found in [Yang].
ink/observations ratio and also emphasize what could be an Here the reader may ask, "Why not use cumulative
incorrct interpolation, distribution plots?" The vertical orientation of the quantile

One can easily add many features to represent various plot brings gravity inherent in the page into play: areas of
sum mary statistics. The interpretation of the symbols in lower slope are more "stable" spots. In a cdf, a variable
thcse quantile plots is as follows: which tends to have "higher" values has a "lower" cdf, while

The data points themselves are small, hollow in a quantile plot, "higher" really means "higher" in both
diamonds. Diamonds more precisely indicate position senses of the word. If we truly think of the random variable
than do squares or circles. Also, they are two- as a function, standard convention puts the function value or
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range on the vertical axis and domain on the horizontal. Treating it as a numerical variable and creating quantile plots
One more point about gravity: in a histogram with of the ranked values, we have one way of graphing
horizontal bars or a stem-and-leaf plot the larger bars might categorical data in a 2 by 2 by 2 table. Note that the upper,
look as if they will break and fall off. right-hand cell has fewer observations and the rows of

diamonds reflect the relative proportion of observations with
Splitting Plots and Ranked Values each of the outcomes. The upper, right-hand cell has a
By splitting the graph into separate, parallel graphs by lower rate of high outcome. But to reiterate, the means and

different groups, one can perform a visual analysis of standard errors are based only on each cell, not on any
variance to supplement an ANOVA table and to provide overall model.
more impact to a presentation. There are four ways to split
the graph: along the horizontal axis, along the vertical axis, Comparison to the Box Plot
across pages, and overlayed. It is best to split horizontally Often one starts looking at data with a traditional box
by the the variable of most interest, for the mean/standard plot [Tukey], but some have been looking for
error and median/confidence marks will line up for easy improvements. One possibility is altering the shape of the
comparison. Overlaying one quantile graph over another for box to show density [Benjaminil which requires some
comparison purposes has great appeal, but it will also cause density estimation. One of the problems is the visual
crowding if the two quantile functions are very close. How difference between the "box" and the "whiskers". What is
to differentiate between the symbols from two or more the intuitive meaning of representing the middle half of the
separate sets of observations in an obvious way is an data with a two dimensional object and other subsets with
additional complication. Splitting vertically makes sense one dimensional objects? Also, computer statistics
for confounding variables where tests for differences are less packages can be inconsistent in their calculation of the
important, length of the whiskers [Frigge, et all.

Figure 2, "Score at Week 3", contains the same data as The box plot also does not readily reflect the actual
in Figure 1, but this time split by the two categorical number of observations, N. Some try to remedy this by
variables Treatment and Sex. Note that there are about half letting the width of the box be proportional to the square
as many males as females, as indicated by fewer points in root of N. However, with this alteration, different box plots
the cells for males. Also, the means and standard errors, on are no longer comparable visually. In the quantile plot there
the left side of each cell, indicate that treatment I is more is no need to make a mental transformation from width
effective. A higher score means worse in this variable, so (O1N), or whatever, to N. Sometimes there are confidence
that the further below the diagonal line the quantile plot lies, regions around the median with either "notches" in the box,
the better off the patients are. It is important to remember or shaded blocks; but the notches or shaded blocks alter the
that the means, standard errors, and all other summary visual weight of the primary features of the box plot.
statistic symbols in the plot are not based on any particular The box plot is an abstract picture based on a handful
model but only the data in each cell alone, statistics calculated from the data. There is a reduction of

One could also plot rank-transformed data to graphically information in the transformation, which is fine if these
look at a non-parametric Kruskal-Wallis ANOVA. In this statistics are the right statistics. However, if the
case, the diagonal line enhances the plot because it distribution has certain peculiarities, those handful statistics
represents a theoretical distribution of rank transformed may not reflect important features and instead present an
values. Here, ties are assigned the mean rank but the range inaccurate picture.
of the plot runs from 0 to N, or 0 to I if the ranks are Of course, the combination of a box plot with a stem-
divided by N. When split, deviations from the overall and-leaf plot or histogram will give more information, but
distribution show as more points above or below the there are some drawbacks:
diagonal line. Figure 3, "Score at Week 3 (Ranked - The combination requires two graphs and uses more
Values)", is again based on the same data using the ranks of space and paper.
the values within the whole sample rather than the values - The histogram implicitly requires a choice of division
themselves. Note that the values at the top have been points which is a smoothing decision. Likewise, the
squeezed together and are no longer evenly spaced. stem-and-leaf plot also has implicit smoothing and

The plotting of rank transformed data is also useful for often must round values to a convenient number of
ordered categorical data, which includes dichotomous data. significant digits
However, one should remember to use mean rank so that the * By continually varying, each quantile plot will be
points will not end up all at the top or the bottom of the nearly unique. The endless variety of plots may hold an
cell, possibly merging with points from another cell. For audience's attention longer because human beings tend
ranked values the diagonal line should go through the centers to notice and be more curious about variety.
of each level overall. In Figure 4, "Ouic,"me (Ranked
Values)", there is a single dichotomous outcome variable.
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Figure SA, "Box Plots", contains two groups of data.
The first thing to notice is that group B has significantly
higher values and is more spread out. Group A looks to
have some outliers on both the high and low ends.

Figure 5B, "Quantile Plots of 5A", contains the same
data but shows a different picture. Group B actually has
what looks to be a bimodal distribution with the median
falling nearly halfway between the two modes. This
property did not show up in the box plot. Additionally, in
group A, three suspected outliers on the high side actually
turn out to be about 10% of group A. The box plot was
using single asterisks to indicate what was actually more
than one observation. As it turns out, after discussing this
with the client, there was a systematic problem in our
definition of this variable which lead to the suspicious
distribution. The additional detail in the quantile plot helped
identify and explain the problem much sooner.

Summary
The quantile plot is a less abstract presentation of an

empirical distribution than the traditional box plot. It
presents a picture closer to the statistician's own mental
picture of the data and analyses. Because it displays each
observation and not just an object created from certain
statistics, it may be better for presentaton of data to non-
statisticians. Finally, quantile plots can show features of
the data that might be hidden by other methods, including
problems resulting from bad data coding or calculation
errors.
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Singular values of large matrices subject to Gaussian perturbation
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Abstract-
" Extending the work of Wachter (1978, 1980) and

many others, we study the configuration of the singular val- 14

ues (s.v.'s) of an a by b matrix of the form X=M-fkrZ
where M is a constant matrix, and the elements of Z are 130

i.i.d., standard Gaussian, in the limit as a and b increase in_______"___o____
constant ratio. We put -a + b and suppose a = N,

-with a of order INV. Let the empirical distribu- 110
tion of the s.v.'s of X be GN, and let the corresponding
moment-generating-function (m.g.0 be g(t). These are_
random quantities; their distributions depend only ori(nd -, 90

the empirical distribution FNv of the s.v.'s of M. We derive a
80differential equation that governs the evolution of E(glv) as

a increases. In the limit as N-4o we can solve this exgua- 61
tion and hence exhibit the limiting (non-random) g itself.

This study was motivated by some blood-pressure 60
data collected by a new type of transducer. It suggests a

novel way of adjusting large matrices to reduce the effect of 50

additive contamination. 4, o

- - Figure 1
1. Introduction

In the standard technique for measuring blood pres-
sure, a pressure cuff is applied to the upper arm, inflated to with m not too large, would fit the data; here each row of the
constrict the artery, and deflated while a technician listens matrix B = (bkj) is a prototypical component of a heartbeat
(through a stethoscope) for the so-called Korotkoff signal. trace, and the columns of A =(a a) show how these compo-
A novel form of transducer now allows the recording of a nents enter and leave during the evolution of the traces. By
continuous trace of inaudible low-freq ,ency auditory data, convention, the rows of B and the columns of A are stan-
thus affording a first glimpse of the details of the process. dardized to unit length; the magnitudes of the coefficients
Figure 1 shows such a record, segmented into individual {Ck) measure the importance of the components. It is a
heartbeats. Cuff pressure decreases down the figure. property of the singular-value decomposition of a matrix

An early attempt to analyze such data consisted of that the best (least-squares) representation of the form (1),
regarding Figure 1 as a display of the rows of a 70x373 using m terms, is obtained by taking the first m components
matrix X. We performed a singular-value decomposition in of the singular-value decomposition
the hope that an additive representation of the form X=ACBT

XI = cakbkj, (1) where ATA =BTB =I,,C = diagonal, where r is the rank of
k=1 X. It would be pleasant to find that a small value for m suf-

fices to give a good fit to the data.
On performing the calculation, we found that a few of

the singular values were quite large, while most were small.
We were faced with the problem of deciding how many
components to use.
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2. An idealized problem. approximate methods.
As an idealization of this set-up, suppose we have

observed an axb matrix X with the structure 3. A differential equation
Since we are assuming that Z is Gaussian, we can

X=M +Z appeal to the fact that
where the elements of Z are independent standard Gaussian. M+oZ=M+sZ +tZ2
How do the singular values of X depend on those of M?. We
formulate this as an asymptotic question. Suppose ab, where a2=s 2 +t 2 , and Z, and Z2 are independent Gaus-
and put N = a + b, a = aN, b = 3N. We study the asymptotic sian. We can set up a differential equation for the expected
configuration of the singular values (s.v.'s) of an a x b generating function

matrix of the form X=M+a---Z where M is a constant yV(a2,z)=E(g "z)(z))
4K

matrix, and the elements of Z are i.i.d., standard Gaussian. by retaining only the terms of order 0
2 in the expected

Suppose X has singular values x1, • - ,x.. It is convenient moments. We find
to work with a symmetrized form of the empirical distribu- _ , , 1
tion of these s.v.'s, namely =-- (-p-)-- - (2)

GW)(x)= I( l(-xi <x)+(b-a)l(x>O)+ I J(xi <x)) + 2  1 z ___

N 4N aZ2+ ZaZ 2

We also need the generating function (modified Stieltjes
transform) and we need merely to solve this equation.

Z dGN(x) 4. ThecaseN=*,a= 1/2.
g _.(z)= _ From (2) we have

aT 1 ay
= z 2 k+lX2k aa2  (3)

k=O with the boundary condition

where X2k is the 2k-th moment of the (symmetrized) distri-
bution Gw ), so y(x)= M) (

X 2 X,2k This relation provides a rapid way of computing the

N moments of G from those ofF. The solution of (3) is

Both GW ) and g ) are random quantities; their distributions _(
2 , Z) = T(M+1z) (Z) =_ M) (y)

depend only on a and the (symmetrized) empirical distribu- where
tion F%M) of the s.v.'s of M. We define the moments M wh
and a generating function fk$) from FT ) in a similar fash- z =y +a 2 (M)(y)
ion. Below we shall let N--oo, and shall assume that F ' )

converges to a limiting distribution F that has a moment-
generating function f (with moments .t2k) that converges When M =0 we find
within some non-vanishing interval.

Wachter (1978) considered this problem, replacing /0) (z)=(0,z) = 1
the Gaussian assumption by one involving boundedness of 2z
moments; also he allowed the columns of Z to have different y(U) ='y(c 2 ,z) = 2y
variances. However (in our notation) he assumed M-0 as
N-oo, so that the effect of M was negligible in the limit. In where
the present work, the role of M is crucial. Our results seem o2

to be new. We find, as did Wachter, that as N-4o GN con- z =y + Y 0)(y)=y +
verges to a non-random limit G (with generating function g, 2y
and moments Y2)- so

We derive a differential equation for E(g)). We
cannot solve this in general; however letting N--o*, we y(a 2 Z)=.--2 (Z-zZ2:-2)
derive a formula for the limiting g as a function off and a. 2a
In principle this enables us to calculate the density corre- 2 422 -
sponding tof once g is known; in practice (since N is finite) f OZ)(x) -a x2 O<x<-2-j "

this is an ill-conditioned calculation and we need
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This is Wigner's "semicircle law", see Mehta (1967) and
Figure 2.

C14

.g
0

• "0

00

0.0 1.0 2.0 s.v.'s, alpha , .1, M = 0
s.v.'s, alpha - .5, M - 0 Figure 4

Figure 2 6. A special case.

5. The caseN=oocz 1/2. Suppose a= 1/2, and that all the s.v.'s of M am equal

Write =(a- p)
2. We find to At. Then 2k = 2i, and

zy(o 2 ,z)=yy(Oy)+a 2Q (4) ( 2 ( l- + xp)

where Thus ifX =M + (a//N5 ) Z (remember N =2a) we have from
Q - 2(y,)__ =y20 _ _ (7)

4y2 Y
When M=0, take a=1, and write y for y(l,z). We 1( y

find where

21 8 1 1 +T y
2= + z x y 21-y 2 

A 
2

whence This relation holds within the circle of convergence. To get
X) 1 (B2 -x2)(X2-A 2 )  (5) F itself, we need to continue the definition outside this cir-

- (ax cle, taking care to use the correct branch. Then we apply the

where formula (see Wachter (1978))

A=NrP-Nra_, B=4_P+N4a. A()= 1IM 1f-)C t
See Figures 3,4 for the cases a= .3, oa=. 1. In one case we can get an explicit result, namely when

o 2 2
C~~j A=a/2

In this case
.C i 2 2)

o.,_ x=y(I-y ji)

so that

0.0 1.0 2.0s.v.'s, alpha = .3, M 0 0 Thus we need only solve a cubic equation. Writingy=(2/1Nwri sin0, we have sin30= 3N'rig2. We get corn-
Figure 3 plex roots for I14<3/31if2. For O<t<31 13/2 we put

O=it/ 6 +iV and find
fx()= - sinh2w/ (6)

where

cosh3 '= 2



Singular Values 57

See Figure 5. Remember that this is the symmetrized distri-
bution, so we need to multiply by 2 to get the limiting den-
sity of the s.v.'s of X.

- :
0 *0

-0

0.0 2.0 Figure 7

s.v.'s, alpha = .5, M = sqrt(N/2)l

Figure 5 8. Final Comments
Clearly this work is incomplete. Among the things

7. Statistical application. that need doing are:

Suppose we compute the s.v.'s of a large matrix, and (i) Extend the results to dispense with the assumptions of

observe that their empirical distribution is similar to (6) Gaussianity and identical distribution of the elements of Z.

above. Then this supports the view that the matrix cn (ii) Extend the results to dispense with the assumption that

regarded as the sum of (i) a fixed matrix with all the moments of F are finite.regadedas he um f () afixe marixwit al s~.'s (iii) Develop an algorithm to find the density of G directly
equal, and (ii) a matrix of independent random variables from the density of F.

with equal variances. In more generality, if the s.v.'s of a from the deni of F.
larg sqare atrx hve a emiricl dstrbutin G we (iv) Develop techniques to do (iii) approximately (in somelarge square matrix have an empirical distribution G, we

would like to estimate an F such that the relation (4) is appropriate sense) in the case N finite.

approximately satisfied. As yet we have no detailed sugges- (v) Solve (2) in general.

tions as to how to do this. (vi) Study the variability of GWP.

For the 70x373 matrix that stimulated this investiga-
tion, we find that a q-q plot of the 70 realized singular val- References
ues against quantiles of the distribution (5) (Figure 6) is
very far from linear; the lowest 30 or so s.v.'s (Figure 7
shows 40) do conform roughly to this null prescription, with Meha, M.L. (1967) Random Matrices and the Theory of
a about 65. But this value for a is much too large to be rea- Energy Levels. Academic Press, New York.
sonable for these data; computing the the root-mean-square
successive difference of the rows of the matrix, we get num- Wachter, K.W. (1978) The strong limits of random matrix
bers averaging 23, with a maximum of 45. We conclude that spectra for sample matrices of independent elements. Ann.
for this approach to work, we will need an M with very few Proba 6, 1-18.
non-zero singular values. Evidently this approach is Probability6,1-18.
unsuited to these data. Wachter, K.W. (1980) The limiting empirical measure of

o multiple discriminant ratios. Ann. Statistics 8,937-957.
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will not make any more specific assumptions about its struc-

Abstract ture. To explore the data, we need a way to look at the local

This paper presents a method for interactively exploring a structure of the data in a limited region. So we will examine the
large set of quantitative multivariate data, in order to estimate data in a given region by viewing the data through a Gaussian
the shape of the underlying density function. It is assumed that window, whose location and shape are chosen by the user. We
the density function is more or less smooth. The local structure will describe the local structure of the data by a method similar
of the data in a given region may be examined by viewing the to the method of principal components. By doing this we will
data through a Gaussian window, whose location and shape be able to find and describe simple structural features in the
are chosen by the user. The method, which is applicable in any data in any number of dimensions.
number of dimensions, can be used to find and describe simple Some examples of the kinds of structures that we can find
structural features such as peaks, valleys, and saddle points in and describe are the following: A peak, or relative maximum,
the density function, and also extended structures such as in the density function, which would appear as a cluster of data
ridges and analogous structures in higher dimensions. A points; a valley, or relative minimum; and a saddle point,
Gaussian window is defined by giving each data point a weight where the density function would be concave upward in some
based on a multivariate Gaussian function. The weighted directions, anddownward in others. Wecan also findextended
sample mean and sample covariance matrix are then corn- structures such as a "ridge" or "bar" in the data. A "ridge" is
puted, using the weights attached to the data points. These an essentially one-dimensional structure, or concentration of
quantities are used to compute an estimate of the shape of the data points, consisting of data points lying near a "center line"
density function in the window region. The local structure of but scattered about it in all directions. Only a part of such an
the data is described by a method similar to the method of extended structure would be visible in a single window. In a
principal components. Thus we can apply our geometrical case like this we will be able to tell that we are looking at a
intuition to the structural features we find in the data, in any structure that extends beyond the window. We can then follow
number of dimensions. By taking many such local views of the along it and map out its extent and shape. Similarly, we might
data, we can form an idea of the structure of the data set. Since find an essentially k-dimensional structure in a p-dimensional
the computations involved are relatively simple, the method space, for any k < p.
can be implemented on a small computer.. By taking many local views of the data, that is, by

exploring the data interactively, we can build up an idea of the
structure of the data set. With some practice, we can apply our

1 Introduction geometrical intuition to the features we find in the data, in any

Suppose that we are given a large set of quantitative number of dimensions. Since the computations are relatively
multivariate data, say, N data points xi in a p-dimensional simple, the method can be implemented on a small computer.
space, and that we want to explore the structure of the data. The approach here is different from that in the many
That is, we want to find the shape of the underlying density graphical methods that involve projecting the data onto a space
function, by looking for concentrations of data points. We will of lower dimension. See for example Chambers et al. (1983)
assume that the density function is more or less smooth, but we and Cleveland and McGill (1988). However, such graphical

methods can be used in conjunction with the method described
*Work reported herein was supported in part by Cooperative Agree- h

ments NCC 2-408 and NCC 2-387 between the National Aeronautics here.
and Space Administration (NASA) and the Universities Space Re- The ideas outlined in this paper are treated more thor-
search Association (USRA). oughly in Jaeckel (1990).
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2 The Gaussian window Assume for simplicity that a, the window center, is 0.

Let B = V-'. It will be more convenient to work with B.
To focus on a limited region in the space, we usea window. Let A = B + V. Then, by doing some algebra, we find that

A Gaussian window is defined by choosing a center point a the windowed density function is
and a non-negative definite symmetric matrix V to describe
its size and shape. Let w(x)f(x) = K- e -

_i (x-c)'V(x-a) ( ) e 2

w(x) = e 2
This is a multivariate Gaussian function with "windowed

where x is a p-vector and "prime" means "transpose". The mean" A-'Bt and "windowed covariance matrix" A-'. It
matrix V is analogous to the inverse of a covariance matrix. follows that the weighted sample mean 1w' is an estimate of
Each data point xi is given the weight wi = w(xi). Note that A-'Bgt, and the weighted sample covariance matrix S" is an
w(a) = 1, that w(x) < I for all x, and that w(x) decreases as estimate of A-. The constant K above is the integral of
x moves away from a. Thus we have defined a window with w(x)f(x) over the entire space. We will estimate it by
"fuzzy" boundaries. The function w(x) may be thought of as (1/N)Iwi, the average of the weights.
the relative transparency of the window at x. We now "degauss" the view of the data as seen through the

We then compute the weighted sample mean vector, Gaussian window; that is, we remove the effect of the weights
1 on the shape of the data in the window region. Since Sw is an

xw= 1wi Y-WiX i  estimate of A-, we can estimate A by Sw-', and we have

and the weighted sample covariance matrix, Sw + V.

S,, .wi(xi-Xw)(xi- Xw)- So we can estimate B by
1w,

A

We also compute (1/N)wi. B = S,- V.
These quantities are the simplest things to compute, espe-

cially in a high-dimensional space. They describe the overall We can then estimate Z by
shape of the weighted data in the "window region" (the region A A

vaguely defined as the region where w(x) is"not small"). The 7 = B = (Sw'- V)',
estimated shape of the density function in the window region
will be based on these quantities. Note that these quantities are assuming that S -' - V is positive definite.
overall statistics; any "fine structure" in the region is smeared Since Kw is an estimate of A-Bit, we can estimate I by
out. To look for finer details, we would use smaller windows.

A AB =WSw'w

3 Example: a cluster And since (I/N)Zwi is an estimate of K, we can also estimate

Suppose that in the region of a window, the density the constant C. These estimated parameters give us an
function has approximately a multivariate Gaussian shape: estimate of the shape of the density function in the window

region. Note that all of the computations are simple matrix
1 - (x - ) L-(x - ) operations.

f(x) = C e If we find a cluster in a window, we can describe its shape
using the method of principal components. See Morrison

where i, Z, and C are all unknown parameters. That is, we (1990). To do this we find the eigenvalues and corresponding
AAhave a single peak (or cluster of data points) in the window eigenvectors of I. The estimated shape of the cluster is a p-

region. The vector I is the center point of this part of the dimensional ellipsoidal shape centered at 9t. The principal
density. The symmetric matrix E is its covariance matrix. The axes of the ellipsoid are parallel to the eigenvectors. The
constant C represents the "probability mass" of this part of the estimated density function can be expressed as a product of p
entire probability distribution. univariate Gaussian (normal) densities, each lying along a

The windowed density function, the effective density principal axis. The standard deviation of each of these densi-
function of the dataas viewed through the window, is w(x)f(x). ties is the square root of the corresponding eigenvalue (all of
That is, if we assign weight wi = w(xi) to each data point xi, which are positive in this case). Thus we have a way of
and if we docomputations with the weighted xi, the results will thinking about the shape of the cluster in any number of
be as if we were working with a sample from w(x)f(x). dimensions.
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• . A

Note that we could dAo this analysis based on the matrix B, vector. In the case of a ridge, which is an essentially one-
which is the inverse of T. These two matrices have the same dimensional concentration of points, B will have one eigen-
eigenvectors, and the eigenvalues of B are the reciprocals of value very near 0, and the corresponding eigenvector will be

A A
those of 1. It follows that a large positive eigenvalue of B parallel to the "center line", or crest, of the ridge.
indicates that the data points are tightly concentrated along the Since a structure like this does not have a center point, as
corresponding direction, while an eigenvalue near 0 indicates a cluster does, we will not try to estimate a center point here.
a structure that may extend beyond the window region. When Instead, we will estimate the location of the center line of the
we deal with more general structures, we will analyze their ridge. See Jaeckel(1990). Wecanalsousethe p-i remaining
shape by looking at the eigenvalues and eigenvectors of B. eigenvalues and eigenvectors to estimate the shape of the

The analysis above also applies if the shape of the density cross-section of the ridge. In a p-dimensional space, a ridge
function in the window region is a valley ora saddle point. In would have a (p-1)-dimensional cross-section orthogonal to
these cases all or some of the eigenvalues of B will be negative, the center line.
A negative eigenvalue indicates that, in the window region, the If we find a structure like this, we can then move the
density function is concave upward along the direction of the window center to the nearest point on the center line and try
corresponding eigenvector. another window. Then we can follow along the ridge by

moving the window center along the estimated center line. By
continuing in this way we can map out the extent and shape of

4 The general case the ridge. An essentially k-dimensional structure, or concen-
We now give a more general formulation which will tration of data points, can be treated in a similar way.

include the examples above, and also extended structures such Since the method is interactive, it is flexible and open-
as a "ridge". We will assume that the density function in the ended. It can be used (in principle) in any number of dimen-
window region can be approximated by sions. Few assumptions are made about the data. We can

search for structural features by trying many different win-
_ H x'Bx + r'x dows, and we can describe the features we find. Then we can

f(x) = H e 2 put together what we have found into an overall description of
the data. The method can be used in conjunction with other

The exponent is a general polynomial of degree two in the methods, such as graphical methods an( automatic clustering
coordinates of the vector x. (Any constant term is absorbed in algorithms. Note that with this method we can Iind structural
H.) The constant H is the density at the window center features other than clusters. Since the computations are rela-
(assumed to be at 0). The symmetric matrix B may or may not tively simple, the method can easily be implemented on a small
be positive definite, and it may or may not be non-singular. If computer. Any standard algorithms for inverting a matrix and
B is singular, there is no center point ga for the function. for finding the eigenvalues and eigenvectors of a symmetric

As before, the windowed density function w(x)f(x) is a matrix can be used.
multivariate Gaussian function. We therefore compute zt, S ,  Most importantly, we can apply our geometrical intuition
and (1/N)Ywi as before, and we estimate the parameters B, r, to the features we find in the data, so that we can think about
and H based on these quantities. See Jaeckel (1990). Since in and describe the structure of a set of data in any number of
the general case B might be nearly singular, we will work dimensions.
directly with A instead of inverting it. We then find the• A

eigenvalues and eigenvectors of B, and we use these quantities References
to describe the shape of the estimated density function in the
window region. The method is analogous to the method of Chambers, J., Cleveland, W., Kleiner, B., and Tukey, P.
principal components. The interpretation of the eigenvalues (1983), Graphical Methods for Data Analysis, Pacific
of B is the same as in the previous section. As in principal Grove, CA: Wadsworth &Brooks/Cole.
components analysis, we can express the estimated density Cleveland, W., and McGill, M. (eds.) (1988), Dynamic
function as a product of p functions of one variable each. Graphics for Statistics, Pacific Grove, CA: Wadsworth

We c'in now handle the case of an extended structural & Brooks/Cole.
feature, such as a "ridge" of data points, that passes through Jaeckel, L. A. (1990), Gaussian windows: a tool for exploring
a window and extends beyond it. In this case B will have some multivariate data. Technical Report 90.4 1, RIACS, Moffett
eigenvalues very near 0; these eigenvalues tell us that the Field, CA (Submitted for publication in J. Amer. Statist.
structure extends beyond the window. Since B is the estimated Assoc.).
inverse covariance matrix, an eigenvalue near 0 indicates that Morrison, D. F. (1990), Multivariate Statistical Methods
the data in the window region appear to have an essentially (3rd ed.), New York: McGraw-Hill.
"infinite" variance in the direction of the corresponding eigen-
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Definition of the Problem sional random vector with independent coor-
Factor analysis is a frequently used statisti- dinates El; ... ; Ed. The conditional distribution

cal tool for representing a usually large um- of Ei given Xi is
ber of observable variables with a smaller set Ei P(EiJXi = 0) P(cixi = 1)
of latent factors. In classical factor analysis, -1 0 Pi
the observable variables are expressed as linear 0 1 - P0 1 - P,
combinations of the factors. During this pro- 1 Po 0
cedure neither the factors nor the scores are
binary. Boolean factor analysis is a procedure The error probability depends on the actual

for the representation of binary variables in value of Xi of the i-th coordinate of X. It is

terms of Boolean combinations of binary fac- supposed that the error probabilities Po and P,

tors. ' are small.

Suppose that X is a d dimensional random The aim of the Boolean factor analysis is to

variable with binary coordinates and recover A and Y with the help of the given
data set.

X = A ® Y, The idea of Boolean factor analysis at first
appeared at the BMDP package (see Dixon

where A is a fixed (d x 1) matrix with bi- [1]) although their model is slightly different.
nary coordinates and Y is an I dimensional The algorithm developed in [2] is entirely dif-
random vector with binary coordinates with ferent in one step.
I < d. The ® notation means that we are us- Fin Bo S d Loading
ing Boolean operations which are reflected in ding the ooean cores an
the following tables: Matrices

Suppose the data set is given in a matrix
form; D = (dij) is a (dxn) binary data matrix.

(D 0 1 & 0 1 The algorithm seeks a loading matrix A and a
0 0 1 0 0 0 scores matrix S such that B = A®S is "close"
1 1 1 1 0 1 to D, where B is called estimator or predictor

In our model, A is unknown, Y is unknown of D Now we define a criteria for closeness.

and 1 < d means that the data comes from Definitions: Positive discrepancy means
a smaller dimensional space through the fixed that dij = 0 and b0 = 1, i.e., the i-th vari-
matrix A. able of the j-th data is 0 which is predicted

Furthermore it is supposed that there is a as 1. Negative discrepancy means that di = I
random error in the observations; instead of and b3 = 0 i.e., that the i-th variable of the
X we observe A* = X + where ( is a d di ien- j-th data is I which is predicted as 0.

L



62 L. Rejto

Suppose that the with a smaller cost? The answer is yes. The
cost of positive discrepancy is cp > 0 initial loading vector defined with the help of
and the the pairwise dependence of the variables can
cost of negative discrepancy is c, > 0. be different from the one with all its coordi-
The task is to find loading and score matri- nates equal to 1 and data analysis shows this
ces for fixed unknown I which minimizes the has a lower cost. A data set of 796 patients
overall cost function: was analyzed. The rigidity and strengthness

of the muscles were measured in different parts
C = lID - A & S(I = of the body; there were 89 variables. Table I

shows part of the output of the Boolean factor

cp I(dij = , bij = 1)+ analysis program. Using a loading vector all of

i=1 j=I whose coordinates equal 1 produces a cost of
17572; if we use the random nature of the data

d n set, with the help of the dependence structure
cE l(di = 1, bij = 0). of the variables the initial cost is lowered to

i=1 j=I 5808.

A two step algorithm developed to solve the
above problem is in paper [21 which contains Step Two consists of defining and refining
the details. That version of the Boolean factor the scores and loadings. This is the so-called
analysis program was written for the Discrete Boolean regression step similar to the one used
STatistical ANalysis (DISTAN) package spon- in the BMDP 8M program. In this step for a
sored by the Social Science Information Center given (d x k) loading matrix A and for a given
of the Hungarian Academy of Sciences. This giv e dingmatrixsA a for aiecase x2 the algorithm chooses a score which
program has another version with more fea- minimizes the cost of misprediction for that
tures. A brief description of the algorithm now case examining all possible 2 k scores. Then
follows, the loading matrix A is modified in a similar

fashion for the given scores matrix.
Step One searches for a new vector of the

loading matrix. That search is based upon
the dependence between the variables. The Example
method developed for this step is different then The data for the example come from a study
the one used in BMDP. This step is very im- of muscles of 796 subjects with muscle disor-
portant because at the beginning it is possible ders. The flexibility and strength of different
to incur only a small cost if the loading ma- muscles of the body were measured on a scale
trix is appropriately chosen. To exl)lain it in from 0 to 6. A 0 value means normal mus-
more detail, in the first step we must give a cle function. A 6 means completely rigid and
d dimensional 0 - 1 vector as the loading ma- weak muscle. A value between 1-5 means dif-
trix and one dimensional scores for each case. ferent levels of flexibility or strength. 45 dif-
Suppose that both costs cp = c, = 1. Con- ferent muscles were tested. For the purpose of
sidering the nature of the Boolean operations, a Boolean factor analysis the data was coded
we can initialize the algorithm with the load- by 0 and I in the following way: if the value
ing vector having all its components equal to of the variable was between 1-6, referring to
1. Then we define the scores for each case as abnormal muscle function, we code 1. In case
1 if the case has more I then 0 or as 0 oth- of one muscle the value of both variable flex-
erwise. The cost for each case, is the number ibility and strength was the same; eithur 0 or
of 0-s if the case has more I or the number of 6. This way we analyzed 89 variables for 796
1-s otherwise. Are there any loading vectors subjects.
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Table 1 shows an output of the Boolean fac-
tor analysis of the described data set. Us-
ing 9 factors the cost is only 1554. Because
cp = c, = 1 it means that B, the estimator
of D, of the coded data set, is different from
D in 1554 places out of 70844. Thus the pre-
diction error is only 2%. Table 2 shows the
nonzero coordinates of the column vectors of

the loading matrix.
The example shows that Boolean factor

analysis can be applied successfully not only
binary data set. The final prediction error is
very impressive considering the fact that the
new codes are producing larger error.
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MAXIMAL DISCREPANCY- 70844
MAXIMAL COST = 70844

## 1 MODELLVECTORS ##
COST = 5808.0000
DISCREPANCY= 5808 PDIS= 5090 NDIS= 718
PREDICTION ERROR- 0.08198 COST ERROR = 0.08198

## 2 MODELLVECTORS ##
COST = 2920.0000
DISCREPANCY= 2920 PDIS= 1930 NDIS= 990
PREDICTION ERROR= 0.04122 COST ERROR = 0.04122

## 3 MODELLVECTORS ##
COST = 2768.0000
DISCREPANCY= 2768 PDIS= 1780 NDIS= 988
PREDICTION ERROR= 0.03907 COST ERROR = 0.03907

## 4 MODELLVECTORS ##
COST = 2708.0000
DISCREPANCY= 2708 PDIS- 1751 NDIS= 957
PREDICTION ERROR= 0.03822 COST ERROR = 0.03822

## 5 MODELLVECTORS ##
COST = 2587.0000
DISCREPANCY= 2587 PDIS= 1664 NDIS= 923
PREDICTION ERROR= 0.03652 COST ERROR = 0.03652

## 6 MODELLVECTORS ##
COST = 2096.0000
DISCREPANCY= 2096 PDIS= 1052 NDIS- 1044

PREDICTION ERROR= 0.02959 COST ERROR = 0.02959

## 7 MODELLVECTORS ##
COST = 1814.0000
DISCREPANCY= 1814 PDIS= 861 NDIS= 953
PREDICTION ERROR- 0.02561 COST ERROR = 0.02561

## 8 MODELLVECTORS ##
COST = 1667.0000
DISCREPANCY= 1667 PDIS, 813 NDIS= 854
PREDICTION ERROR= 0.02353 COST ERROR = 0.02353

## 9 MODELLVECTORS ##
COST = 1554.0000
DISCREPANCY= 1554 PDIS- 783 NDIS' 771
PREDICTION ERROR- 0.02194 COST ERROR - 0.02194

Table 1
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Number of Factors 9
LOADING MATRIX

16 17 18 19 20 21 22 23 24 25 26 27 28 29 38 39 40 41 42 43
44 45

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
66 67 68 69 70 71 72 73 74 76 79 81 82 84

-* 3 ***

1 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

** 4 ***
46 49 51 52 58 59 60 63 65 66 75 77 78 80 83 85 86 87 88 89

-. * 5**
1 89

-* 6 *

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

** 7 ***

1 2 3 4 6 7 8 9 10 11 12 13 16 17 18 20 21 22 23 24
27 32 35 37 40 43 45

'~* 8 ***

6 13 20 27 30 32 38

,.* 9 ***

5 8 13 14 15 19 22 27 28 29 39

Table 2
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General Similarity Measures of Location Models
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Abstract (d) Kuliback & Leibler's information measure (1951):
00

AThe locationmodels'which canbe used in discriminant A1 (fi1 x))f (x) log [f()
problems when the data contain both categorical and 11 '2 j log Idx

continuous variables, requires separate continuous variables -00

means to be fitted for each possible pattern of categorical 00
responses. Several forms of similarity measure are reviewed. f2 (x) ,.
The problem of estimating similarity when the continuous A2 (O1 ,t 2 ) = J f2(x) log [ 1 x
variables of location models are multivariate normal -0f

distributions with equal covariance matrices across the

discrete states has previously been studied. In this work, the
assumption of equal covariance matrices is relaxed. The (e) Chemoff measure (1952):
explicit form of general similarity measure between two 00
location models is derived assuming general multivariate P l f 1 yla 2(j 1-dx , <a< 1
normal distributions. Estimation of parameters in this - 00
similarity measure is discussed.,.

(f) Matusita's distance (1955):1 Measures of distance and 00
similarity measures II F1 , F2 IIr = J [ (fl(x))l/r - (f2(x))l/r I r dx 11/r

Consider two populations ntI and n2 and a vector-valued - 00
This is essentially the same as Hellinger distance.

continuous random variable X defined over a space R such If the affinity between F1 and F2 is
that F, (x) and F2(x) are the distribution functions of X in 00
nI and n2 while fl(x) and f2 (x) are the corresponding p (f 1 (x f2(x)I 1 /2
density functions with respect to a suitable measure. For a P (F1 ,F2) = fl(x)f2(x)] dx
discrete random variable X, fl(x) and f2(x) will be treated as - 00

the corresponding probability mass functions. then II F1 , F2 1122 - 2 (1 - p (F1 , F2 ))

The following distance measures or similarity measures have (g) Morisita's similarity measure (1959):
been extensively studied: 00
(a) Hellinger distance (1907): 2 f f1 (X) f2(x) dx

pp (t1 ,x 2 ) { I[ fl(x)]l/P - [f2 (x)]l/P Ip dx IiP -00 .-00O

(b) Bhattacharyya distance measure (1946): f fl2(x) dx + ff 22(x) dx

0(n ,n 2 )=cos " p( 1 ,ic2 ) 00 -_

(h) MacArthur-Levins similarity measure (1967):
where p(itl n2 )= J[ fl(x) f2(x) 11/2 dx 0,

- 00 fi(x) (x) dx
(c) Jeffreys divergence measure (1946): Jf

S00ij 00 2 for ij = 1,2,i j.
f ,f2(x) fj x)d

(x0 02 )= (f2(x) - f0(x)) log ()ldX * fi 2 (x) dx
-00o -00o
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(i) Sibson's information radius (1969): individuals are drawn from 2 populations it,, It 2. The
I M fl(x) f2(x) location model was introduced by Olkin and Tate (1961) to

A Otl,R 2 11fl(x) logt +-f f2(x) log[f I }dx cope with the mixed variables, and this model has- Wc subsequently be applied to the two-sample case for tests of

where f(x)= ( hypotheses, for discriminant analysis, for clustering, for
2 (f(x) + f2 (x)) classification, and for medical diagnostics.

(j) Pianka's measure of overlap (1974): The q discrete variables (may be binary or categorical) are
assumed to define a multinomial vector Z containing d

0= c jc ejifor ij=l,2, itj . possible states, eg: for b binary variables and k three-state

00 categorical variables, d = 2b3

f fi(x) fj(x) dx Thus each distinct pattern of X define a multinomial cell
-00 , uniquely. XT = (X1 ...... Xq ) can be replaced by a random

112 fc cx 1 vector ZT = (Z1 ...... Zd ) and each Zi takes the value one

J fid(x) dx J dx 2  for a particular state of the original X's and zero elsewhere.
.c. -0 The probability of observing state m in population pi is

assumed to be pim (i=1,2; m=l,....d). Then conditionally on(k) Good and Smith (1987) General measures of similarity: Z falling in state m, the p continuous variables Y are

assumed to follow a multivariate normal distribution with
I (r . s ) = J [ f1 (x) r I f2 x Is dx mean (m) and dispersion matrix Ejm) in population ni

- tO I(r's) (i=1,2; m=l .... d). The only assumption embodied in this
and two alternatives: J ( r, s ) 2 model is normality, and this is imposed in most parametric
and o atrn s: (r,s) I(2r,O) + I(0,2s) techniques.and G( r, s) - I(r,s)

'I I(2r,0)I(0,2s) The location model can be defined asdT

The parameters r and s are weighting parameters and are f(z,P i t) = r I pim where PiT = 1' P 2 .....
i F1 Pim (Pi i'"li1

usually given the values i or 1. Note: Some of the above d d

measures will be special cases of these general similarity Pim = E(Zm I ti), Y zm I Pi
measures. For example, Bhattacharyya distance measure m=1 m=1

1 1  1 and fi(m)(y) = f (y 7rti ,z m =1, zk =0, In k = 1,2...,d)0(Tc nt,72 )=CS 1( 2 , j-), Chernoff measure is p(Rt1 X2)

= I( ct, 1- c ), Matusita's affinity measure is p ( F1 , F2 ) =
I( 2' 2 )' Morisita's similarity measure X = J(1,1) , The proposed model admits the following special cases of

a t e s r-) interest:
MacArthur-Levins similarity measure is 1(2,0) or L1 : the conditional dispersion matrix is constant for all statc
1(1,1) in each population, that isE X(M) = Ej (i=1,2: mn= ]_.,)I --I-0'1 and Pianka's measure of overlap is ox = G(1,1). i ahppltota sYi m  

i 012 ~ .. )

1(0,2) ' Homogeneous variance-covariance matrices across states
within population.

The above measures can be applied to the populations with

discrete distributions and probability mas functions. In this L2 : the conditional dispersion matrix is constant for all staic
case, summation over the possible states will be used in each population, that is l(m) - (m) 0=1.2; m=l.instead of integration. nec ouain hti i m) =E m  il2 =I...d!

Homogeneous variance-covariance matrices between

2 Location Models populations with respect to states.

L3 : the conditional dispersion matrix is constant for all staie

Suppose that p continuous or quantitative variables YT = in each population, that is -= (i=1,2; m= .d)
(Y1 ...... Yp ) and q discrete or qualitative variables XT = Homogeneous variance-co 'ariance matrices across statc al
(X1 ...... Xq ) are measured on each individual, and that wopulations.
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3 General similarity measures 1111:21 , 4 1  1

with mixed variables: 1 +1/2

Population 
case

Now consider the mixed variable case:

Let us derive the general similarity measures under the most The joint density of state m of the discrete variables and
relaxed conditions between two multivariate normal values of yi,...,y for the continuous variables is given by
populations - different means and different dispersion p
matrices, the product of the conditional and marginal densities as pi,

rs T -1 ~ () )
exp[- = 1 "1±2)T(s + (l'1.1.2)] fi(m (y ) "

I(r,s) = (19)(ylr 9-2]d 0
IL (r, s) = " { PImfi mI ) (m') }r( P2mf2 (m) (y) )s dy

m=1 - 00
I(2r,O) = 1 21E 1 I

(1-2 r/2 (2r) p /2  d r Sy
I I[ ( PIM P2 ms) f f(m)()r f(m) (y) }s dy

and 1(0,2s) = I 27t1Z 1(
I 2s)2 (2s) "P/2  m=1 0

d , P s Im(rs)}

J(r,r) m=1 im 2m m

2exp[(-rt2) (l-2) T(ry!+r..)" 1 (1-2)] where Im (r,s) is the general measure of similarity I(r,s)

lyq EIl(r-l)/2 1!(l+)l 11(1- 2r)t2 +,211-r)2) between N ( Z.i(m) Y.(m)) and N ( .i(m) , Zi(m) ) and can

be evaluated as the above. Krzanowski (1983) discussed the
exp [ - T( 2) (sslZ+rE2)-1 (11 - 12)] case with r = s = 1/2 for k populations.

G(r,s) - (4rs)l1E 2
1 1 4 Is, 1 +rE 2 

1I2 Moreover, two alternatives are

exp[ - ( ( +E2) "1 (11-12)] JL (r, s) = 2  IL(r,s) and
G(rr) - 2 -1/4 1 /2 IL( 2 r,O) +

l1 12 1 I + 12) 11GL( s IL(rs)
For r = 1s =, and when 11 = E2 L= r, ) L(2r,0i(0,2s

T1-
p = 4 ) = exp[ (91±  2 1: (111-92)] aMost of the measures discussed in section I will be special

X = J(1,1) = exp [- ( -" ) i1 ( -t2)] cases of the above general similarity measures when they arc
4(.1) -) ( 92)applied to the location models.

=X1 2 = (X2 1 = (2,0) - 1I(0,2) = G(l,).

These are the exponential forms of certain functions of 4 General similarity measures
Mahalabonis generalized distance (gl-g 2 )T E-1 (II--R2) • with mixed variables:

Sample case
Krzanowski (1983) derived the following for l 22,

p = 2 1 E1 
11/4 I T"2 1"1/4 II + El E2 " I " 1 / 2  In practice, the general similarity measures between two

2 groups of sample data will be evaluated. First, we can adopt
I - (VI, -v2j the procedures of Daudin (1986) or Krusinska (1989) to

p  [( -(I + }]
SexpI[-1 ) select the variables which will construct the location

Here X"=are the eigenvalues of E E* and v models; Daudin's procedure is based on Akaike's criterion
Here e i s "  lwhereas Krusinska's procedure is based on the multivariate

=1 ,...,p) are the coordinates of the population means in the discriminatory measure similar to the distance measure. To
transformed space. obtain the sample estimates of general similarity measures,

the simplest way is to treat the data in either group as a
Lu, Smith and Good (1989) derived sample from the corresponding population ti and to replace
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all parameter values by their sample estimates (maximum Matusita, K. (1955) Decision rules, based on the distance,
likelihood estimates in terms of conditional likelihood on for problems of fit, two samples, and estimation. Ann.
each state), and this may be called PLUGALL. As the of Math. Statist., 26, 631-640.
parameters r and s in the general similarity measures, Matusita, K. (1966) A distance and related statistics in
researcher will select the appropriate values multivariate analysis, in "Multivaraite Analysis I " (P.

or 1) to R. Krishnaiah, Ed.), 187-200, Academic Press, New

meet the forms of similarity measure in the applications. York.
For sufficiently large samples, the sample estimates of Morisita, M. (1959) Measuring of interspecific association
general similarity measures can be obtained for models L1 , and similarity between communities, Mem. Fac. Sci.
L2 and L3 . However, it would generally make sense to pool Kyushu Univ. Ser. E., 65-80.
across those categories which have relatively few Olkin, I., and Tate, R. F. (1961) Multivariate correlation
observation; that is, L3 is the common model may be models with mixed discrete and continuous variables,

encountered. The task remains is to evaluate the statistical Ann. Math. Statist., 32, 448-465.
properties of the estimators of various general similarity Pianka, E. R. (1974) Niche overlap and diffuse competition,

measures. The mathematical difficulties in deriving the Proc R. (196)Acad. Sci. USA 71, 2141-2145.

properties of the estimators are formidable, and consequently Sibson, R. (1969) Information radius. Z. Wahr. verw. Geb.,

we will evaluate the properties by the resampling methods - 14, 149-160.

jackknife and bootstrap. These results will be discussed
elsewhere.
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Abstract From a total of one million iterated applications of MD4,

each of the 16 byte positions of the one million outputs was

In theory, it is difficult to define a hash function which is examined for parity. The results of this test are shown in

capable of creating random data from nonrandom data. This Table 1. It is apparent that the null hypothesis cannot be

paper addresses the randomization properties of an rejected, indicating that each byte is equally likely to be odd

extremely fast, compact hash function. The MD4 message or even. In fact, the extremel) high P-value (.9813) might

digest algorithm produces a 128-bit output or "message lend statistical credence to the algorithm's "purposeful

digest" from an arbitrarily-long input string of bits. The smashing of bytes."

results of a variety af empirical tests which were conducted
to detect possible statistical defects in the algorithm are
presented. . Byte Chi-Square

Position Actual Expected Contribution

This paper presents the results of a statistical analysis of
the randomization properties of the MD4 Algorithm [7]. 1 500979 500000 1.916882
The MD4 message digest algorithm is a fast, compact hash 2 499412 500000 .691488
function which maps an arbitrarily-long string of bits onto 4 95 500000 .000
a 128-bit quantity. For a complete description of the 5 500513 500000 .526338
algorithm, the reader is referred to Rivest (7]. The 5 500513 500000 .526338
investigation of MD4 consisted of a series of six empirical 6 499849 500000 .045602
tests in which a large number of 128-bit outputs was 7 499780 500000 .096800
generated and then examined for randomness, or the lack 8 499808 500000 .073728
thereof. The results of these tests are as follows. 9 500624 500000 .778752

10 499776 500000 .100352

The first test conducted was a byte parity test. The 11 499787 500000 .090738

appropriate hypotheses for this Chi-Square test are presented 12 499922 500000 .012168

as follows: 13 500242 500000 .117128
14 499414 500000 .686792

H0 : Odd/Even parity of bytes are equally likely. 15 499939 500000 .007442

HI: Odd/Even parity of bytes are not equally likely. 16 500347 500000 .240818

Total 5.905678

P-value .9813

MD4 is the product of Ron Rivest, MIT Laboratory for
Computer Science, 1990.

Table 1. Byte Parity Test
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A second test conducted is a check for uniformity in the frequency of I's in each position. Table 3 provides the
bivariate distribution of byte position versus byte value, results of this test. These results again indicate uniformity
The hypotheses tested are as follows: across the 128 bit positions, i.e., each bit is equally likely

to be a 0 or 1.
H0 : Bivariate distribution of byte position vs byte value

is uniform. Bit Chi-Square
HI: Bivariate distribution is not uniform. Position Actual Expected Contribution

1 1,499,496 1,500,000 .169
Three million iterated applications of MD4 were performed, 2 1,500,769 1,500,000 .394
and the results of examining the decimal integer value of 3 1,501,119 1,500,000 .835
each byte in each of the three million outputs are shown in 4 1,500,256 1,500,000 .037
Table 2. 5 1,500,256 1,500,000 .044

Byte Position 126 1,499,975 1,500,000 .000
127 1,499,466 1,500,000 .190

2............ 16 128 1,500,624 1,500,000 .260

0 11645 11591 .......... 11678 Min = 1,498,191 X20 = 70.657
1 11722 11658 ........... 11780 Max= 1,502,403 df = 127

V P = .85
a
I Table 3. Frequency Test for Bit Positions
u
e The fourth test, a gap test, examined another set of one

255 11832 11823 ........... 11483 million outputs from MD4. Each output was scanned for
the number of 0's between successive I 's. For example, the

Bivariate Frequency Distribution string "10010110001" has gaps of 2, 1, 0, and 3,

E 1respectively. Table 4 shows the total number of observed
E(X) = 11718.75 X20 = 3895.87 gaps for gaps of size 24 or less. No gaps of size 25 or
Min = 11354 df = 4095 larger were encountered. The successive halving of the
Max = 12099 P = .54 number )f observed gaps for an incremental gap size of I is

what we would expect to see if the probability of a 1 or 0
Table 2. Uniformity of Byte Position vs Byte Value in each bit position is .5.

The results indicate that the distribution is indeed uniform.
One can also conclude independence between position and Gap Size Observed # Gap Size Observed #
value. That is, given a particular byte position, the byte 0 32,263,081 13 3,583
value is equally likely to be any of the 256 possible values. 1 16,247,658 14 1,793
Similarly, given a particular value, it is equally likely to 2 8,063,542 15 881
occur in any of the 16 byte positions. 3 4,001,042 16 421

4 1,984,905 17 209
A third frequency test was then conducted, this time at 5 983,004 18 121

the bit level. The hypotheses for this test are expressed as 6 488,068 19 59
follows: 7 241,362 20 27

8 120,025 21 18
H0 : The distribution of l's across all 128 bit positions 9 59,219 22 5

is uniform. 10 29,843 23 3
HI: This distribution is not uniform. 11 14,471 24 2

12 7,337
Another three million outputs from MD4 were generated
and each of the bit positions examined to determine the Table 4. Gap Test
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The fifth test conducted was one in which the difference 32,000-byte (256,000-bit) string and A' is also a 32,000-
(in absolute value) between the number of l's and the byte string which differs from A in only 1 bit position, we
number of O's occurring in each of one million outputs was then compared MD4(A) and MD4(A'), each being a 128-bit
noted. The observed (actual) frequencies, as well as string. We looked at the Hamming distance between
expected frequencies (under the assumption that a 0 or 1 in MD4(A) and MD4(A'), i.e., the number of bit position
any position is equally likely), are shown in Table 5. These changes that occurred between MD4(A) and MD4(A'). The
results clearly support the assumption. hypotheses tested can be described as follows:

H0 : The distribution of Hamming distances is binomial
Difference Actual Expected Chi-Square with n= 128 and p=.5.

HI: This distribution is not binomial with n= 128 and
0 70331 70386 .043 p=.5.
2 138539 138606 .032
4 132566 132306 .511 The frequency distribution of Hamming distances that
6 122122 122433 .790 occurred among the 30,000 comparisons is shown in the
8 109900 109829 .046 histogram of Figure 1.
10 94974 95504 2.941
12 80948 80496 2.538
14 65734 65757 .008
16 52053 52058 .000 Avalanche Effect
18 39905 39935 .023 2500
20 29959 29681 2.604
22 21426 21370 .147
24 14928 14903 .042 2000

26 10117 10064 .219
28 6508 6581 .810 zs50
30 4205 4165 .384
32 2532 2551 .142 0

34 1480 1512 .677 6.1000-
36 870 866 .018
38 490 480 .208
40 277 257 1.556 z 500

42 115 133 2.436
44 67 67 .000
46 32 32 .000 43 48 53 58 63 68 73 78 83 88
48 12 15 .600 Number of Bits that Changed

50 4 7 1.286 1
52 5 5.833 .119
54 0 2.436 2.436 Figure 1. Avalanche Effect: Hamming Distance
56 1 .980 .000

This figure suggests that, on the average, about half (64) of
X2 = 18.603 df = 27 P = .884 the bits will change. While this figure gives us an

indication of how many bits will change, Table 6 shows us
that, of the bits that do change, each of the bit positions

Table 5. Differences Between # of l's and # of 0's tends to contribute equally to the number of changes.
Clearly, the avalanche effect demonstrated is one in which
the outputs for two "almost identical" inputs appear to be as

A final test was conducted to examine the avalanche random as any other two randomly chosen 128-bit strings.
effect of MD4. A series of 30,000 comparisons was made,
where each comparison compared two outputs of MD4. The results shown here indicate that MD4 is a byte
The two outputs compared were the outputs corresponding smasher extraordinaire. These random properties of MD4,
to two "almost identical" inputs to MD4. That is, if A is a together with its speed and compactness, make it a
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potentially valuable tool for a variety of applications, 6. Patterson, Wayne. Mathematial Cryptology for
including virus detection and compressing large files prior Computer Scientisisand Mathematicians. Rowman
to signing them with a public-key algorithm such as RSA. & Littlefield, '1987.

Bit Position Actual Expected Chi-Square 7. Rivest, Ronald L. The MD4 Message Digest
Algorithm. Proceedings CRYPTO '90, pp 2 8 1-291.

1 14,995 15,000 .002
2 14,997 15,000 .001
3 15,123 15,000 1.009
4 14,956 15,000 .129
5 14,915 15,000 .482

126 14,855 15,000 1.402
127 15,029 15,000 .056
128 15,092 15,000 .564

Min = 14,811 X20 - 65.148
Max = 15,294 df = 127

P = .89

Table 6. Avalanche Effect: How often each of the 128 bit
positions changed in the 30,000 comparisons
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Abstract' that determine the "departure times" of customers inde-
pendently of the presence or absence of customers); the

We simulate several variants of a class of queueing net- same autonomous servers can be shared between all the
works - corresponding to different system parameter val- variants. We call this approach the Standard Clock (SC)
ues or operating policies - simultaneously. One clock technique [3, 6, 7] since a single simulation clock mecha-
mechanism is used to drive all the variants. This clock nism (that may be standardized) is defined which drives
synchronizes the system trajectories such that the "same all the variants simultaneously. This clock synchronizes
event" takes place at the "same time" at all systems. the system trajectories such that the "same event" takes
This synchronization is the basis of the massively par- place at the "same time" at all systems. The obtained
allel algorithms we develop. Implementation of the al- synchronization is the basis of the algorithms we develop
gorithms on the massively parallel Connection Machine for the implementation on the massively parallel Con-
and the implications of the approach for performance nection Machine (CM). This approach is applicable to
optimization is discussed. queueing networks that can be modeled as Generalized

Semi-Markov Processes (GSMP) with bounded hazard
rate event life times. For networks that can be modeled

1 Introduction as continuous time uniformizable Markov chains, SC is
based on the well known uniformization procedure.

There is an inherent partial parallelism in networks of An important feature of this approach is the concur-
queues. Often each server operates as an independent rent evaluation of the performance of the network at very
entity as long as customers are present to be served. The large numbers of parameter values or operating policies.
effect of other servers is experienced through idle peri- We believe this feature opens up new possibilities for
ods - where no customer is present - or blocked periods performance modeling and optimization. As a first step
- where no space is available for a served customer (to we consider a global random search for performance op-
illustrate we are considering a simple scenario). While timization of a queueing network.
the status of the servers (busy, idle, blocked) remains Section 2 defines our model of a single queueing net-
unchanged, they can be simulated independently and work; a parameterization of the model is considered in
in parallel. Most parallel algorithms for queueing sim- section 3; the Standard Clock algorithm and its mas-
ulation use this partial parallelism for simulating one sively parallel implementation is given in section 4, and
"large" network (see[41l. in section 5 we consider solving a stochastic optimization

In contrast, we consider the simulation of a "large" problem via massively parallel simulation.
number of variants of a "nominal" network that differ,
for example, in their routing schemes, buffer configura-
tions, service or arrival rates, or the number of customers 2 Model : systems driven by marked Poisson

in the system. Obviously there is a total parallelism processes
among the variants. More importantly, we simulate each
variant as a network of autonomous servers (i.e. servers Let (r,e) {(r ,, c,,); n > O} be a marked Poisson pro-

cess where {r,; n > O} is the sequence of arrival instances
'Thework in this paperwas partially supported by the National of a Poisson process N, and {e,,; n > O} is an I.I.D. se-

Science Foundation under Grant DDM-8914277. quence of discrete random variables, independent of the
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Poisson process N, such that en E E, where E is a finite 3 A parametric family of systems driven by
set called the set of events. the same marked Poisson process

Let S, a denumerable set, be the set of "physical"
states of the system. If upon the occurence of an event To consider several variants of a "nominal network" we
e E E, the state of the system is z E S, then the next parameterize the system with respect to a parameter of
state of the system z' E S is determined via a given state interest. The parameterization may be with respect to
transition rule: the number of buffers, buffer configurations, routing pro-

z' = f(z,e, W) (1) portions, number of customers, control policies, service
and inter-arrival rates or any combinations of the above.

W is a random variable used to model probabilistic tran- The parameterization of a model of the system can be ac-
sitions, complished through the state transition function f while

Let X(O) be the random variable of the initial state. leaving the marked Poisson process (r, e) unchanged.
The sequence of states {X(n); n > 1} is defined recur-
sively by X(n) = f(X(n - 1), e,n, W) and the process Example 3.1 : Consider the parameterization of ex-
X = {X(t); t > 0} is defined as follows: ample 2.1 through buffer configurations such that

_ ~ B = c .
X(i) X(T)I{Tr ! t < rn+lI for t > 0 (2) Let B = {(B 1,..., BK-1); Bi > 1, EiK 1 B = C). For

n=O each b E B let Sb be the state space corresponding to
configuration b, and let E, -, and c be as defined in

This model is quite versatile: open and closed networks example 2.1. The state transition rules for each config-
of queues with multiple classes of customers, Markovian uration b are defined by
routing, finite and infinite buffer spaces, and a variety of { b + ii > ,x
service disciplines can be modeled as such. Networks fb(b , di, W) = -I < B1 +1
with exponential service times and inter-arrival times -Z otherwise
provide the most staightforward examples but networks (for d, only z b < Bb, and for dg only z 1 > 0 is
with phase-type service times and inter-arrival times can required.)
be modeled as well by considering a more intricate state Note that the same (r, e) (model of the simulation clock
space. mechanism) is used for all b C B. The next section

To illustrate we consider a simple example: describes algorithms for using one clock mechanism to
drive many systems simultaneously.

Example 2.1 : Consider a tandem network of K expo-

nential servers with rates il, .. , ILK respectively. There
are Bi buffers between server i and server (i + 1) (i = 4 Standard Clock Algorithm and Massively
1,..., K - 1). We assume that there are no spaces at Parallel Implementation
the servers. There is an infinite supply of parts at server
1 and infinite space for finished parts after server K. Assume M variants of a "nominal network" correspond-
Server i begins processing a part only if the immediate ing to M distinct parameter values or operating poli-down stream buffer, i.e. Bi, is not full (the so-called cies are given. Assume further that the nominal system
communication blocking). In this case: can be modeled by the model described in section 2 andS omu (zic.. . K-i);0 < th Bs that the variants are parameterized through the stateE : {d .... di} (d = departure from server i) transition rules f as described in section 3. Let (T, ) ber arrival instances of a Poisson process with rate A the common marked Poisson process and f, ... , f' thestate transition rules associated with variants 1,..., M,Prob(eA d ) /A. respectively. The simulation algorithm consists of twoLet mr. be a (K - 1) dimensional vector with ith entry parts: algorithm A that simulates the clock mechanismequal to -1, (i + 1)the entry equal to 1, and all other (generates samples of marked Poisson process (r, r)) andentries equal to 0 (1 < i < K - 1). Let m1 -n a vector algorithm B that describes the simultaneous updating ofentres qua to0 ( < < K- 1. Lt M~i vetor the system states upon occurrence of events.
with (K - 1)th entry equal to -1 and all other entries
equal to 0, then Let E = {el,. .. ,eK} be the set of events. We use

f _, + 7N. if mi > 0, zi+l < Bj+1  the Alias method to generate samples of c,,. To use this
W otherwise method it is necessary to initially generate two K di-

(for di only zi < Bt, and for dK only zK-1 > 0 is mensional vectors R and A. We refer the reader to [2]
required.) for the algorithm to generate these vectors and assume
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here that R and A are generated. Then: We simulate algorithm A (i.e. the clock mechanism)
at the front end computer: at each tick of this clock the

Algorithm A: determining r+ and e,+ time and type of the "next" event is generated. Algo-
rithm B is implemented in a distributed fashion at the

1. generate t,,+,, a sample of an exponential r.v. with CM: each processor of the CM simulates a version of the
rate 1. system with a distinct parameter value. The event type
Set m",+1 = 76 + tn+1 /A. and time generated by the clock is broadcast to all pro-

cessors which in turn execute the instruction correspond-2. generate u,+l., a sample of a uniform(0, 1) r.v. Un~+ x ing to the event type. This execution is done according
let i = [Ku, +1] + 1 ([z] denotes the integer part of intohevntyp.Tsexcinisdeacrig
Z). to the parameter value at the processor. To illustrate

we consider the parallel implementation of the model of

3. generate v,+l, a sample of a uniform(0, 1) r.v. V,+, example 3.1 at a finite number (M) of parameter values:

if Vn+i R[i] then ,+ = Example 4.1 : The implementation of the clock mech-
else 6+ = A[i]. anism (Algorithm A) at the front end is trivial. To

This clock mechanism is simple and very efficient. In implement Algorithm B we define parallel variables

fact, except for the generation of vectors R and A, that 21,- .. , iK-I to represent the states of the systems at all

can be accomplished in O(K) and is performed only once variants: ii is an M dimensional parallel variable whose

at the beginning of the simulation, the execution of the every components is kept at a distinct processor. The

clock mechanism is essentially independent of K, the value kept at processor j is the number of customers at

number of events in the system. buffer i at the configuration associated with processor j.
Let X be the state of the variant j at time r,, Similarly we define parallel variables B1, .. ., BK-I (the

(j = 1,...,M). Then: jth component of bi, kept at processor j, is the number
of buffers between i and (i + 1)th servers at configura-

Algorithm B: updating the states of the systems at tion j). Assume that the event reported by the front

Tn+1 end (the clock mechanism) is di (for simplicity assume

(Assume that e,+l = e4 ) 1 < i < K - 1). To update the states of the systems we
proceed as follows:

1. generate w,+,, a sample of a uniform(0, 1) r.v. Define a logical parallel variable A as
W n~i. A = I1 if ii> 0,i+ < /f)i+1

2. Forj = M A = 0 otherwise
set X'(n + 1) = fi(X(n), ej, w,+) and execute the following code (the code is executed in

parallel on CM)

Massively parallel implementation set A = ( i > 0 and ti+l < Ai)
i= - A

The Connection Machine (CM) that we have used as ii+1 = ti+1 + A
the platform for the massively parallel implementation The component of A at processor j takes value 1 if xi > 0ftz+1 < B+ are both satisfied; otherwise it takesof the SC algorithm is a SIMD (Single Instruction Mul- and 1 a
tiple Data) computer. It consists of a large number of value 0 (these conditione are checked in parallel at each

small processors (32000 in our case) each with its as- processor based on local information at the processor).
sociated memory. All the processors operate under the The next two steps represent the movement of a part

direction of a serial computer, called the front end. The for all processors where A = 1 and no action for those

front end acts as a central control mechanism that directs where A = 0.

all processors as to the next instruction to be executed.
All processors then execute the same instruction; hence 5 Performance optimization
the name, Single Instruction Multiple Data (SIMD) sys-
tems (for more extensive description of parallel and dis- Such massively parallel implementations dramatically
tributed systems see [1],[4]). In massively parallel sys- increase our ability to generate data points (performance
tems the synchronization of the computational tasks is a estimates) for analysing and optimizing queueing net-
crucial element of the parallel implementation. The SC work performances. An immediate and important ques-
algorithm is particularly well suited for such implemen- tion to be answered is: what type of optimization alg-
tation. rithms are most appropriate in this context.
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As a first step we have considered a random global were produced). The ranked configurations were also ob-
search approach on the parameter space. Due to a lack of served at T'4 = 7ooooo, T5 = r 0soooo to check for possible
space and to the preliminary nature of our investigation long term change in ranking. The Table below shows the
our discussion below will be informal, rank of 5 top configurations at T, T3 , T 4 , T5 .

Consider the following optimization problem:

config. R at T, R at Tj E at T R at T4
Max{J(0); 0 E O} (3) 570 1 1 1 1

1 321 19 4 2 12
where (6) =limTo g(X(6,wT), (w E 1 repre- 907 6 3 3 3

sents all the underlying randomness in the system). J(O) 1756 15 6 4 4
is, for example, some average steady state performance 127I 3 2 5
of the network at parameter value 0. To address this 1277 3

problem we proceed as follows: They correspond to the following allocatin of buffers
Let 01,..., M be M parameter values in 0 chosen (we have also included the number of parts produced at

randomly according to some distribution on E. We these configurations by Ts:
run X(0i ,.),...,X(OM,w,.) in parallel and evaluate
g(X(O,,w, Tb)),. .. , g(X(OM, w, Tb)) at different epochs b570  (1,2,3,3,2, 1,2,2,2,2), Parts produced = 2449.
T (k 1.?,...). At each epoch the parameter values b33 11 (1,2,3,2,2,1,2, 2, 3,2) Parts produced = 2397.
are ranked in descending order of g(X(Oi,w, T,)). We bo7 (1,3,3,2,2,1,2,2,2,2) Parts produced = 2385.
choose the best L parameter values at each T (those bl 075 (2, 2, 3, 2, 2, 1,2, 2, 2, 2) Parts produced 2378.
with highest value of g); when this population "stabi- b127 7  (1, 2, 3, 2, 2, 3, 1, 2, 2, 2) Parts produced = 2362.
lizes" (i.e. when there is a small migration in and out of
the population, or changes in ranking within the popu- References
lation) the simulation is stopped.

The following considerations has been the basis of our [1] Bertsekas, D.P., Tsitsiklis, J. N., Parallel and Dis-
approach: our objective is to find near optimal solu- tributed Computation: Numerical Methods, Pren-
tions to (3). For "large" values of M, and "reasonable" tice hall, 1989.
performance functions J(O), the top L parameter val-
ues at the termination of the simulation are expected to [2] Bratley, P. B., Fox, B., and Schrage, L., A Guide to
be "near-optimal" with "high probability", i.e. produce Simulation, Springer-Verlag, 1983.
performance measures that are close to Max J(O). Fur- [3] Ho, Y. C., Li, S., and Vakii, P., "On the Effi-
thermore, in the context of networks of queues they are cient Generation of Discrete Event Sample Paths
expected to reveal some of the "desirable" properties of under Different System Parameter Values" Alathe-
near-optimal variants. A concurrent comparison of sam-
ple performances of all variants is possible because in 37ti auto p
the SC simulation, all variants live in the same simu- 370, 1988.
lated world. This approach is identical to some of the [4] Righter, R. and Walrand, J.C., " Distributed Sim-
coupling methods of sample paths of stochastic processes ulation of Discrete Event Systems", Proceedings of
- by defining then on the same probability space - to es- the IEEE, Vol. 77, No. 1, pp. 99-113,1989.
tablish stochastic monotonicity [e.g. see 5]. [5] Shanthikumar, J. G. , and Yao, D.D. "Monotonicity

Example 5.1 : Consider the system of example 3.1 and Concavity Properties in Cyclic Queueing Net-
with the following modification: there are 11 servers in works with finite Buffers", Qu'ueing Networks with
the system and server i is Erlang(ri, A). Consider the Blocking H. Perros and T. Altiok, eds. Elsevier Sci-
problem of optimal allocation of 20 buffers between the ence pp.325-344, 1989.
servers in order to maximize throughput. In our exam- [6] Vaili, P. "Using a Standard Clock Technique for
ple A land (i, ...,i) =(1, 2,5, 4, 4,2,2,3, 2,5,2). Efficent Simulation", to appear in Operations Re-
4000 variants of the system (numbered 1 through 4000) search Letters. 1992.
were randomly selected and simulated in parallel on CM.
At T1 = rnooo, T 2 = rioooo, and T3 = Tisooo the parame- [7] Vakili, P. "Massively Parallel and Distributed Sim-
ters were ranked (the simulation was performed in about ulation of a Class of Discrete Event Dynamic Sys-
20 sec). By T3 , the top 20 ranked variants had "stabi- tems: A Different Perspective", Manuscript. 1991.
lized" (by this time in the "best" configuration 243 parts
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VERSION 3 OF GPSS/SAS COMPILER
Gretchen K. Jones, National Center for Health Statistics

Michael A. Greene, The American University

Abstract GPSS/SAS compiler translates a GPSS program into
a SAS program using the SAS language first.

This paper describes Version 3 of a GPSS Entities called transactions (for example,
compiler. GPSS is a discrete event simulation representing customers) move through these blocks.
language used to model queuing problems. The At any simulated instant, there may be many
complier was written in the SAS language (version transactions in different parts of the flow diagram.
6.06), which was chosen for three reasons: (1) it has Transactions can model the movement of customers
character string handling and other functions through a facility. Usually a transaction is on one of
required for a compiler, (2) the SAS language has a two lists, the current events chain (CEC), or the
full range of mathematical and statistical functions future events chain (FEC). Transactions on the CEC
that are used to extend the GPSS syntax and (3) the are moving or ready to move through the blocks in
statistical procedures in the SAS system are available the program. They can be held up if a block refuses
to preprocess data for the simulation or to entry or can be delayed. Transactions on the FEC
postprocess simulation output. will move later when the simulated clock reaches

The current version of the compiler implements their block departure time, at which time they will
much of the GPSS functionality and contains the be transfered to the CEC to continue progress. At
usual devices in a simulation language including a any instant of simulated time, GPSS tries to move all
clock mechanism, an event scheduler, a source of each current (CEC) transaction as far as possible
random numbers following a large number of through the block diagram. Every transaction has a
probability distributions and data structures to priority, which can be changed as it goes through the
represent queues and other required quantities. program. The CEC is in order of highest to lowest

priority, causing transactions of high priority to
I. Introduction move before those of lower priority at any given

A. Simulation Language simulated time. Transactions also have parameters
A simulation language is a computer language which may be used to carry data.

which facilitates the programming of models for
discrete-event simulations. It is useful for solving B. Why SAS?
queueing problems because it has constructs which
represent all the aspects of the queuing situation. It SAS was chosen as the language in which to write
is possible but tedious to program a simulation the compiler for the following reasons: (1) the
problem in a high level language such as Fortran. A completeness and flexibility of SAS as a
simulation language automatically handles many programming language (2) the capability for outputs
tasks such as maintaining a simulated clock, to be analyzed through the immediate access to SAS's
scheduling events and causing them to occur in the high quality statistics and graphics procedures, and
proper time-ordered sequence. In addition, most (3), SAS has good random number generators, built-
simulation languages automatically collect data in mathematical functions and character string-
describing the model's simulated behavior and print handling functions useful in parsing program coding.
out summaries of these data. Thus much of the The disadvantages to using SAS are that there are no
underlying logic of the simulation of the queuing multidimensional arrays and the execution speed is
problem is built into the simulation language. relatively slow.

We describe also in the paper how the compiler
performs typical functions such as storage allocation, C. Background on Previous Versions
symbol table maintenance, cross referencing, garbage
collection and error messaging. Applications for this The original version of the GPSS/SAS compiler is
compiler and some thoughts on using the SAS described in 'A GPSS-like Language in SAS for
language as the development are also discussed. Discrete Event Simulation' (Proceedings of SUGI,

A GPSS program consists of a sequence of 1988). At that time, the program consisted of a
statements, called blocks, which correspond to the single SAS data step. The GPSS language statements
boxes in the flow diagram of a queing model. The which were implemented were GENERATE,
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ASSIGN, TRANSFER, ENTER, ADVANCE,
LEAVE, AND TERMINATE. A. LEXAN, a lexical analyzer. Changes the free

The second version of the program is described format of the program, SIMDATA, to fixed format,
in 'How to Stop a Simulation' (Proceedings of SUGI, lowercase to upper case, does space compression,
1990). At this point, the compiler was separated into puts entities into labels, and reads in symbol
five data steps, in order for the work to be TABLES. It passes the analyzed GPSS program to
modularized (see figure 1). The main data steps PASS2.
were LEXAN, PASS2 and RUNSTEP. These data
steps call TABLES (which contains the symbol B. PASS2 does entity translation, symbol table
table),and ERRMSGS (which contains the error maintenance, storage allocation, macro variable
messages). LEXAN is a lexical analyzer those main creation for array dimensioning going into the
job is to translate free format mixed case input to INITIALS data set, syntax analysis, compile time
fixed format uppercase, and also to compress spaces. error messaging, translation of GPSS random number
The output from LEXAN is passed to PASS2, where calls to SAS random number subroutine calls, and
most of the compiling and code generating takes creation of the dynamic half of RUNSTEP, the file
place. Output from PASS2 goes into RUNSTEP, SELECT. It passes the compiled program to
where the simulation execution occurs. The RUNSTEP.
operation of the simulated clock, the scheduling of
events, and the movement of transactions from block C. RUNSTEP does the actual execution of the
to block is all a part of RUNSTEP. compiled code from SELECT and INITIALS.

In addition to the features implemented in Dynamic storage allocation is done from INITIALS.
Version 1, two new statements were implemented in Also done are garbage collection from parameter
Version 2: REGS (regenerative start), and REGE arrays, run-time error messaging, simulation event
(regenerative end), blocks which cause counting of tracing and output in the form of REPORT.
the number of transactions and waiting times .
These features were meant to be used to collect III. Examples and sample output from the compiler.
queue statistics. This then permits stopping the
simulation after a completion of enough events to The text below describes how GPSS operands are
allow interval estimation of parameters with translated into SAS statements by the compiler. The
appropriate precision. usual form of a GPSS language statement is:

LAB OP-FLD AUX OPRNDS
We have now completed Version 3 of the compiler. where LAB refers to LABEL, OP-FLD refers to
Version 3 has the same structure as Version 2, but OPERAND-FIELD, AUX refers to AUXILIARY,
implements a much larger subset of GPSS including and OPRNDS refers to OPERANDS. LABELs
MATRIX handling, parameters, GATES and identify either the statement or the entity such as a
LOGIC, TEST, etc. STORAGE or a MATRIX. In Figure 2

below, the first line has the label "MIKE" which is
the name of the matrix to be dimensioned. Labels

II. The structure of our Compiler. are sometimes optional. OPERATION FIELDs
Version 3 consists of three main data steps define the purpose of the GPSS statement. Line I

working with 5 files. Figure 1 below shows the way has the operation "MATR(IX)" which causes
they work together. dimensioning. Line 5 has operation "GENE" or

"GENERAT" which causes production of a
Figure 1 transaction. Auxiliaries are adjuncts to operations

Compiler Phases which further define the operation. Line 8 has an
auxiliary, to TEST on LESS THAN. Operands (up
to 8) are found to the right of operations (or

SIMDATA ------ >LEXAN< ------- TABLES auxiliaries if present).
I

SELECT< ------- PASS2 ------ >INITIALS
I I I
I------ > RUNSTEP< ------- I

IREPRTK
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Figure 2 extension to the language.

MIKE MATR 3 2
INIT M$MIKE(3,2) I Figure 3
INIT X$JON 2

XEROX STOR 2
LABELI GENE RANUNI(X$JON) 2 15.. 21 When (005) DO;

MSAV MIKE 3 2 M$MIKE(3,2)+l TEMPOII = X{00);
ASSI I M$MIKE(3,2) CALL RANUNI(TEMPOI 1,_TIOI);
TEST L M$MIKE(3,2) 12 SKIP X{001 I) TEMPO 11;
ENTE XEROX TI = TI0I;
ADVA 5*PI T2 =.
LEAV XEROX _T3 = 15;

SKIP TERM I T4 =
STAR 4 T5 =.;
END T6 = 2;

END;

Figure 2 represents nearly original GPSS source The main data structures in RUNSTEP are those
code which has been processed by LEXAN. associated with transactions TA(*}, NEXT(*},

The program is changed by PASS2. PASS2 _PARMTX(*)(the parameter array), and block
performs GPSS Entity translation, symbol table arrays (BLKTYPE(*), BLKAUX(*), BLKCNT(*)
maintenance, storage allocation, macro variable and BLKMISC{*}). The transaction array is
creation for array dimensioning, syntax analysis, dimensioned beforehand to the best guess at the
compile-time error messaging, translation of GPSS maximum number of active transactions * 10. The
random number calls to SAS random number block arrays are dynamically dimensioned to the
subroutine calls, and creation of the dynamic block counts in INITIALS (see figure 4). The
portions of RUNSTEP. In that part of the program, blockarrays contain information which is specific to
GPSS labels are assigned to SAS variables and the blocks. Filling the block arrays is the last step in
initialized, storage for various GPSS entities is compilation and is done in the beginning of
created, GPSS operands are translated to SAS RUNSTEP. BLKTYPE{*) gets a number
expressions and pointers of various types are set up. representing the operation field of the block.
Then RUNSTEP (Section III. C. above) needs only BLKAUX(*) gets the auxiliary operand.
two pieces of information, (1) the type of operation BLKMISC(*) is used for miscellaneous operations on
field being executed, and (2) the values of the blocks such as the value of the logical evaluation of
operands at the time the statement is being executed. the test block, etc. BLKCNT{*) is the block count
The operation field code is passed through the or the number of transactions which have passed
PASS2 SAS dataset, while the operands values are through the block.
obtained in one of the dynamic portions, the TA(*) is a linked list with the pointers in
SELECT File. NEXT(*). TA*) contains most of the relevant

The SELECT file evaluates the operands and the information about the transaction including its block
final values are set to be TI,__T2, ...etc up to T8. departure time (BDT), number, current block
Figure 3 shows the SELECT file for statement occupied by the transaction, transaction status
number 5. (LABELI GENE ...) First a temporary (active,blocked or terminated),maximum number of
value is set to the first savevalue, X{001 ). Then a parameters, pointer to starting place in the parameter
call to RANUNI is made with X$JON as the seed, matrix(_PARMTX(*)) and priority). BDT
the random number being put in _TIO. Then represents the time that the transaction may be
X$JON is set back to the new seed, _TI is set to moved from its current block. Transactions are
_TIOI, the first operand. The third operand is set linked by BDT and priority, that is NEXT(i) points
to 15, and the sixth to 2. What is occurring is that to the transaction with the same (and lower priority)
PASS2 is translating GPSS code into SAS code which BDT or next larger BDT. This allows scanning the
then gets appended to the end of the RUNSTEP data transaction array from the beginning in order to find
step. In this manner any valid SAS statement can be the next transaction to be moved. Transactions are
used as GPSS operands, representing a substantial inserted in the Ta{*) array when created in the
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GENERATE block and removed when they move test this using practical applications in the near
through the TERMINATE block. The position of future.
the transaction may be modified by traversing
through an ADVANCE (which causes revision of the
BDT) or a PRIORITY block (changing the priority). REFERENCES

Before beginning the simulation, at the point
where each GENERATE block is symbolized, its Jerry Banks, John S. Carson,II and John Ngo Sy
first transaction is made, space allocated in the (1989), Getting Started with GPSS/H. Wolverine

PARMTX(*) array, its block departure time Software Corporation, Annandale, VA.
computed, and it is installed in the TA(*) linked list.
The first transaction is then taken off the top of the Paul Bratley, Bennett L. Fox and Linus E. Schrage
linked list and the simulation clock is set to its BDT. (1987), A Guide to Simulation, 2nd edition.
Then the following pattern ensues: Springer Verlag, New York.
I. The transaction is moved as far a it can be

moved. It is then destroyed or put back into the Kenneth A. Dunning (1981), Getting Started in
linked list. GPSS. Engineering Press, Inc. San Jose, CA.

2. The next transaction is identified. Michael A. Greene and Gretchen K. Jones (1990),
"How to Stop a Simulation," Proceedings of the SAS

3. The simulation clock is updated if required to Users Group International, SAS Institute, Cary, NC.
the block departure time for the next
transaction. Michael A. Greene and Gretchen K. Jones (1991),

"Enhancements to the GPSS/SAS Compiler,"
4. If the termination counter is zero, the simulation Proceedings of the SAS Users Group International,

stops, otherwise return to step 1. SAS Institute, Cary, NC.

Figure 4 James 0. Henriksen and Robert C. Crain (1989),
GPSS/H Reference Manual, 3rd edition. Wolverine

INITIALS Software Corporation, Annandale, VA.

ARRAY M * M1 - M7; IBM (1971) General Purpose Simulation System V
ARRAY OFF () _OFFI- _OFF2; User's Manual, 2nd edition. IBM, N. Y.
ARRAY NC *) NCI- _NC2 ;
ARRAY X {*) Xl - X2; Gretchen K. Jones and Michael A. Greene (1988),
ARRAY BLOKTYPE (* BTI- BTI5; "A GPSS-like Language in the SAS System for
ARRAY BLOKAUX (*) $27 BXl - BXI5; Discrete Event Simulation," Proceedings of the SAS
ARRAY BLOKCTS (* BCTSI - BCTSI5; Users Group International, SAS Institute, Cary, N.
ARRAY BLOKCNT (* BCNTI - BCNT15; C.
ARRAY BLOKMISC (* BMISI - _BMISI5;
ARRAY STORCAP (* STCI - _STC2; Gretchen K. Jones and Michael A. Greene (1989),
ARRAY STORUSE (* STUI -_STU2; "A Prototype Implementation of GPSS in SAS,"

Simulation, January.

RETAIN SAS Institute Inc. (i990), SAS Language: Reference,
_STCI 2 _STUI 0 Version 6, First Edition. SAS Institute Inc., Cary,

NCI 2 OFFI I NC.
NULL 0000
LABELi 0006 Thomas G. Schriber (1974), Simulation Using GPSS.
SKIP 0013 John Wiley and Sons, New York

Conclusion:
We think the third version has represented a

substantial extension over other versions. We plan to
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Applying Bootstrap Methods to Simulation

Output Analysis

Charles B. Rea, Wei-Kei Shiue and Chong-wei Xu
Southern Illinois University at Edwardsville

Abstract studied again using regenerative method in section 4.
Comparisons are made of Jackknife and bootstrap confi-

Confidence intervals obtained by bootstrap methods and dence intervals for the steady-state average delay in the
normal approximation are compared, based on out- system. Section 5 includes some conclusions.
put data from terminating and steady-state simulations.
Bootstrap intervals are equal or better than normal ap-
proximation intervals in actual probability coverages. 2 Bootstrap Methods
Furthermore, bootstrap methods capture the skewness
in the distribution of outputs and, therefore, are more Bootstrap method is a resampling scheme. It uses a
desirable than normal approximation. given set of independently identically distributed obser-

vations Y = {X 1,... , X,} from an unknown distribution
F to construct an empirical distribution P. Random

1 Introduction samples Y*,..., Y1 are then taken from F. This is the
same as sampling from {X 1 , .. ., Xn} with replacement.

Computer simulation is a method for studying a system Suppose is the parameter of interest and 0 is an es-

or process which is far too complex to easily derive ana- timate of . The bootstrap estimates t,..., i can be

lytic results for performance measure of interest. Usually calculated from 1,. , , which are used to assess the

several simulation runs are conducted and the result- alcula cy o . . . , b t i sr bu to a , de

ing utpt daa ae emloyd t mak inerene aout accuracy of 0 or to form bootstrap distribution G, de-ing output data are employed to make inference about fined by~ -s r0 sngahad(-~hpr

performance measure; for instance, the average delay in finie o() = Pr[ 9 si. Using th and (I-a)th per-

the ueuingsysem.Her we ssue pope stps ave centiles of G as endpoints of interval will yield a (1 - 2ai)the queueing system. Here we assume proper steps have 100% confidence interval for 6. This is the simplest of

been taken so that the outputs from either terminating bootstrap methods for constructing confidence intervals

or steady- state simulation are independently and iden- a p ed rcont rcting ( d)r

tically distributed. Law [4] gives precise definition of the and is called percentile method (P).
Improvements on the percentile method have been

two types of simulations. In this article the regenerative prosed, snoticably ethebiasecorectedhprcentil

method is considered for the case of steady-state simu- proposed, noticeably the bias corrected percentile

lation. Central limit theorem (normal approximation) is method (BC) and bias corrected percentile acceleration
the most common technique for constructing confidence method (BCa). Edgeworth expansion technique can be

itervl most c omnce fore. conscing cofenca e employed to get asymptotic expressions for the endpoints
interval for performance measure. This is because it is of the BCa, BC and percentile intervals for the case of

easy to use and, when the size of replications is large, it esti a th an en, i [2].

yields very accurate results. However, it does not cap-

ture the asymmetric nature of underlying distribution
of the output data. Since the distribution of data is O(wca)[a] = i + -{t(a) + a[2t 2 (a) + 1]} (1)

rarely known, we are dealing with nonparametric situa-

tion where bootstrap method [31 proves to be useful in (Bc)[] = $ + -{t(a) + a[t2(a) + 1]} (2)

that it takes into account of asymmetry involved and is
as easy to implement as normal approximation. A brief
description of bootstrap methods and related confidence O(p)[a] = + = {t( ) + a) (3)
intervals for a mean are given in section 2. Section 3
contains confidence intervals obtained by the two meth- where i and s are the mean and standard deviation of
ods for M/M/I queue and reliability model, which are the data, t(a) is the ath percentile of t distribution with
pertinent to terminating simulation. M/M/1 queue is (n - 1) degrees of freedom and
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- 3 Sample Size 20 40

a -[=.( _) Normal App. .880 A- .024 .882 ± .0246[E = X - i)211.5
)i= 2.- Bootstrap(P) .880 ± .024 .886 ± .023

Bootstrap(BC) .876 4- .024 .894 4- .023
Thus, (O(p)[a], O(p)[I - a]) gives a (1 - 2a) 100% confi- Bootstrap(BCa) .880 ± .024 .894 ± .023

dence interval for u by the percentile method.

3 Confidence Intervals for Ter- Table 2 - Estimated Coverage Results for Model 2
(Weibull Model)

m in atin g S im u latio n Sample Size 5_ 10Sample Size 5 1 10

In order to compare bootstrap methods with normal ap- Normal App. .700 ± .034 1 .758 ± .032
proximation, we study the following systems. Bootstrap (P) .710 ± .033 .732 ± .031

Bootstrap (BC) .738 ± .032 .790 ± .030
" Model 1 - M/M/1 queueing system with utiliza- Bootstrap (BCa) .740 ± .032 .790 ± .030

tion factor p = 0.9 ([5], p.2 8 9 ). Assuming that the
number of customers in the queue at time 0 is zero, Sample Size 20 40
the performance measure of interest is the expected Normal App. .816 ± .029 .840 ± .027avera ge delay in the queue for the first 25 customers Bootstrap (P) .820 ±- .028 .838 ±- .027
entering the system, which is 2.124. Bootstrap (BC) .836 ± .027 .842 ± .027

" Model 2 - Reliability model ([5], p.289) consisting Bootstrap (BCa) .780 ± .030 .842 ± .028
of three components, each of which has a lifetime
following Weibull distribution with shape parame- The distributions involved are quite skewed as indi-

ter 0.5 and scale parameter 1.0. The model is struc- cated by the sample skewness, which are 1.755 and 5.35
tured in such a way that the system will function as for model 1 and 2, respectively. However, equation (4)
long as component 1 works and either component 2 always provides symmetric interval that is of course un-
or 3 works. The performance measure of interest is realistic. The asymmetry of a confidence interval for
the mean lifetime of the system, which can be shown mean can be described by the asymmetry coefficient, de-
to be 0.778. fined by -B where UB and LB are upper and lower

confidence bounds respectively. Table 3 and 4 contain
The (1 - 2a) 100% confidence interval for the measure the values of coefficient for each model. It is apparent
of each system, based on the central limit theorem, is that all bootstrap intervals capture this asymmetry.

I+(1 - a) _' (4)
Table 3 - Asymmetry Results for Model 1 (Terminating

and the corresponding bootstrap confidence interval are M/M/1 Queue)
given by equation (1), (2) and (3).

500 simulation runs are conducted for each model and, Sample Size 5 10 20 40
for each run, replication sizes n = 5, 10, 20 and 40 are Normal App. 1.000 1.000 1.000 1.000
considered. The true confidence level is 90%. The actual Bootstrap (P) 1.046 1.061 1.056 1.049
coverage probabilities along with 90% confidence interval Bootstrap (BC) 1.282 1.299 1.243 1.201
of the true coverages are summarized in table 1 and 2. Bootstrap (BCa) 1.580 1.598 1.468 1.378

Table 1 - Estimated Coverage Results for Model 1 Table 4 - Asymmetry Results for Model 2 (Weibull
(Terminating M/M/1 Queue) Model)

Sample Size 5 10 Sample Size 5 10 20 40
Normal App. .844 ± .027 .868 ± .025 Normal App. 1.000 1.000 1.000 1.000
Bootstrap(P) .842 ± .027 .874 ± .025 Bootstrap (P) 1.075 1.100 1.109 1.101
Bootstrap(BC) .838 ± .027 .880 ± .024 Bootstrap (BC) 1.504 1.525 1.517 1.452
Bootstrap(BCa) .840 ± .027 .882 ± .024 Bootstrap (BCa) 2.155 2.165 2.122 11.944
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More evidence for supporting the asymmetric correct- 4 Confidence Intervals for Re-
ness of bootstrap confidence intervals can be found by generative Simulation
studying a system of which the performance measure can

be derived analytically. In this section an example of steady-state simulation is

considered.
e Model 3 - Estimation of mean service time for

M/M/1 queueing system when the actual service * Model 4 - M/M/1 queueing system ([5], p.300)

times follow exponential distribution with mean 1. with utilization factor p = 0.8. The regenerative
method developed by Crane and iglehart [1] gener-

The (I - 2a) 100% level exact confidence interval for ates Y1 and X, for each regenerative cycle, where Y

the mean service time can be calculated by represents the total delay in the queue of all cus-
tomers served in the ith cycle and Xi represents the

2.ni 2nx ] total number of customers served in the ith cycle.

[X2.(1 - C)' X'n(a)J The performance measure of interest is the steady-EY

state average delay in the queue given by R = E(X

where X2(a) is the ath percentile of chi-square distri- 3.2.

bution with m degrees of freedom.

Table 5 contains the average endpoints of normal ap- An estimator for R is R = - but R is not unbiased.

proximation and bootstrap confidence intervals based on Jackknife technique can be employed to reduce bias and

500 simulation runs. The endpoints of exact intervals are to construct confidence interval for R as follows.

also included. Exact intervals are asymmetric. Boot-

strap intervals converge to them as n-oo, with BCa 1. For each i, compute zi, where

intervals being most correct. For this model the prob- Fn=Ij i y

ability coverages of bootstrap methods are better than zi = n- (n-i)
normal approximation. Sample skewness of the data is X - 1  X,
2.091 and asymmetry results are given in table 6.

2. A (1 - 2a) 100% Jackknife confidence interval is
given by

Table 5 - Comparison of approximate confidence
intervals for model 3 versus exact confidence interval , t(1 -a)-

Sample Size 5 10

Normal App. 0.174, 1.836 0.463, 1.550 where i and d, are the mean and standard deviation of

Bootstrap (P) 0.193, 1.855 0.481, 1.567 zi's.

Bootstrap (BC) 0.279, 1.941 0.539, 1.625

Bootstrap (BCa) 0.366, 2.027 0.579, 1.683 Note that as estimator for R, , has much less bias

Exact 0.546, 2.538 0.637, '.843 than R. There is no closed form expression for bootstrap
confidence interval for the ratio of two means problem.

Sample Size 20 40 However, a crude bootstrap procedure can be applied
directly to (Y, X,) to obtain confidence interval.

Normal App. 0.625, 1.360 0.740, 1.259 Let d = {el,e2, ... ,e,), with ej = {Y,X}, i =

Bootstrap (P) 0.636, 1.372 0.747, 1.266 1,2 .

Bootstrap (BC) 0.671, 1.407 0.766, 1.285

Bootstrap (BCa) 0.705, 1.441 0.785, 1.304 1. Draw independent bootstrap samples, di,...,dXt

Exact 0.717, 1.509 0.785, 1.325 by sampling from {e1,e 2 ,.. ,en} with replacement;

2. Calculate from di,..., d , the statistics

Table 6 - Asymmetry Results for Model 3
A. +R1 and j 2 =A A4

Sample Size 5 10 20 40 where R; = yj/x-; is calculated from d?;

Normal App. 1.000 1.000 1.000 1.000 1

Bootstrap (P) 1.047 1.066 1.065 1.053 3. Draw a bootstrap sample, say, d* and compute

Bootstrap (BC) 1.291 1.322 1.287 1.220 y/-; Regard d* as original data, repeat step 1

Bootstrap (BCa) 1.600 1.650 1.562 1.418 and 2 to obtain S; 2 and Q' = (. S.
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4. Repeat step 3 B times, and obtain, say, Q ,..., Qj; produces reasonable probability coverages for the ratio
of means in the regenerative process.

5. Sort Q], ... ,Q and construct bootstrap distribu-

tion Gj*; References
6. Let z and z*_G be respectively 0!th and (1 - a)th

percentiles of G*, then O[a] = iR-z . and 0[1-o] = [1] Crane, M.A. and Iglehart, D.L. Simulating sta-
R- z*S are the endpoints of a level (1-2a) 100% ble stochastic systems iii : regenerative processes
confidence interval for R. and discrete event simulations. Operations Research,

23:33-45, 1975.
The rationale behind the crude bootstrap is using

bootstrap distribution G* to approximate the distribu- [2] Efron, B. Better bootstrap confidence intervals.
tion of 1 and approximation is enhanced by considering Journal of the American Statistical Association,
standardized A. The precision of bootstrap intervals de- 82:171-185, 1987.
pend on A and B, which are 80 and 1000 respectively [3] Efron, B. The jackknife, the bootstrap, and other
in this study. In practice, A in the range of 25 to 100 resampling plans. CBMS-NSF Regional Confidence
will give reasonable results. There is little gain in preci- Series in Applied Mathematics, 38:5-11, 1982.
sion past A = 100. Guideline for determining B value is
stated in [2] (p.181). Table 7 contains the coverage re- [4] Law, A.M. Statistical analysis of the output data
suits of the two methods based on observations from 200 from terminating simulations. Naval Research Logis-
experiments. The true confidence level is 90%. Jackknife tics Quarterly, 27:131-143, 1980.
confidence intervals are easier to compute, but crude
bootstrap intervals provide much improvement in coy- [5] Law, A.M. and Kelton, W.D. Simulation Modeling
erage probability. An interactive program implement- and Analysis. McGraw-Hill, 1982.
ing the bootstrap algorithm mentioned above is available
from the authors.

Table 7 - Estimated Coverage Results for Model 4
(Steady-state M/M/1 Queue)

Sample Size 64 128
Jackknife .630 ±.056 .700 ±.053
Crude Bootstrap .735 ±.051 .800 ±.046

Sample Size 256 512
Jackknife .770 ±.049 .775 ±.049
Crude Bootstrap .825 ±.044 .872 ±i.039

5 Conclusion

The purpose of this article is to illustrate the useful-
ness of bootstrap methods in constructing confidence in-
tervals for performance measures in simulations. For
one mean problem, normal approximation and boot-
strap methods are equal in actual probability coverages
and computations involved. However, only bootstrap
methods can capture the skewness in the underlying
distribution. Either BC method or BCa method can
be recommended in place of the normal approximation.
Computations in crude bootstrap procedure are inten-
sive but manageable. Compared to Jackknife method,
crude bootstrap appears to be the only nitlod, which



92-19533
t1m1i11111111iE1m111 AD-p 0 0 7  113le m ml u / /II//II/ /l / I/hIIII/III/ ilg// /I

Relational Databases: A Tutorial for Statisticians

JOE R. HILL
EDS Research, 5951 Jefferson St. NE, Albuquerque, NM 87109

Abstract This tutorial will not cover

This tutorial links relational database concepts to prob- * Anything about particular relational database man-

ability concepts. For example, the fundamental rela- agement systems.

tional database concepts of an attribute (column head- e Network, hierarchical, or object-oriented database
ing), a relation scheme (unpopulated table), and a re- models.
lation (populated table) correspond respectively to the
probability concepts of a random variable, a random vec- * Distributed databases.
tor, and a multivariate probability distribution. The Basic references for relational databases include Godd
relational select and project operators correspond re- (1970), Date (1986), Maier (1983), and Ullman (1982).
spectively to finding a conditional and marginal distri- More advanced references include Fagin (1977), Fagin,
bution. Functional dependencies, multivalued depen- Mendelzon & Ullman (1982), Beeri, Fagin, Maier & Yan-
dencies, and join dependencies correspond respectively nakakis (1983), and Beeri & Kifer (1986a, b, 1987). Con-
to variable transformations, conditional independencies, nections to probability theory are mentioned in Pearl
and more general factorizations of distributions. These (1988), Geiger & Pearl (1988, 1990), Geiger, Paz & Pearl
connections indicate t(1991), Lauritzen & Spiegelhalter (1988), and Thoma
about relational databases than they realize. Beyond (1989).
these pedagogical benefits, these connections between re-
lational databases and statistics provide a bridge, both
directions of which have proven to be useful for develop- 2 Database Concepts and
ing new theory. Probability Parallels

1 Introduction This section defines the basic database concepts and the
parallel probability concepts. The definitions are given

This tutorial will cover: in parallel because familiarity with the probability con-
cepts might help the reader understand the essential

" Relational database concepts and probability paral- ideas underlying the database concepts. Also, as sec-
lels (Section 2). tions 4, 5, and 6 show, there are parallel problems and

" An introduction to database normalization theory results in the two fields.

(Section 3). A relation scheme (table skeleton) R is a set of at-
tributes (column headings). A relation (table) over rela-

* Parallel theorems for consistent databases and con- tion scheme R is an indicator function for a set of tuples
sistent sets of marginal distributions (Section 4). (rows), written r[R]: r[R]() = 1 if the tuple t is in the

relation; r[R](t) = 0 if t is not in the relation. When
" Finding closures of sets of multivalued dependencies storing or writing out a relation, it is common to list

and sets of conditional independencies (Section 5). only those tuples that are in the relation (i.e. that have

" Eliminating intersection anomalies in sets of con- r[R](t) = 1).

ditional independencies and sets of multivalued de- The parallel concepts in probability theory are a ran-

pendencies (Section 6). dom vector and a probability distribution. A random
vector V is a set of random variables. A distribution for

" Concluding remarks (Section 7). the random vector V is a probability function, written
p[V]. The distribution of V evaluated at v is written
PI](M.
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AIRLINE EXAMPLE (Maier, 1983). Relation schedule The conditional distribution of V given X = x, X C
contains scheduling information for an airline. Relation V, based on p[V], written p[V I X = z], is the probability
schedule is defined over the relation scheme with at- function:
tributes FLT, FROM, TO, DEP, and ARR. The first
tuple in schedule, tI, maps FLT into 84, FROM into p[V I X = Z(v) = p[V](v)/p[X](r)
O'llare, and DEP into 3:00pm. The projection of tI onto{FROM, TO} is t1[FROM, TO] =(O'lHare, JFK). if p[X](z) > 0 and v[X] = z; p[V I X = z](v) = 0

otherwise. The Y-margin of the X = x conditional is
written p[Y I X = x].

schedule AIRLINE EXAMPLE. The following table shows the

FLT FROM TO DEP ARR data for flights from JFK.
84 O'llare JFK 3:00pm 5:55pm
109 JFK Los Angeles 9:40pin 2:42am
117 Atlanta Boston 10:05pm 12:43am FLTR°MRM T (schedule)FLT FROM TO DEP ARR
213 JFK Boston 11:43am 12:45pm 109 JFK Los Angeles 9:40pm 2:52am
214 Boston JFK 2:20pm 3:12pm 213 JFK Boston 11:43am 12:45pm

The basic operators on relations are a projection of a
relation onto a subset of its attributes, a selection from Let rI[R] and r 2 [R2] be relations over relation

a relation of the tuples having a specific value for a sub- schemes RI and R 2. Let X = Ri - R 2 , Y = RI n R2 ,

set of its attributes, and a join of two relations. These Z = R 2-R I . The join of ri [R1] and r2 [R2] is the relation

operators correspond to a marginal distribution, a con- over RUR 2 = XYZ (XYZ is shorthand for XUYUZ)

ditional distribution, and a product of two functions. defined by

The projection of the relation r[R] onto X C R,
written rJX] or xx(rRJ), is the indicator function: (ry, r)X I' ',) =ri[XYI(r' )r2YZ]('jz).

r[X](z) = 1 if there is a tuple I such that r[R](t) = 1 Let h1 [V1] and h2 [V'2] be functions over variable sets
and t[X] = x; r[X](x) = 0 otherwise. VI and V2 . Let X = VI - V2 , Y = V nl V2, Z = V2 - V,.

The marginal distribution of X C V based on p[V], The product of h1[' 1] and h2[V2] is the function over
written p[X], is found by summing p[V] over the vari- I U V2 = XYZ defined by
ables not in X; that is, letting Y = V - X,

p[x]rW = Ej p[x Y] (, Y) (hi ® h2 )[XYZ](z, Y, z) = hi [XY](x, y) h2 [YZ](y, z).

Y AIRLINE EXAMPLE. Relation usable contains the

AIRLINE EXAMPLE. The following tables show tile equipment requirements for each flight. Relation
proections ofhedPl e oow tDE as sote certified contains the equipment qualifications for each

pROc pilot. Suppose we want to know the pilots that can fly

each of the flights. To find the answer to this query,

we first form options = usable N certified. Then we

7rDEP, ARR(schedule) FnoM(schedule) project options onto FLT and PILOT, providing the an-
DEP ARR FROM swer to the original query.

3:00pm 5:55pm O'Hare
9:40pm 2:42am JFK usable certified

10:05pm 12:43am Atlanta FLT EQPMT PILOT EQPMT
11:43am 12:45pm Boston 83 727 Simmons 707
2:20pm 3:12pm Simmons 70783 747 Simmons 727

84 727 Barth 747

The selection from the relation r[R] of the tuples with 84 747 Hill 727

X = x, X C R, written r[R I X = x] or 'x=(,(r[R]), is 109 707 Hill 747

the indicator function: r[R I X = x](t) = 1 if t[X] = x;
r[R I X = x](t) = 0 otherwise. The Y-projection of the
X = x selection from r[R] is written r[Y I X = X1.
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options = usable M certified
FLT EQPMT PILOT Table 1: Basic database and probability parallels.

83 727 Simmons DATABASE PROBABILITY
83 727 Hill CONCEPT CONCEPT
83 747 Barth
83 747 Hill
84 727 Simmons Relation scheme
84 727 Hill (table skeleton) R, Random vector V,
84 747 Barth a set of attributes a set of random variables
84 747 Hill (column names)
109 707 Simmons

Relation (tablel Distribution

over R, r[R], for V, p[V],
WrFLT, PILOT(Options) an indicator function a probability function
FLT PILOT for a set of tuples (rows)

83 Simmons
83 Hill
83 Barth Projection of r[R] Marginal distribution
84 Simmons onto X C R, of X C V,
84 Hill Trx(r[R]), or r[X] p[X]
84 Barth
109 Simmons

Selection ax=,(r[R]), Conditional distribution
or r[RI X = z], p[VIX = X].

XC)R XCV
'Fable I summarizes the basic database/probability -

parallels covered to this point.
Database design concepts involve putting constraints Join of 2 relations Product of 2 functions

on the data that can populate a table. There are three ri[Ril] r2 [R2] h1 [VI] ® h2[V2]
basic kinds of constraints: a functional dependency, a
multivalued dependency, and a join dependency. These
correspond to three constraints on probablity distribu-
tions: transformation constraints, conditional indepen-
dencies, and general factorization constraints. tions over R must satisfy the dependency.

A relation r[R] satisfies the functional dependency FD: AIRLINE EXAMPLE. The functional dependency

X - Y if for each X-value x with r[X](x) = 1, there FLT - {FROM, TO, DEP, ARR} remains true over

is a unique Y-value y, such that r[Y I X = W](y) = 1 if time. As a result, FLT is a candidate key for the re-

y = y, and r[Y I X = x](y) = 0 otherwise. lation schedule.

A distribution p[V] satisfies the transformation con- A relation r[R] satisfies the multivalued dependency

straint TC: X -. Y if for each X-value x with p[X](x) > MVD: Z-N I Y if

0, there is a unique Y-value y, such that pt[) IX = rJYZ)(x1, yl, z) r[XYZ](X2 , Y2, z)
x](y) = I if y = Y, and p[Y I X = x](y) = 0 otherwise.

AIRLINE EXAMPLE. The relation schedule satisfies = r[XYZ](xl,y 2, z) r[XYZ](X2 ,y1, z).
the FD FLT -. {FROM, TO, DEP, ARR}. The FLT- Similarly, a distribution p[V] satisfies the conditional
value of a tuple uniquely determines the rest of the independency CI: X-ILY I Z if
tuple. The relation schedule does not satisfy the FD
FROM - TO because t 2[FROM) = t4JFROM] = JFK, p[XYZI(Xi, V1, z) p[XYZ](X 2, Y2, z)
but t 2 [TO] = Los Angeles $ Boston = t 4 [TO].

A random vector V satisfies a constraint if all distri- = [ Z](z, ,Y, z) p[XYZ](z 2 , YI, z).
butions for V must satisfy the constraint. Likewise, a Multivalued dependencies are equivalent to binary join
relation scheme R satisfies a data dependency if all rela- dependencies. That is, a relation satisfies an MVD iff
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it can be recovered as the join of two relations defined
on "smaller" relation schemes. In symbols, a relation servday
r[R] satisfies MVD: Z---.X I Y iff there exist relations "FLT, DAY OF WEEK (service)
ri[XZI and r2 [YZ such that r = r, H r 2: that is, FLT DAY OF WEEK

106 Monday

r[XYZ](z, y, z) = ri [XZ](z, z) r 2[YZ](y, z). 106 Thursday
204 Wednesday

If such rj's exist, then r[R] is said to satisfy the binary
join dependency BJD: N4 {XZ, YZ). Also, if such rj's servtype
exist, then they can be taken to be ri[XZI = r[XZ] and = 'FLT, PLANE TYPE(service)
r2[YZI = r[YZ]. FLT PLANE TYPE

Similarly, conditional independencies are equivalent to 106 747
binary factorization constraints. That is, a probability 106 1011
distribution satisfies a CIiff it can be recovdred as the 204 707
product of two functions defined on "smaller" random 204 727
vectors. In symbols, a distribution p[V] satisfies CI:
XILLY I Z iff there exist nonnegative functions h1[XZ]
and h2[YZ] such that p = h, ® h2 : that is,

service2
p[XYZ](z, y, z) = hi [XZ](z, z) h2 [YZ](y, z). FLT DAY OF WEEK PLANE TYPE

106 Monday 747
If such hj's exist, then p[V] is said to satisfy the binary 106 Thursday 747
factorization constraint BFC: ®{XZ, YZ}. 106 Monday 1011

AIRLINE EXAMPLE. Relation service satisfies the 204 Wednesday 707
MVD: FLT-.--DAY OF WEEK I PLANE TYPE be- 204 Wednesday 727
cause service = servday N servtype where servday =
service[FLT, DAY OF WEEK] and servtype =
service[FLT, PLANE TYPE]. Relation service2, A distribution p[V satisfies the factorization con-
which has the same two projections as service, does not straint FC: ®V, V = IV1, ... , V}, V g V, if there exist
satisfy this MVD because it lacks the tuple (106, Thurs- nonnegative functions h [V1,..., h[Vk] such that
day, 1011).

p[V] = hi[V1] ®- -® hk[Vi].

service The set of margins V is a hypergraph over V. Factoriza-
FLT DAY OF WEEK PLANE TYPE tion constraints generalize loglinear models which must
106 Monday 747 be strictly positive.
106 Thursday 747 EXAMPLE. The relation r[ABC] satisfies the JD: N
106 Monday 1011 {AB, BC, AC) but does not satisfy any nontrivial MVD.
106 Thursday 1011
204 Wednesday 707
204 Wednesday 727 r[ABC] r[AB] r[BC] r[AC]

A B C A B B C A C
11 1 1 1 1 1 1 1

A relation r[R] satisfies the join dependency JD: N IZ, 1 2 2 1 2 2 2 1 2
7Z = {R 1 ,..., Rk), R C R, if there exist relations r, [RI], 2 3 3 2 3 3 3 2 3

rk[Rk] such that 3 3 4 3 3 3 4 3 4
4 4 5 4 4 4 5 4 5

r[RI = r[Rl]N. .. Nrk[R]. 5 5 5 5 5 5 5 5 5

If such rj's exist, then they can be taken to be rj[Ri] =
r[Rj], j = 1,..., k. The set of relation schemes 1? is a set
of subsets of R; in other words, 1Z is a hypergraph over
R.
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Finally, databases correspond to sets of marginal dis- 3 A Brief Introduction to
tributions. Normalization Theory

A database scheme over attribute set R is a set of rela-
tion schemes with attributes from R: 1Z = R1, .... Rk}, Here is a very tiny bit of normalization theory, an im-
Rj C R. The database scheme 7? is a hypergraph portant standard topic in database theory with no useful
over R. A database over database scheme RZ is a set parallels in probability theory. The basic reason for nor-
of relations over the relation schemes in 1?: r(1J = ralizing a database is to automatically eliminate possi-
{rl[Rl],...,rk[Rk]}. ble inconsistencies that might otherwise arise.

A set of margins of random vector V is a set of random A set of attributes K is a candidate key of R if K - R.
vectors with variables from V: V = { Vl, ..., Vk), Vi C_ V. One of the candidate keys of relation R is designated the
The set of margins V is a hypergraph over V. A set of primary key and the other attributes are called non-keys.
marginals over set of margins V is a set of distributions A set ( f attributes Y is fully dependent on another set
for the margins in 1: p[V] = {pi[V1], ...,pk[Vk]}. of attributes X if X -- Y and there is no Z C X such

Table 2 summarizes this second collection of parallels. that Z --+ Y. If there is such a Z then Y is partially
There are many more parallels between database theory dependent on X.
and probability. Sections 4, 5, and 6 discuss, very briefly, A set of attributes Z is transitively dependent on X
three parallel problems and solutions, if there is a Y such that X -* Y and Y -- Z.

The normal forms are:

* First Normal Form (INF): A relation is in 1NF if
Table 2: Further database and probability parallels. all the values in its tuples are atomic. There are no

DATABASE PROBABILITY repeating groups.

CONCEPT CONCEPT e Second Normal Form (2NF): A relation is in 2NF if
it is in 1NF and every non-key is fully dependent on
the primary key. A relation in 2NF has no partial

Functional dependency Variable transformation dependencies.
X Y X Y * Third Normal Form (3NF): A relation is in 3NF if

X, Y C R X, Y C V it is in 2NF and no non-key is transitively depen-

dent on the primary key. A relation in 3NF has no
partial or transitive dependencies. All the non-keys

Multivalued dependency Conditional independency in a 3NF relation are mutually independent (i.e. no
Z-X I Y X.LY I Z nonkey is functionally dependent on another non-
X,Y, Z C R X,Y, Z C V key).

e Boyce/Codd Normal Form (BCNF): A relation is in
Join dependency Factorization constraint BCNF if every FD is a consequence of the candidate

C4 TZ ®V keys. Date: "Each field must represent a fact about
R- {R, ..., Rk}, Rj c R v = {W1,..., Vl I vi c V the key, the whole key, and nothing but the key."

o Fourth Normal Form (4NF): A relation is in 4NF if
MVDs are binary JDs CIs are binary FCs every MVD is a consequence of the candidate keys.

M {XZ,YZ} ®{XZ,YZ} All dependencies (MVDs and FDs) ofa 4NF relation

are FDs from a candidate key to another attribute.
A relation is in 4NF if it is in BCNF and all its

Database scheme over R Set of margins of V MVDs are FDs.R={RI,,...,R }J gCR V ={V,.....Vk},,C V 7 Fifth Normal Form (5NF): A relation is in 5NF if
every JD is a consequence of the candidate keys.

Database over 1Z Set of marginals on V 5NF is also called project/join normal form.
r[TZ] = {ri[Ri,]...,rk[R]} p[V] = {pi[V1].....pk[V]} There are rules for converting database schemes that

do not satisfy normal forms into ones that do. The in-
terested reader should consult Maier (1983) or Ullman
(1982), for example.
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4 Parallel Theorems for Consis- if its elements can be ordered so that for each i = 2, ..., k,

tent Databases and Consistent there is a j < i with

Sets of Marginal Distributions Hi n (HI u.-. U H,_1 ) C Hj.

It was noted earlier that database schemes and sets of The two results can now be stated.
margins are hypergraphs. There are strong connections Vorob'ev (1962) proved that every pairwise consistent
between relational databases and graph theory and be- set of marginals over a set of margins V is extendable
tween probability theory and graph theory. Often, prop- if and only if the hypergraph V is acyclic (see also Lau-
erties of databases and properties of probability distribu- ritzen, Speed & Vijayan, 1984).
tions are determined by the underlying graphical struc- Beeri, Fagin, Maier & Yannakakis (1983) proved the
ture. This section gives an example of the kind of parallel parallel result for relational databases: that is, every
results that arise because of these connections to graph pairwise consistent database over a database scheme 1
theory. is globally consistent if and only if the hypergraph 7Z is

A database r[Il] is pairwise consistent if r/[R, n Rj] = acyclic.
rj[RORj]. A database r[IZ] is globally consistent if there
exists a single relation r[R] such that rj[Rj] = r[Rj]; if
such an r[R] exists, then it can be taken to be r[R] = 5 Closures of Sets of MVDs and
ri[RI] N ... k[Rk].

A set of marginals p[V] is pairwise consistent ifpi[vi n Sets of CIs
Vj] = pj[ViA nV]. A set of marginals p[V] is globally con-
sistent (or extendable) if there exists a single distribution Let M be a set of MVDs over R. The closure M* of M
p[V] such that pj[Vj] = p[Vj]. is the set of MVDs implied by the MVDs in M, that is, if

Consider the following two examples. a relation satisfies the MVDs in M, then it also satisfies
EXAMPLE 1 (Vorob'ev, 1962). Let V = {AB, BC, the MVDs in M*.

AC) be a set of margins of the random vector ABC. Let The closure M* of M can be found as follows. Let
P = {P ,P2,P3} be the set of marginals over V defined EM(X) = {Y C R - X : X-Y E M*}. The de-
by pendency basis of X, DEPM(X), is the partition of

Pd[AB](0, 0) = pi[AB](1, 1) = 1/2, R- X such that Y E EM(X) iff Y is a union of sets in

p2 [BC](1,O) = P2[BC](0, 1) = 1/2, DEPM(X). DEPM(X) can be found using the 'ollow-

and 
ing algorithm:

p3[AC](0, O) = pa[AC](1, 1) = 1/2. (0) Start with partition = {V - X}.

There is no distribution p[ABC] such that p[AB] =
pi[AB], p[BC] = p2[BC], and p[AC] = p3[AC]. Such (1) If Y E P and there is an MVD: Z---W in M s,"h
a p[ABC] would have p[ABC](0,0,O) = 0 because that YOnZ = 0, then replace Y by the 2 sets YOnIV
p2[BC](O,O) = 0, and p[ABC](0,0, 1) = 0 because and Y - W.
p3[AC](0,1) = 0, so p[AB](O,0) = 0, contradicting

pI[AB] = 1/2. This same example can be given as a (2) Repeat (1) until it no longer changes P.
database example with p's replaced by r's and 1/2's re-
placed by l's. The final partition is DEPM(X).

EXAMPLE 2. Let 1Z = {ABD, BCD, BCE} be a EXAMPLE. Let M = {BC-- AD I E, BD--A I
database scheme over ABCDE. For every pairwise con- CE). To find DEPM(BCD), (0) let P = {AE}, (1)
sistent database r = {ri, r2 , r3} over lZ, there is a sin- AE E P, BC--AD I E E M, and BCnAE = 0, so
gle relation ,[ABCDE] such that r[ABD] = ri[ABD], replacing AE by AE n AD = A and AE n E = E gives
r[BCD] = r2[BCD], and r[BCE] = ra[BCE]. The par- DEPM(BCD) = {A, E).
allel statement holds for probability distributions. Geiger & Pearl (1988, 1990) and Geiger, Paz & Pearl

The difference between these examples is that the hy- (1991) proved that the same algorithm can be used to
pergraph in Example 2 is acyclic but the one in Example find the closure of a set of conditional independencies
1 is not acyclic. There are many ways to define an acyclic with respect to arbitrary (i.e. not necessarily strictly
hypergraph. The following definition, referred to as the positive) distributions. They also derived a graph-based
running intersection property, does not require defini- approach for finding the closure with respect to strictly
tions for any other concepts. A hypergraph Wt is acyclic positive distributions.
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6 Eliminating Intersection Jon Kettenring for encouraging me to give the tutorial.

Anomalies

The two CIs XLLY I Z and X..LZ I Y imply the third References
XJ.LYZ for strictly positive distributions. The same is
not true for arbitrary distributions. For example, the BEER, C., FAGIN, R., MAIER, D. & YANNAKAKIS,
distribution p[XYZ](O,O,0) = p[XYZ](1, 1, 1) = 1/2, M. (1983). On the desirability of acyclic database
p[XYZ](x, y, z) = 0 otherwise, satisfies the first two of schemes. Journal of the Association for Computing
these CIs, but does not satisfy the third. The set of CIs Machines 30,479-513.
{XILY I Z, XJL Z I Y} is said to have an intersection BEER, C. & KiFER, M. (1986a). An integrated
anomaly. approach to logical database design of relational

After reviewing several statistical arguments that database schemes. ACM Transactions on Database
were flawed because they ignored intersection anoma- Systems 11, 134-158.
lies, Dawid (1979) showed that it is possible to fix up
this anomaly by adding a variable W such that W is BEERI, C. & KIFER, M. (1986b). Elimination of in-
functionally determined by each of Y and Z individu- tersection anomalies from database schemes. Jour-
ally (i.e. Y - W, Z -. W) and XLYZ I W. The vari- nal of the Association for Computing Machinery 33,
able W represents the information that Y and Z have in 423-450.
common.

Beeri and Kifer (1986a, b, 1987) and others have writ- BEERI, C. & KIFER, M. (1987). A theory of inter-
ten extensively about the same issue for sets of MVDs. section anomalies in relational database schemes.
Their solution, which has implications for database de- Journal of the Association for Computing Machin-
sign, is the same as Dawid's. They only apply the ery 34, 544-577
method to sets of MVDs that do not have split left hand
sides, so after eliminating intersection anomalies they CODD, E. F. (1970). A relational model of data for
have a conflict-free set of MVDs which is equivalent to a large shared data banks. Communications of the
single (acyclic) JD. ACM 13, 377-387.

DARROCH, J. N., LAURITZEN, S. L. & SPEED, T.
7 Concluding Remarks P. (1980). Markov fileds and loglinear models for

contingency tables. Annals of Statistics 8, 522-539.
This tutorial reviewed basic parallels between database

theory and probability theory. It discussed three par- DATE, C. J. (1986). An Introduction to Database Sys-
allel problems and corresponding solutions in the two tems, Volume I, Fourth Edition. Addison-Wesley,
areas. It mentioned some of the connections to graph Reading, Massachusetts.
theory which provide another bridge between results in
database theory and those in probability theory. For ex- DAWID, A. P. (1979). Some misleading arguments in-
ample, acyclic databases and decomposable models (dis- volving conditional independence. Journal of the
tributions that satisfy acyclic factorization constraints) Royal Statistical Society, Series B 41, 249-252.
have many desirable properties (Beeri, Fagin, Maier &
Yannakakis, 1983; Darroch, Lauritzen & Speed, 1980). FAGIN, R. (1977). Multivalued dependencies and a new

One particularly interesting connection concerns the normal form for relational databases. ACM Trans-
positivity condition of the Gibbs-Markov equivalence actions on Database Systems 2, 262-278.
theorem. It is possible to relax the positivity condition
using concepts from relational database theory. Results FAGIN, R., MENDELZON, A. 0. & ULLMAN, J. F.
on this topic and others will be given in future papers. (1982). A simplified universal relation assumption

and its properties. ACM Transactions on Database
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Abstract KEY WORDS: Hydraulic conductivity; Mixture

A new form of regression is applied to the problem of decomposition; Nonparametric estimation;
modeling the flow of water and contaminants through Nonparametric regression; Switching regression;
soil. In a fashion analogous to nested ANOVA, the Vadose zone infiltration.
new method parametrizes global distributional
structure separately from local structure. A blind
study is conducted to assess the precision of mixing 1. Introduction
parameter estimation as a function of depth. It is
shown that accurate estimates of the regression This paper concerns the description of soil
relationship can be obtained from a sample of size characteristics by means of a new type of regression.
n=1000 for mixing parameters and all other The value of this form of regression stems from its
component parameters, with the exception of the capacity to separate global from local variability
standard deviation of small components which have through the use of interactive graphical analysis.
large variances. As discussed by Wagenet (1986, p. 340):
It is shown that the hydraulic conductivity, transport,
or infiltration of water borne contaminants through It appears that a stochastic, rather than a
the vadose zone can be effectively modeled and deterministic, model approach should be
simulated by the mixing parameter regression considered when modeling water andmethods. chemical movement in the unsaturated zone.

mehs This will represent no small change in our
conceptualization of basic principles of

Research Supported by National Institute of pesticide modeling. The resulting models will
Environmental Health Sciences Grant 1 ROI ES almost certainly not represent basic processes
053479-01. The authors would like to thank C. Mellin in fundamental mechanistic terms, but will
for many useful comments and for guiding the many instead will represent the soil-water-pesticide
stages of this project to completion. system in statistical terms.
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In line with Wagenet's assertion we propose to Ramsey (1978) refer to this model as "switching
simultaneously describe global and local variability regression". The distinction between switching
by means of mixing parameter regression. regression and mixing parameter regression is central

Soil can be considered to be both a mixture in the to the theme of this paper. A switching regression
curve describes the overall distribution, and hence

chemical and in the statistical sense. However, one form of variation of the distribution in its entirety.
unlike the uniformity inherent in the molecules of On the other hand, the mixing parameter regression
compounds the substances such as clays, sands, function P(x) describes pure global variation. In the

pebbles and cobbles which are described below do faseton si cies pue gl obal It

not aveuniormchaacteistcs. Rater han case of soil constituents such as sand or cobbles itnot have uniform characteristics. Rather than quantifies the variation of a constituent in its entirety,

uniformity, there is a degree of variability n aindependent of variation within the constituent itself.

hydraulic conductivity, density and pore size, as well For example, it can be used to indicate how flow is

as in many other characteristics of any given affected by the change from the proporton of cobbles

substance, which is comparable to the obvious found at onedepth X=x, to the proportion found at

variability between substances.
a second depth X=x 2. If the parameters of the cobble-

water-borne contaminant flows are modeled, it is of specific density also change with depth, this change
gratr-aorue tontamizthfwsae betwee-stae i will affect the overall model through parameters othergreat value to parametrize the between-substance

variability separately from the within substance than P(x), specifically, gj(x), a1(x). (Below we will

variability. In the two-substance case, consider use cobbles in examples of the new mixture

mixture model (1) of the conditional probability methodology to emphasize that the material whose

density f(y I x) of flow variate value Y=y at a given properties are being studied cannot always be

value x of key variate X: brought to the surface and examined directly, but
instead, must often be examined in situ.)

P(x) f([y-(x)1/°1(x)1/° 1 (x) + For purposes of illustration, suppose f, describes local

(-P(x) 1f2 f1Y-P(x)1/ 2(x)) /a2(x) (1) variation within deposits of cobbles and, and f2

where f, and f2 are probability densities which are describes local variation within deposits of sand.

symmetric about zero, regression functions gj±(x), aU1(x), (Below, we will refer to the former as high density
describe the local substance-specific and the later as low density pockets.) It is extremely

x2(x) and a2(x) dsconvenient to separate the estimation of the function
variation with value x of variate X (below we will P(x) from the estimation of the parameters which
specifically refer to x as a depth) and finally, and most form part of f,'s and f2 's arguments. The stochastic
importantly, mixing parameter regression function P(x) models used to simulate flow processes can be
expresses the relationship between pure global systematically constructed when these three functions
variation of the Y variate and the value of the key are considered separately. In addition, in a fashion
variable X. Local variation within contiguous and analogous to nested analysis of variance (Fraser,
homogeneous soil subregions, pockets, is described 1958, pp.141-150), ANOVA, this formulation can
by the functions f, and f2 , where these functions will facilitate studies of the relative importance of local (in
be assumed to be functionally independent of x. In nested ANOVA, within) versus global (in nested
realistic applications, there will of course be both ANOVA, between) variation of soil characteristics for
more than two classifications of soil types and X will the prediction of water and contaminant flow through
be vector rather scalar-valued. However, both for soil (Ray and Turk 1991).
purposes of illustration, and because the methodology
illustrated below is at the cutting edge of what is now
computationally feasible, only the two component 2. Soil Configurations
scalar case will be discussed.

Three basic types of soil configuration are shown in
Previous statistical literature which discusses mixture Figures la, b and c. Figure la depicts a distribution
model regression focuses upon the relationship where small pockets of high density soil are uniformly
between the two means , iit(x) and J ~(x) , and x. distributed. (In terms of mixture model (1), the
Quandt (1958,1972), Kieffer (1978), and Quandt and proportion of high density soil at depth x is



96 R. Ray, M.E.Tarter, and M.D. Lock

parametrized by P(x).) Because of this uniformity, the
soil configuration shown in Figure la can be analyzed
by switching regression methods.

Figure lb shows a mixture which is similar to that High Density

shown in Figure la, where large pockets of high
density soil are uniformly distributed. Figure 1c
shows a configuration where the proportion of high
density soil increases with depth variate x. Note that
within each pocket, in other words, locally, hydraulic ..... ,.......
conductivity, infiltration, or movement might
reasonably be assumed to have the same distribution.
However, globally, the pocket-type (in other words
the type of mixture subpopulation) might vary as a
function of depth x. (Of course, it is also possible that
other parameters besides P(x) are non-constant
functions of x.)

Even though depth, as depicted in Figures labc, is
usually treated as a vertical coordinate, below, the
letter x will be used to represent a specific depth.
This choice of representation was required by the
convention that x represent the independent variate
within a regression relationship. Consequently, in Figure lb Mixture of two soil types: large pockets of
the scatter diagram and estimated density displays in high density soil.
this paper, the depth variate will vary horizontally,
along the x-axis.

High Density High Density

Low Density -o Density

Figure la. Mixture of two soil types: small pockets of Figure lc. Mixture of two soil types: high density soil
high density soil. increases with depth.
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3. Theory which can reduce the overlap of mixture components.As modified by Tarter (1979a) Section 4 and described

The methodological approach used to estimate the by Titterington, Smith and Makov (1985) pp. 138-140,
function P(x) is based on the distinction between this procedure will below be called the X method. The
mixing parameter and other forms of regression. For following example describes these steps:
example, in the bivariate case what Quandt
(1958,1972) refers to as switching parameter Figure 2 is a scatter diagram constructed from 1000
regression involves the decomposition of a mixture of data points simulated as part of the study described
two bivariate normal densities, where the constant in the next section. The dark vertical line shown in
value P(x)=p, specified how much one density this figure is the intersection of the plane through the
contributes to the overall mixture. (For example, in frequency axis, upon which Figures 3-5 are drawn,
Section 4.3 of Quandt and Ramsey, 1978, the mixing and the plane within which scatter diagram points
parameter, which these authors call "" is not are depicted.
considered to be functionally related to the of the
random variate, which these authors represent by "E.")
The decomposition of bivariate normals is discussed . .

by Tarter and Silvers (1975) and Titterington, Smith
and Makov (1985) pp. 142-145. The two variate . ° "
special case for which P(x)=p, and therefore P(x) is a • °
horizontal line, is the only situation where mixing ::- - . "
parameter regression is equivalent to the - . -
decomposition of bivariate normal densities. . *1 ..

In the two dimensional normal special case, mixing o

parameter regression is parametrized in terms of the " . .. .
conditional normal density and not in terms of the. . ° " -. ,
bivariate normal. Because it is a shorter and less . .. :.rI .. . .
technical term, below we will refer to estimated .
conditional densities as "slices." At a given point x, z. "... .
P(x) determines the proportion of a slice attributable
to one component of a given two-component mixture.
For example, in certain applications where x is a 0 00 700

depth measurement, P(x) measures the proportion of
one of the following list of soil components that is
present within a specific soil layer: Clayey soils, Figure 2. Scatter diagram of a 1000 point sample from
sandy textured soils, soils with large pores (cobbles, the simulation experiment described in Section 3.
large rocks, void root channels, worm holes etc..)
Helling and Gish (1986). While the standard bivariate The first step in the process of mixing parameter
normal mixture model considered by Tarter and regression is the estimation of the joint density of the
Silvers (1975) describes a situation where the means of regen ist e e n den s f th edependent and independent variate. Methodology
the individual subpopulations of soil components described in Tarter and Lock (1991) was used for this
change with depth, it does not describe a situation purpose. After the bivariate density is constructed,wpurpose.eAfterotheobivafateidensiponistconstructed
where the proportions of soil components vary with equations (2.22) and (2.23) of Tarter (1979b) were used
depth. to estimate the conditionals at a sequence of

Because the conditional estimation or slicing process independent variate values. The slice taken at point
is central to mixing parameter regression, the crucial x=600 inches through the line shown in Figure 2 is
step of P(x) determination is the estimation of density shown in Figure 3.
slices. Once a slice is estimated at a depth x, this slice
is then separated into its constituent components. This The spurious bumps shown at the right side of Figure
is accomplished by using the univariate procedures 3 are due to the use of a curve estimation procedure
described by Kronmal (1964), by means of which a based on fixed kernel methodology. As discussed by
density can be estimated using a kernel transform Tarter and Lock (1991) Section 3, methods of Breiman,
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.2 .7 1.2 .2 .7 1.2 1.'7
FLOW FLOW

Figure 3. Estimated conditional density of the y Figure 4. Estimated conditional density shown in
variate in Figure 2 given the value x=600, i.e. along Figure 3 with standard deviations of subcomponents
the solid line shown in Figure 2. reduced.

Meisel and Purcell (1977) and Tarter Silvers (1975) variance, gj(x) and a1(x), can be estimated. The
Expression (2.13) can be used as the basis of variable I I
kernel techniques. However, because the dashed curve in Figure 5 was fit to the m lxture

transformation procedures (which we presently use to component using the .t(x) and 71 W values

accomplish the same goals towards which variable estimated from the data shown in Figure 2. For the
kernel approaches are directed) would have sample being illustrated, the only parameter which
complicated this paper, we used basic fixed kernel could not be accurately estimated is the standard
procedures to conduct the study described below, deviation of the smaller density component, o2(x).

Figure 4 depicts the application of the Kronmal (1964)
and Titterington, Smith and Makov (1985) procedure 4. Blind study
to the curve shown in Figure 3. This involved the
sample-size-controlled modification of the Fourier The graphical selection of the point at which
transform of the estimated density to obtain a curve components are sufficiently drawn apart for the
estimate where the standard deviations of all mixture separation step to be instituted is interactive.
components are all reduced by a user selected Consequently, the authors designed a simple single
constant X. blind trial to assess the performance of the mixing

parameter regression estimation procedure. One
Once the mixture-component-specific variances are author devised and implemented simulation
reduced sufficiently so that the resulting curve has no procedures and, independently, a second author
component overlap, one or another of the components performed the steps of the interactive parameter
can be excised and mixing parameter P(x) can be estimation process without any knowledge of the
estimated for the slice at X=x. Finally, the post- parameters selected for the simulated samples.
excision curve can have its component standard Twenty different samples, where each sample
deviation increased by -A (which brings it back to the corresponded to a reasonable choice of the curve P(x)
neutral setting). The effect of this step is shown by as well as comparable regression functions associated
the solid curve in Figure 5. Once a component of the with other parameters, were generated. (As a point of
slice at x is isolated, the component-specific mean and reference, it is the special case where P(x) is a
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Model 70 386 with a sample of one thousand points.
The consistent performance of the estimation method
in determining model parameters demonstrated the
feasibility of using the mixing parameter regression
model with the PC-based computational hardware
which is available today. The following is a
representative selection of trials, which correspond
respectively to the three soil pocket configurations
described in Section 2.

5. Discussion and Trials

Cressie (1988) described local and global components
of environmental variation using the stochastic model
Y(x) = p(x) + W(x) + (x), where p(.) is the
deterministic mean structure by which large scale

2 1.2 1.7 variation is modeled, W(.) is a zero mean intrinsically
FLOW stationary process used to represent small scale

variation and E(.) is a zero mean white noise process
Figure 5. Leftmost component isolated from the independent of W used to represent measurement
conditional density shown in Figure 3. The dashed error.
line is a normal curve fit to the component. Universal kriging and intrinsic random function of order k

methods have been used to separate large scale from
horizontal line and where the component mean local environmental variation. Cressie (1986)
functions gl(x) and g2(x) are linear, that corresponds compared these methods and proposed the median
to switching regression.) polish method for the estimation of large scale

variation or drift. These methods are based on the
Two forms of simulation modeling were used in the removal of large scale variation in order to locally
blind study. In the first set of simulations, the mixing predict the value of Y at a point (or small region) of
parameter regression model was used directly. Here, contiguous x values. The estimated variogram, an
models in which the mixing parameter P(x) varied as estimate of the functional E[Yt+h(x) - Yt(x)]2 / 2 , is
a linear function of x were used to simulate soils in
which the proportion of high density soil increased the resulting descriptive estimator of local variability.
directly with soil depth (as illustrated by Figure Ic). While the variogram targets local variability, the
Models in which P(x) had many modes or bumps estimates obtained using mixing parameter regression
(technically, where the derivative P'(x) had many yield separate local and global variability statistics.
roots) were used to simulate soils of the sort that had Because of the above distinction it is of interest to
a uniform dispersion of small pockets or lenses of study the behavior of the variogram estimator
high density soil. A second set of simulation obtained from the examples shown in Figures la and
experiments in which soil configurations were lb (which illustrate the situation where there is no
modeled stochastically by randomly assigning the systematic mean value drift) and the Figure Ic
location and size of high density soil pockets was also example.
conducted.

Because switching regression and most mixture Figure 6 displays the robust variogram estimates

decomposition methods are applicable to normal (Cressie and Hawkins, 1980) for the three examples

data, normal random deviates were used to describe shown in Figures la, lb and 1c. The mixing

variation about parameter values. The interactive parameter regression estimators for these three

process of estimating all five regression curves P(x), examples are shown in Figure 7. It is notable that the
three examples are easily distinguished from one

p1(x), 01(x), B.t2(x) and a2(x) takes approximately another by the mixing parameter method but, to all
twenty minutes using an IBM Personal System/2 extents and purposes, yield indistinguishable
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0 70

0.600.
050" 

70- 0 Estimate

o so OeO- •Model

E 040 A Large pockets of 0
high density soil

030 I0L
o Small pockets of ON

high density soil
"0.2010

020 * Soil density
increasing with depth 0.20-

000 
0.10-

000

0 2 4 a 10 12 14 16 118 20Lag go M 400 4W0 No0 W WO MO M
Lag Depth

Figure 6. Variogram estimates of data simulated to Figure 8. Comparison of estimated and true
have the characteristics described in Figures la, b and regression relationship between the mixing parameter
C. and depth.

0 io A Large pockets oft mixing parameter regression process tends to be the
high density soil result of the following two closely related causes: (1)

060 0 Small pockets of the process which first separates distributional
high density soil components and then, in effect, snaps them back into

0 nc- soi density dphtheir non-variance-reduced form does not eliminate
- all overlap effects. (2) The curve estimation

methodology upon which the component reduction
0.30 and isolation methodology is based is in no way

tuned to perform well for mixture parameter
020- regression applications. In particular, as discussed by

010- Tarter and Lock (1991), with very few exceptions,
there is a tendency for both kernel and series

05 0. approaches to inflate the variance of estimated
200 250 300 5so 400 450 00 00 00 65 dO 7ns 7ie

Depth densities.

Use of an everywhere non-negative fixed bandwidth
Figure 7. Regression of the mixing parameter versus kernel must inflate this variance by a constant
depth for the three types of data described in Figures approximately equal to the variance of the kernel.
la, b and c. (Expression 10 of Tarter and Raman (1971) indicates

that such an estimate is the convolution of the kernel

variogram estimators. and a density whose variance is identical to n/(n-l)
times the sample variance.) Hence, we are presently

An example of an actual mixing parameter regression experimenting with the equivalent of variable
curve is shown in Figure 8 as is the population curve (Brieman, L., Meisel, W. and Purcell, E., 1977) and
which mixing parameter regression estimates. These somewhere-negative kernel methods which will yield
curves correspond to the soil configuration depicted mixing parameter regression estimators which have
in Figure Ic. Although the shape (linear) and the slope reduced bias properties. It is hoped that when
can be estimated with great precision from a sample appropriate methods are found it will be possible to
of n=1000 points Figure 8 also shows a bias which is obtain accurate mixing parameter regression curves
characteristic of the computational and statistical with sample sizes considerably smaller than the
approaches which are currently available. Bias in the n=1000 sized samples used in the above experiments.
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cases during each testing stage, then to debug the
software according to the testing result and make a1. INTRODUCTION decision whether to stop testing or not. Here we do
not restrict to the case N = I as in the usual

Software testing, or debugging, is one of the most sequential analysis, because for large programs, the
important components in software development. It testing and debugging may not be done
has been estimated that in many projects, the time simultaneously. Debugging is performed only when a
accounted for debugging can be around 50% of the large number of programs has been tested. Optimal
total development effort. There is an obvious stopping rules in software testing has been notices in
question in the debugging process, that is when to some recent literature. For example, Ross[14]
stop. One naive answer is, of course, the process considered a stopping rule based on an estimate of
continues until there are no bugs (errors) in the the future failure rate. It differs from ours in cost
program. However, this is a very difficult goal to criterion. We feel that to know when to stop, one
achieve. For most commercial software, the release must know the relative costs between testing and
requirement is usually not 100% error free, but an penalty due to future failure. Dalal and Mallows ([6],
acceptable error rate. Again, to determine when a [7]) considered loss function that can be equated to
debugging process has reached this stage is difficult. costs, but their rules depend on some prior
The best bet is often an estimate of the future error assumption of the A's. Rasmussen and Starr[13],
rate. However, the accuracy of the estimate may not Nayak[12], and Goudie[9] has also considered loss
be very high, depending on the estimation formula, function, but their loss is basically a function of the
and more seriously, on the assumptions that the remaining number of bugs instead of the future
formula is based upon.4et there be m faults in the failure rate. It seems that the main concern of the
software and their failure rates be software reliability is on the future failure rate rather

\1 ! '\2 .. - _Am >0. (1.1) than the number of bugs. Of course, the two are
Then there are assumptions on equal failure rate for equivalent if equal failure rates are assumed for each
all the faults(eg. [2, 13, 14]), and unequal failure bug. We feel that this assumption is probably not
rates (eg. (3, 8]). Or a model based on failure time realistic.
during testing instead failure rates of faults. Among
them are the basic execution time and logarithmic
Poisson execution time models(see Musa et al [ 10, 2. Theory
11]). However, these models are usually very difficult
to verify. In this section, only the most reasonable cases are
In this paper, we try to find the optimal stopping presented. Possible generalizations to more
rules based on testing cost and fault penalty after complicated situations are given in §4. The
the software is release under very little on the model assumption on A is (1.1) with m and all the A values
assumption. The debugging procedure is to test, N unknown.
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Let c denote the cost of testing one case, c9 be the
cost (penalty) when an error is encountered in the liminfJ g+(n)dP = 0,
released software, and M be the expected cases to be n

run by the consumers.

To develop theory, let I(x) be the indicator function then ( 2.2) is true for all r satisfying

{ 1 if x is true liminf g-(n)dP = 0,
0 if x is false,

where 0 is
Xi(n) = number of times that the ith bug is

encountered at the end of the nth test period, the first n > 1 such that g(n) >
E(g(n+l) I 'Jn).

and the remaining failure rate
m It can be shown that the optimal stopping rule 0 is

U(n)= E AiI(Xi(n)=O). to stop at
i1l m

Then if the program is released after the nth testing the first n > 1 such that Z Ai[1 - (1 - Ai)N]
period, the cost is i=l

•I(Xi(n)=O) < N/c. (2.3)

C(n) = c2 M . U(n) + clnN. (2.1)

For small A's, a good approximation for (2.3)
Our purpose is to find the optimal stopping rule ¢ becomes
such that

the first n > 1 such that
EC(V) _< EC(r), m 2

L A2 il(Xi(n)=0) -  1/c. (2.4)
for any stopping rule r. Here E derotes the i=1
expectation. Note that a stopping rule is a decision
that depends only on the sampling information from Since the A's are unknown, the tk defined in (2.3)
the past, not the future. To put it in the usual cannot be put into practice, but it tells us that if
notation, a stopping rule r is a random variable such there is a good estimate of the left side of the
that the event ( r=n ) c cin, where 'in is the sigma inequality in (2.3) or (2.4), we may be close to the
field generated by all the previous samples up to n. optimal stopping rule. Moreover, if any stopping rule
To find the optimal stopping rule, we first assume that can almost reach the optimal value EC(!)
that all the A's are known and use Theorem 3.3 in obtained from ip when the A's are known, it must be
Chow, Robbins, and Siegmund[5]. In order to follow nearly optimal. From the simulation study to be
the theorem more easily, we let the payoff function presented in the next section, many nearly optimal
g(n)=-C(n) and the equivalent optimal stopping rule situations are identified.
now is to find 0 such that m

Let 0 = E EZA 2 I(Xi(n)=0). Then it can be
Eg(4') > Eg(r), (2.2) shown that i=1

for any stopping rule r. Without loss of generality, m
we may let cl=1 and c2 M=c, Hence, 0 = yA 2 i(-Ai)nN

i=l

g(n) = - cU(n) - nN.
It is known in the literature (eg. [2], [4], [15])

Using our notation, we restate Theorem 3.3 of [5]. If that
the set m

E ZI(Xi(n)=2)
An= { E(g(n+l) 1F, ) < g(n) } i=

is monotonically increasing with respect to n and 2nN(nNl) MA2 )nN -
i=1
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m
By ignoring the small difference between (1- TA - Ai, with m=100. Four configurations for A
Ai)nN - 2 and (-Ai)nN, we can estimate 0 by i 1

m are used;

nN(nN-y) EI(Xi(n)=2) = 2N(nN-1)Bn,
i=1 a) rapidly decreasing A (exponential rate): Ai=K/2i,

where Bn is the number of doubletons, i.e., the i=1,2,...,m;
number of bugs that have been encountered exactly b) moderately decreasing A (Zipf's Law): Ai=K/i,
twice up to stage n. Thus, a reasonable adaptive rule i=1,2,...,m;
(b for the recapture debugging procedure is to stop at c) slowly decreasing A (constant): Ai=K, for all i=l,

2~ .. ,m;

the first n such that - B < 1/c. d) random A (following [14]): A= K U, Ui is a
nN(nN) n- random number, i=1,...,m,

(2.5)
where K is the normalization constant so that

The expected cost of this rule is denoted by EC(V). m
When the standard debugging procedure is usrd, the A Ai=TA.
number of doubletons up to stage n has to be i=1
estimated, because all the previous bugs before stage Since TA\ is small, small N will make the test very
n have been removed. Let sn -nd bn denote the ineffective. We choose N=100, 300, 500. Since
number of singletons and doubletons discovered at N=100 is sometimes too small for the case TA=0.01,
test period n. They are observable, we hold our decision if there is no doubletons before
Let Sn denotes the number of singletons encountered the 5th period. Similarly, we hold our decision for
up to stage n, Sn and Bn can be estimate recursively N=300 and 500 if there no doubletons in the first
by period. The value c=c 2 M/c 1 can vary considerably

due to different real situation. We feel that cl=l,
n = Bn-1(1 2 N(n-_))N + c= 100, and M=10 4 is a reasonable middle ground.Thus, three values, c=10 5 , 106, and 107 are used.

Sn -1  N(1) "r-l/(n-1) + bn (2.6a) One hundred simulations were done for eachcombination of c, N, and TA.

n =  - 1N(n1) N + Sn" (2.6b) The following results have been observed.

The two formulae are derived from the maximum 1) The first thing that surprises us is that there
likelihood principle. Thus, for the standard is little difference between (2.5) and (2.7). After
debugging procedure, the stopping rule is to stop detailed check into the stopping process, we found
at that this was due to large variation in Bn, the

number of doubletons. Singletons are more stable in
teit 2 1 < 1/c. (2.7) the sample. Thus, the estimated Bn from singletons

can be as effective as the doubletons.
Again, we denote the cost under this rule by EC(i). 2) It is actually unfair to compare (2.5) and
Analytic study on the performance of (2.5) and (2.7) (2.7) with (2.3), because in (2.3) all the A's have to
seems to be very difficult. Simulations are used to be known. There is a tremendous prior information
evaluate their performances. difference between (2.3) and the two adaptive

stopping rules. However, the simulations show that
3. SIMULATION STUDY in most situations, especially for cases b, c, and d,

the adaptive methods perform extremely well. It is
The stopping rules; optimal (2.3), unlikely that in these situations any other stopping

approximation (2.4), adapted to recapture debugging rule can beat them without any prior information on
procedure (2.5). and adapted to the standard A. At least we can say that they are nearly optimal.
debugging proce( ure (2.7) are compared. In standard 3) From the expected cost point of view, the
software development, the failure rate should not be initial total failure rate TA has less influence than
very high at the testing stage. Three values, 0.10, the sizes of A.
0.05, and 0.01 are assigned for the total failure rate 4) Case a shows the biggest discrepancy in
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costs between (2.5), (2.7), and (2.3). The reason is [2] P. K. Banerjee and B. K. Sinha, "Optimal and
easy to see. If we have E A i2 < 1/c in the beginning, adaptive strategies in discovering new species,"
then no testing is the best strategy when the A's are Sequential Analysis, Vol. 4, pp. 111-122, 1985.
known. But under the real situation that the A's are [3] D. B. Brown, S. Maghsoodloo, and W. 11.
unknown, it will take a considerable number of Deason, "A cost model for determining the
testing samples to discover this fact. Thus, the optimal number of software testing cases,"
adaptive methods cost considerably more than the IEEE Trans. Software Eng., Vol. Se-15, no. 2,
optimal rule (2.3). Another situation, such as the pp. 218-221, Feb. 1989.
rapidly decreasing A case, is that although E3 Ai2 < [4] A. Chao, "On estimating the discovering of a
1/c is not true for all the A's in the beginning, the new species," Annals of Statistics, Vol. 9, pp.
A's are dominated by a few large ones and once they 1339-1342, 1981, Correction, 10, p. 1331, 1982.
are removed, E Ai2 < 1/c is satisfied by the rest of [5] Y. S. Chow, H. Robbins, and D. Siegmund,
the A's. Since the large A's can be discovered pretty Great Expectation: The theory of optimal
easily, they can be removed in the very beginning, stopping, Houghton Miffon Co., 1971.
The debugging process can then be stopped because [6] S. R. Dalal and C. L. Mallows, " When should
the A's are known. The adaptive methods again have one stop testing software, " J. Am. Stat. Assoc.,
to identify this fact at considerable cost. Vol. 83, 872-879,1988.

5) The final costs vary little due to the test size [7] S. R. Dalal and C. L. Mallows, "Some
N. graphical aids for deciding when to stop testing

software," IEEE J. on Selected Area in
4. CONCLUDING REMARKS Commun., 8, 169-175, 1990.

[8] E. H. Forman and N. D. Singpurwalla, "An
1) When the A's are equal, (2.3) is equivalent to empirical stopping rule for debugging and
(2.1) in Rasmussen and Starr[13]. We also repeated testing computer software," J. Am. Stat.
the simulation for the cases they considered. Our Assoc., Vol. 72, pp. 750-757, Dec. 1977.
results confirm their results. [9] I. B. J. Goudie, "A likelihood-based stopping
2) In the present study, the testing size N is assumed rule for recapture debugging," Biometrika, Vol.
to be the same in all the testing stages. An 77, 1, pp. 203-206, 1990.
interesting question would be what happens if we [10] J. D. Musa, A. lannino, and K. Okumoto,
vary N. One thing we noticed is that the proof of the Software Reliability, Measurement, Prediction,
optimality of (2.3) is no longer valid. It seems to be Application, McGraw-Hill, New York 1987.
a significant contribution if the tester can choose the [11] J. D. Musa, A. lannino, and K. Okumoto,
optimal sample size at each stage. Software Reliability, Professional Edition,
3) From the derivation of (2.3), we can extend the McGraw-Hill, New York 1990.
result to a more general cost function i.e., let the [12] T. K. Nayak, "Estimating population size by
cost for doing x tests be f(x). Then if Af(x) = f(x+l) recapture sampling," Biometrika, Vol. 75, no.
- f(x) is a nondecreasing function, then Theorem 1, pp. 113-20, 1988.
3.3 of [5] holds and the optimal stopping rule [13] S. L. Rasmussen and N. Starr, "Optimal and
becomes to stop at adaptive stopping in the searching for new

m species," J. Am. Stat. Assoc., Vol. 74, pp. 661-
the first n > 1 such that ZA[1-(1-Ai)N] 667, Sept. 1979.

[14] S. M. Ross, "Software reliability: The stopping
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Abstract: In software reliability theory many that is, they are generated in such a way that they
different models have been proposed and investi- are representative for the operational profile. For
gated Most of these models assume perfect repair each input the program either produces the
and constant software size. Both restrictions over- correct output or a software failure is detected;
simplify reality in a huge way. In the model we will the software produces a wrong answer or no
discuss in this paper, we have tried to overcome both answer at all. After the detection of a failure the
simplifications in such a way that statistical infer- CPU-clock is stopped and the software is sent to
ence is stillpossible. a team of debuggers. The failure time and possi-

bly other failure data are observed. After the bug
is found and fixed, the CPU-clock is restarted

1. Introduction again and testing continues with a new input until
The reliability of hard- and software is time T is reached.

sometimes of vital importance to their users. Dur- Efforts in describing the evolution of the
ing the recent Gulf war a patriot missile, which reliability of computer software during test and
was stationed in Turkey, was fired by accident, development resulted in the proposal of dozens
because of a bug in the software. Obviously also of new models over the past twenty years. An
in case of less delicate computer applications cus- important class of such models is the so-called
tomers want a high degree of reliability to be class of Error-Counting and Debugging (EC&D)
guaranteed. The modelling of the evolution of the models. This class consists of models that are
reliability of a piece of software undergoing based on the test experiment described above
debugging will be the subject of this paper. (with only the failure times as test data) and some

In the next section we will give some back- strong assumptions:
grounds and classical assumptions of software (Al) Perfect repair: no new faults are introduced
reliability theory. In the third section we describe during a repair with probability 1.
the PGIR modcl, a new model with interesting (A2) Fixed software size: there is no addition of
features, and we will suggest how to estimate the new software during testing.
model parameters. In section 4 we will shed some
light upon the huge amount of extensions, that (A3) Independence of faults: faults (and hence
are possible, starting from this model; we will
define a class of regression models. Finally, in Although all three assumptions seem to be rather
the fifth and last section we give some concluding unrealistic, they form a framework on which
remarks. This short paper just tries to give some many models are built. The most elementary and
ideas and results. More details, derivations and oldest software reliability model is the model of
proofs can be found in Van Pul (1991). Jelinski-Moranda (1972), introduced almost

twenty years ago. In this model the failure rate of
2. Backgrounds and classical assumptions the program is assumed to be at any time propor-

Let us consider the following test experi- tional to the number of remaining faults and the
ment. A very large computer program is executed repair of each fault does make the same contribu-
during a fixed exposure period, say [0,Tr. Inputs tion to the decrease in failure rate. Denoting n (1)
are selected "at random" from the input space, for the observed counting process, we find for thefailure intensity function A(t) the following

This research was carried out under a grant of the Netherlands Technology Foundation (STW).
** CW! is the nationally funded institute for research on mathematics and computer science, formerly called Cen-
tre for Mathematics and Computer Science.
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expression: addition of new software. It seems reasonable that
A(t) - 0 N -- n(I) t E[10,TI, (1) Ni is in some sense proportional to the "size" of

I the total change in the software at time Ti. We

with model parameters N, the number of faults therefore assume that N i is a stochastic variable,
initially present in the software, and 4), the Poisson distributed with mean jtK,i=0,1 ...,
occurrence rate per fault, which can also be inter- where U. a parameter. We consider the testing
preted as the test efficiency. Musa (1975), Little- process during [0,-], observing say n(') faults. Let
wood (1980) and many others have built more ,T)
sophisticated models, for technical reasons, how- n(t) := I (T,<t), t E[0, T], (2)
ever, generally restricted by assumptions (Al)- =1

(A3). the number of failures detected (faults deleted)

As there exist no perfect testers and pro- during [0,1] and let

grammers, there will always be a positive chance (T)NQt) :: 2 Ni(Ti<t), I E [0, T), (3)
of introducing new faults, while repairing an old i=0
one. Secondly, development and testing of the number of faults introduced during [0,t],
software usually takes place simultaneously in where
practice. Because the addition of software, that
has never been tested before, certainly will have Ni =d PO(lKi). (4)
an effect on the reliability, it seems reasonable to We assume that the failure intensity X, like in the
take also software growth during testing into Jelinski-Moranda model, at any time is propor-
account. Furthermore certain bugs will prevent tional to the remaining number of faults, that is:
parts of the software to be inspected and there-
fore will hide other bugs, thus violating the N(t) : P 4 N(t -)-n(t-)I,  t E10,r], (5)
assumption of independence of faults. Dropping where 0 denotes the constant occurrence rate per
(A3), however, would cause the mathematical fault. With use of the data (Ti, K), i =0, 1,....n (),
problem to become highly complicated and obtained from the experiment as described above,
almost untractable. one can estimate the parameters (,o,) of the

In the next section we introduce a new underlying PGIR model. We will use the max-
model, the Poisson Growth and Imperfect Repair imum likelihood estimation (MLE) procedure for
(PGIR) model. We combined the modelling of this purpose. The following lemma will be very
imperfect repair and software growth in a natural useful:
way. Furthermore to a certain extent the model
will account for dependencies between faults. Lemma 1:
The model has attractive statistical properties, For all m E N and all (ao,a 1 , - - - a,) E R" we
besides. have:

3. The PGIR model. aO a 0 aI,
Let T>O. We consider a test experiment as I N0  2 (N0o+N .) ...

described in the introduction. Let To:O and VoN,= No! N,=) NI!

Ti,i = 1,2,... the failure times of the occurring .. a.mN .

failures. Repair takes place immediately after a 2=(N 0 + NN + "! + N, - m)
failure is detected. For reasons of convenience the
addition of new software takes only place at the a0 (ao+aI) ...
failure times T,. Due to the correction of a fault . . (a + + a,,)e' a, ' a. (6)
and eventually due to the addition of new
software at time Ti, there is a change in the Proof:
software of size Ki, i 0 1 The Ki are hence the The result follows immediately with natural induc-
known outcomes of some deterministic software tion.
measure, e.g. lines of code, complexity, number of
loops or subroutine-calls . At time T apart from We now return to the derivation of the
deleting one fault, N new faults are introduced, likelihood function for the PGIR model, as
partly due to bad repair and partly due to the described by (2)-(5). Aalen (1978) showed, that
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the likelihood function for estimating the parame- j e O- [ X
ters of the intensity function of a counting pro- io [ j=o
cess, observed on a fixed time interval [0,] is ()
given by: ) exp 2 (T-Ti)-I Ki(1-e- #-r )  (12)
l() L,(Cu,4;To, T1, T. ,T(=)) i=I

II X(Ti -)exp(- f(s)ds). (7) We now take the logarithm of the likelihood func-
i= x 0 tion (12), set the partial derivatives equal to zero

As the N are independent Poisson distributed and solve the system of two ML-equations,

stochastic variables with mean IKi we have finding expressions for the ML estimators /^:

P() := P [Ni= Ni,i= "...n(T)] n( n (T) (13)2 Ki I1-e- ( - ,]

n (T) N , -c )

H fl e -1 (8)
i=0[ I (N()! and 4 is the solution ofg(o)=0 with

and defining:

ai : p Kie - T ), (9) g(?) .- n(7)i(T-Ti) +

bi  := (No + .. . Ni I=i), (10) () T
2 K,(T- T-)e

for i =1...,n(T), we obtain the likelihood function i=0

under the finer filtration (observing also the sizes n (T) - 1
of the software changes) by summing Aalen's I e j

expression (7) over all possible realisations of the
N; multiplied by their joint probabilities (8): 1 "(-)--I

- --=0 (14)

j=0 je
00 00 00 CO

YE Z ... 1 N: oPAN A(
N=N= "= b .... It can be shown (see Van Pul (1990)) that the

4/(, exp / 2 ( Ti) i K-1 X ML-estimators are consistent, asymptotically nor-
Vi=1' ,=O I mal distributed and efficient.

N 0 0! aI, Let us consider the PGIR model again as
aoNo" O 2 (N0+Nl-l) N.. given by (2)-(5). Note that the process N(t) is

N'= I Not i',=b, NI! unobservable. Thus defining the filtrations

I (NO+...+N,(,)-n(,r)) aJ Nnu , (11) .7 " { ns): 0<s<t }, (15),,,=0 N,,> 9F, = n (s), N(s) : 0 <s < t (16)

We note that if No+ --- +N_,=1 , that is, if we notice that the intensity A given in (5) is actu-

bI = I ( so we have to sum Ni from I to oo), then ally 0. the intensity function of the counting pro-

the coefficient (N 0 ±... +N-i) in the i-th sum cess with respect to the filtration 9. With use of

equals zero for N,=0. So we can take all lower the Innovation Theorem (see e.g. Bremaud

bounds equal to zero and use lemma 1 to get: (1977)), and another application of lemma I we
can show that the intensity function under the
filtration - (only observing the counting pro-

L1(i,4;(T, Ki),i=OJ,...,n(r)) - cess n(s),O< s<t and the software changes

[n(T) n Ki, i O..n (t -)) is given by
:= exp (T - Ti) It IIKi- ( of (I

1u Kie- #Q-. (17)
i0

X . a, T 1a. An interesting idea seems to set all the K equal
i=0 i=0 JO
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to some K except for Ko>>K. With parameters developers. So far, we did not get much response
N0 :=jtK0  and N: -f±K the failure intensity from them. Perhaps they should read Rook's
becomes (1990) Handbook on Software Reliability. In its

- n( ) preface Boehm resignedly states: "Sometime soon,
X(t ;,N0,N):Nce '0'+N4 X Kie'-T,. (18) software reliability is going to become a highly visi-

ble and important field. Unfortunately, given
In this three parameter model, N, the average human nature, its thrust into prominence will only
number of faults introduced per repair action, can happen once we experience the software equivalent
be interpreted to account for dependencies of the Chernobyl, Bhopal, or space shuttle Chal-
between faults. Whenever hidden faults become lenger disasters. Such a disaster is likely to happen
observable because of a fault repair, this can be in the next few years...".
considered as the introduction of new faults.
Finally note that for N=0 the above model
reduces to the well-known model of Goel- References
Okumoto (1979). Aalen, 0.0. (1978), Non-parametric inference for

a family of counting processes. Annals of
4. Regression models Statistics 6, 701-726.
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the process of introducing new faults is so
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where the zjj = l...m, are the known realisations be improved? IEEE Transactions on Software
of m software measures Zj (like e.g. size, com- Engineering 6, 489-500.
plexity, number-of-loops) at time T and where Musa, J.D. (1975), A theory of Software Reliabil-
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We have constructed a model, which is able puter Science, Amsterdam.
do deal with imperfect repair and software VanPul, M.C. (1991), Modelling Imperfect Repair
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perties.

In the field of regression models for
software reliability, there is in my opinion a lot of
interesting research still to be done. Essential will
be, however, the collection of real data (computa-
tion of various software measures) by software
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ABSTRACT Tests are Experiments

There is much from statistical methodology that can be Testing software based systems (or any testing) is an
brought to the testing of software systems. Both a general experimental process aimed at determining the state of the
paradigm for testing and an approach to assurance of system under test with respect to some standard (possibly
reliability will be derived from statistical methods. The not deterministic). As experiments, paradigms for statistical
testing paradigm provides both a general approach to the design of experimentation (DOE) can be applied to improve
specification, design and analysis of tests and potential for our understanding and further advance the state of the art of
reduced complexity of test equipment (thus reduced cost of software testing.
testing). The testing for reliable software approach gives us
a model upon which to start building theory for the Test Test
automated generation of tests which go beyond requirements, JHardware/Software in,,,
capturing the intelligent behavior of the experienced test
engineer. Relationships between this framework for testing
and work on statistical advisory systems for the design of
experiments and semantic understanding of text will be are

identified /

__JProduct HardwareL_
The goal of this paper is to provide connections between Platform
statistics and the testing of software based systems which are
not as obvious as software reliability growth modeling.
These connections have been derived from the past ten years
of testing, examining the process of testing and managing
the testing of embedded software in the avionics industry. Test Software
We will first examine an operating paradigm for the Software
development of effective tests and then look at how this
paradigm may lead toward automation of the more creative
aspects of the test development process.

This work has been evolving in the context of the Figure 1

development and test of systems which have significant user
interfaces. A major characteristic of these systems is that the A Stochastic Environment
user cannot be extricated from the system itself. Proper
operation depends on the appropriate interaction between the Generally software tests are considered to be deterministic
system and the user. Any breakdown of this interaction can with a clear pass/fail criteria. This is often not the case in
be the trigger of a failure. The resulting system is embedded systems and/or systems with significant user
necessarily stochastic. interfaces. A normal embedded software test environment

looks something like figure 1. Sources of random variation
In systems without significant user interface, there is at least are the user (or test engineer) and often the test equipment
the potential to produce a sufficiently rigorous specification which is attempting to simulate the operational environment
and implementation to remove the stochastic problems of the system.
created by the user. Such systems have the potential for
formal proof of correctness which eliminates the need for an As mentioned in the introduction, the user will introduce a
experimental approach to verification and validation, significant stochastic element into the test environment. It

is not desirable to remove this stochastic element since
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doing so makes our test input distribution even less like the
operational distribution the system must operate under. It is In better understanding this process and/or automating it, we
then less likely to catch problems which are important to will need to incorporate the knowledge from expert
the user. statistical advisory systems into the experiment design

engine. In addition, expert knowledge about what makes
If we are dealing with a system which is using hardware at 'good' hypothesis for qualification testing must be
or near the limits of current technology, the test equipment incorporated into the hypothesis engine.
may not be capable of providing adequate control to assure
deterministic operation. The result is again random Not shown in the diagram is the analysis portion of the
variation. Even if we are not operating at the leading edge of process which would take test data and help to generate the
technology, test equipment which does not utilize expensive report. Each of these components could likely be derived
state of the art components to provide a fully deterministic from existing work in various forms of statistical expert
environment is sometimes preferable. systems for design, analysis and inference.

Relation to Statistical Methods

Test objectives are equivalent to models and hypotheses in
experimentation. The model defines the portion of the
system of interest in the objective. Hypotheses then focus
the test upon particular components of the model.
Experimental design principles can then be applied to the
design of the test which provides the requirements for the
test environment. These requirements will include the degree
of accuracy necessary to provide sufficient power to the ,
hypothesis tests which make up the pass/fail criteria for the
testing.

Requirements Based Testing

Requirements testing is based upon hypotheses which are
selected from the system requirements. Models selected are
subsystems 'carved' from the system architecture and chosen
for compactness (minimal external connections) to reduce
test environment requirements while encompassing a Figure 2.
minimum of extraneous system components not directly
related to the hypothesis of interest. From this point, the DOE in a diital environment
test task is just the design of the necessary environment to
provide the control and data collection necessary to carry The application of experimental design is not a straight
through the experiment, forward exercise in the digital non-linear world of software

systems. On the surface, it would appear that we will run in
This whole process is almost identical to the process of to a combinatorial explosion of necessary test conditions
selection of appropriate experimental factors which provide a based on the discrete nature of the systems inputs and
sufficiently powerful test of hypothesis about the safety or operation. This is not necessarily the case however.
efficacy of a drug in pharmaceutical testing. The wealth of Fractional factorial designs can be used to reduce the
statistical methods applied in the certification of drugs in the combinatorial explosion, and aggregation (high level views)
pharmaceutical industry are then clearly applicable to the can be used to treat the system as essentially analog and
qualification (or certification) testing portion of software linearizable.
systems (or any other system for that matter). Consider a software module which has as its primary input a

In figure 2 we see a flow chart for the basic process 7 bit integer. If we view the 7 bits as independent two
undergone by a test engineer in developing qualification valued inputs, we can lay out an orthogonal design (27

-4 or
tests. Current versions of these systems are either human, or a Taguchi L8) giving us an orthogonal cross section of the
contain trivial 'engines' that just regurgitate requirements input space of the module with respect to the primary input.
typed in by the test engineer. Next generation versions of Assuming a pareto effect in faults and no high level
these systems are expected to operate as an advisor, interactions (singularities), we have an efficient set of test
incorporating the expertise of the test engineer (user) into cases for the module. Certainly more efficient than selecting
the process. a couple of integer values at extrema or randomly from the
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input range and not requiring more information about the
module than its interfaces. In addition to the basic problem of bringing user

expectations and specifications in line with what is
Pareto assumptions are reasonable in most software physically realizable, we have additional difficulties which
development environments today. All we're really assuming make real world systems more 'interesting' than ideal.
here is that the software faults are not 'dense' in the code. Usually, a user's requirements are handed to the developer in
The absence of singularities is a bit harder to deal with. the form of descriptions of responses to a limited region of
Techniques such as data dithering and data diversity are the input domain represented by the lines, disk and single
available to reduce the granularity of singularities. The point in figure 4. Analysis attempts to produce a 'convex'
problem cannot be entirely eliminated though. region which encompasses these initial requirements. Design

then proceeds to move this convex region toward a real
Application of experimental design can be made reasonably implementation. In the process the highly non-convex
obvious for some situations by taking a high level view of region depicted results from errors and physical constraints.
the system. Many functions which are implemented in an
embedded digital system (such as navigation) are inherently
analog in nature with only an overlying nonlinear mode
structure. Within any particular node, the operation of the
system is entirely analog at these high levels and Physcaly realized

experimental design or response surface methods are directly inptspac
applicable.

Ad Hoc Testing Spec

Testing to assure reliability of software systems (failure free
operation) must go beyond adherence to requirements to
address the validation of the system in an indeterminate
environment. This immediately implies the application of
statistics to the problem. But more than just statistical
procedures are applicable. The entire paradigm of statistical
modeling and hypothesis testing comes into play in this ,,.._nupc
environment. This type of testing is what is called ad hoc.

Requirements based testing can only get at a portion of the
aspects of a real system. This is because, as depicted in
figure 3, in the real world, expectations, specifications and Figure 4.
the reality of implementation seldom coincide. Initially,
we're lucky if they are not disjoint. Ad hoc testing then is aimed at those regions of the system

shown outside the abstract solution space in figure 4. In this

Expectations Reality region lies problems which are due to implementation which
goes beyond requirements and user expectations which don't
show up in the requirements. For example, the well known
ability of an early version of F-16 software that allowed the

x test pilot to raise the landing gear on the ground, probably
lies near the tip of one of the lobes! Idealistically, no such
aspects of the system exist, but as can be seen, this is
effectively impossible if for no other reason than that the
user's expectations are never constant or clear (since they are
necessarily developed and interpreted by humans).

Iterative Learning

The interactive ad hoc test process is an iterative learning
process much like that expressed in Box, Hunter and Hunter.

Specifications A test engineer begins with an initial hypothesis and
associated model of the system and iteratively hones each

Figure 3. into a clearer understanding of the system. This iterative
process is depicted in figure 5 as a tree structure. Each level
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of the process takes the current hypothesis and from it model from existing software systems. This is where current
specifies an appropriate model, designs and executes the work in semantic recognition comes in. We can think of a
associated experiment and uses the conclusions to refine and program as a living book. The basic story or class of stories
select the hypotheses for the next level. Note that the is fixed, but the details of the current instantiation of the
outcome of this refinement and selection may be a posterior story depend upon the data fed to the program.
distribution on the possible hypotheses which leads to
multiple paths through the tree. Statistical analysis of the digraphs which represent the

programs along with the variable and procedure names
In an expert system, the inference engine takes an initial set (assuming they're done with reasonable mnemonics) can
of facts and proceeds to 'fire' rules from these facts to deduce help us to develop the kind of basic 'story' lines that are
further facts. The primary difference in the ad hoc testing most often used in various classes of software. In these story
process is that the rule 'firing' is actually an experimental lines we have an abstract view of the underlying abstraction
process used to derive the rules from the real world rather which provides the basis for the software.
than a data base.
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models can be derived is a high level abstract model of the
type of system being tested. These experienced test engineers
use (even if they're not aware of it) a high level abstract
model of the system to guide the selection of hypothesis
without falling back upon requirements. These models are a
combination of operational experience and experience with
the kinds of things which can and do go wrong in the
development process and in real systems. Development of
these abstract models can benefit from work in extracting
semantic information from text.

In order to automate this process or improve our own
capability of developing systems we need to understand and
be able to produce this abstract model. Most test engineers
don't even realize they are working within this paradigm,
much less be able to transfer the knowledge of the model to
an expert system. Alternatively, we can derive the abstract
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Interfacing Physiologically-based Pharmacokinetic Modeling and Simulation Systems

Derek B. Janszen and M.C. Miller, III Biostatistics, Epidemiology & Systems Science
Medical University of South Carolina, Charleston, SC 29425

ABSTRACT limited model assumes that the transfer across the cell
"I The graphical user interface of a physiologically-based membrane is rate limiting, and thus reduces the tissue model
pharmacokinetic (PB PK) modeling and simulation system to 2 subspaces. Our system admits any of the above three
developed for the MacintoshTMl computer is described. The configurations for a tissue. The system also permits the
user interactively specifies: 1) the anatomical structure of the specification of four physiological processes which can
model (tissues) and the anatomical structure of each tissue; affect the distribution and flux of a substance: transport
2) physiological relationships; 3) transport characteristics; across a membrane, binding, excretion, and metabol-
4) thermodynamic properties of the substance. ism. A linear or non-linear formulation can be used for

The interface utilizes four independent interactive win- modeling these processes, depending on the available
dows: Model, Parameter, Kinetics, and Solution. The user information for a given process. Generally, a PB model may
selects tissues for the model and an exposure route from a include any or all of these processes.
flow diagram consisting of nine different tissues and four
possible routes of exposure, or from a menu. Assumptions IMPLEMENTATION OF PK MODELS
limiting the rate of mass transfer can be specified for each Although the PB approach to PK modeling is the method
tissue. Parameters for each tissue, as well as dosage of choice, there is, among some, reluctance to use this
parameters, are entered via dialog boxes. This method of approach because of the mathematics associated with the
specifying the model parameters encourages "What if...?" method (D'Souza and Boxenbaum, 1988). Nevertheless,
scenarios. The model is cast in an S-system format for ease progress in the development of computer software for solv-
of solution and for added flexibility in simulating inherently ing the system of differential equations generated by these
nonlinear biological systems. The system generates a steady- models is being reported.
state solution, which can be plotted as multiple tissue The literature describes three modeling methods. They in-
concentration-time curves on a configurable graph. The data elude utilization: 1) of a fixed model simulator where the
files can be exported to other graphics and statistics number and/or types of tissues are fixed (Bloch et al., 1980;
packages. The pictorial flow diagram, a table of all tissue Gabrielsson and Hakman, 1986; Menzel el al., 1987); 2) of
parameter values, the steady-state solution set, and the a general simulation system (Blau and Neely, 1987); and
graphic plots can be printed.. 3) of spreadsheet-based simulators (Ball et al. , 1985;

Johanson and Naslund, 1988).
INTRODUCTION At the heart of these modeling methods are the algorithms

Physiologically-based pharmacokinetic (PB PK) models used to solve the system of differential equations. Since
utilize a system of lumped compartments which are designed algebraic solutions are not available for these complex
on the basis of the actual anatomy and physiology of the models, they must be approximated by numerical methods.
species. Model parameters fall into four broad categories: Two terms used to characterize these numerical methods are
1) anatomical, e.g., organ volumes and tissue sizes; accuracy and efficiency: by accuracy is meant the error
2) physiological, e.g., blood flow rates and enzyme (difference) between the numerical solution and the true
reaction rates; 3) thermodynamic, e.g., drug-protein solution; by efficiency is meant the "cost" of the solution
binding isotherms; and 4) transport, e.g., membrane per- in terms of convergence of the estimation procedure, which
meabilities (Himmelstein and Lutz, 1979). is generally equated to computer time. Some of these

The first step in the development of a PB model is to methods are very simple, easy to program, and are efficient;
select the number and type of tissues. Once the tissues are their disadvantage is that they do not give very accurate
selected, a flow scheme is drawn with the desired regions de- results. Other methods, while achieving better accuracy, are
scribing the species anatomically (Figure 1). The liver, gut, more difficult to program and are less efficient.
spleen, and pancreas (enterohepatic system) are intercon- The modeling system described in this paper utilizes the
nected anatomically, maintaining the physiological basis. Power-Law Formalism (Savageau, 1969; Voit, 1991). It

Each tissue is initially considered to consist of three admits several system-modeling strategies. Table A is a
homogeneous subspaces: (a) a vascular space through mathematical representation of a generalized tissue with
which the tissue is perfused with blood; (b) an interstitial three subspaces, denoted by the subscripts 1, 2, and 3. This
space, which forms a matrix for the tissue cells; and (c) an model expresses -hanges in mass in terms of blood and
intracellular space consisting of the tissue cells that tissue concentrations, and general flux and biotransformation
comprise the organ (Figure 2). terms. In this representation, biotransformation (metab-

Rate-limiting assumptions may simplify the 3-subspace olism/excretion) can only occur in the "cellular" subspace.
model to one or two subspaces. The flow-limited model This representation also permits this set of equations to be
has a single space and is used to model tissues that are not used for modeling flow-limited and membrane-limited config-
well perfused by the circulatory system. The membrane- urations by setting appropriate terms equal to zero.
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Table B describes the characteristics of the possible tissue selection of which tissues or metabolites to graph, etc.),
configurations admitted by the generalized 3-subspace model, plotting of experimental data, and for any other parameters
The number of subspaces, presence or absence of biotrans- needed for solution of the set of differential equations.
formation and flux terms, type of flux (ACTive or The Solution window displays the resulting simulation
PASsive), and type of biotransformation (LINear or data in a columnar format. The user can specify the
Michaelis-Menten) are specifically enumerated. frequency with which the time points are displayed (e.g.,

Table C is the S-system representation corresponding to every sixth time point).
the linear system of Table A. This set of three S-system The set of differential equations generated by the selection
equations can describe all possible configurations for a and specification of tissues are solved by incorporating the
3-subspace tissue. In the S-system approach the different necessary modules from ESSYNSTM, an interactive program
configurations are admitted by altering the values of the written for the analysis of mathematical models expressed in
parameters according to the rate laws that are in effect for a S-system form (Irvine and Savageau, 1990; Voit et al., 1989).
particular configuration.

Our "PB-PK" modeling and simulation system is a DISCUSSION
flexible and generic PB PK modeling and simulation system As in all simulation systems, our modeling system is
developed for the Macintosh TM computer. The user inter- dependent on external estimation of PK parameters used in
actively specifies: 1) the anatomical structure of the model the model. These estimates may be derived from: the
(tissues) and the anatomical structure of each tissue (i.e., the literature; the investigator's previous experience; classical
parameters of the vascular, interstitial, and intracellular sub- parameter estimation experiments; or reflect a hypothesized
spaces); 2) physiological relationships (blood flow rates for value. Although many physiological parameters are
each tissue, metabolism and excretion of the substance); available in the literature, others, such as binding constants,
3) transport characteristics, which also entails identification frequently are not. When experimentation is not possible in
of flow- and membrane-limitations; and 4) thermodynamic humans the investigator must rely on in vitro or animal
properties of the substance (tissue partition coefficients). studies.

The graphical user interface closely adheres to the human PB PK models are attractive for a number of reasons. First
interface guidelines proposed by Apple Computer (1987). and foremost they are physiologically and anatomically

The application has four independent interactive win- correct. Second, they admit non-linear relationships. Third,
dows: Model, Parameter, Kinetics, and Solution. they may be cast in the form of S-systems, thus making
The content of each window can be printed, and the model them mathematically tractable. Fourth, these systems may
(including parameters) and simulation data (sim-data) saved be easily modeled using our system. Finally, these models
independently as files. The sim-data file format allows it to may be used to visually describe system dynamics and status
be exported to other graphics and/or statistical applications, through the graphical user interface. The classical approach

The user defines the anatomical model in the Model to PK modeling relates dose and plasma concentration. The
window (see Figure 1). This requires selection on a flow physiological approach goes one step further to relate dose,
diagram consisting of a subset of the nine different tissues plasma, and tissue concentrations (Ritschel and Banerjee,
identified in the window: lung; heart; liver; gut; spleen: 1986). 1urthermore, it is adaptable to changing physiological
kidney; muscle; testes; and "other". There are four possible circumstances and can allow for species-to-species and even
routes of exposure: intravenous (IV), intramuscular (IM), subject-to-subject differences within the context of the
oral, and inhalation. physiological or anatomical parameters in the model

Parameters for the tissues are entered by means of dialog (Himmelstein and Lutz, 1979). Perturbation of a particular
boxes (Figure 3). The user chooses the tissue configuration, parameter allows one to predict the changes in distribution
depending on rate-limiting assumptions. The number of or disposition of the drug during disease states, for instance,
parameters to be specified in the dialog box is a function of or in the presence of another drug. The combined effect of a
this selection. An array showing the values of all the model number of complex inter-related processes can also be
parameters is displayed in the Parameter window, determined provided sufficient data are available (Ritschcl and

Exposure route parameters are also entered via a dialog box. Banerjec, 1986).
The dosage regimen (Figure 4) admits a bolus or continuous
dose, with the user able to specify the time at which the SUMMARY
dosing occurs, as well as the fraction, F, that is absorbed Physiologically-based pharmacokinetic modeling is
into the blood. Because of the modular format used in the rapidly gaining acceptance as a method for simulating tissue
development of this software, it will be possible to drug concentrations based on anatomical and physiological
incorporate more complicated dosing regimens (e.g., the uni- parameters and thermodynamic properties of the drug.
versal elementary dosing regimen (Sebalt and Kreeft, 1987)) Currently available software systems that use the physio-

The Kinetics window (Figure 4) displays the results of logically-based philosophy are limited by the assumption of
the simulation once the model has been selected and the a particular type of physiologically-based model. Using a
parameters entered. Dialog boxes are linked to this window simulation language to define a complex model can be
to allow for configuration of the graph (time in hours/days, tedious. The Janszen-Miller "PB-PK" system is an interactive
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generic physiologically-based pharmacokinetic model-ing Menzel, D.B., R.L. Wolpert, J.R. Boger Il1, and J.M.
and simulation system wherein specification and modifi- Kootsey. 1987. Resources available for simulation in
cation of the model is facilitated by the graphical user inter- toxicology: specialized computers, generalized software,
face of the Macintosh TM computer. It allows great flexibilty and communication networks. In Pharmacokinetics in
in specifying a model, as well as ease of specifying the Risk Assessment. (National Research Council).
model parameters, and encourages "What if...?" scenarios. Washington, DC: National Academy Press, pp. 229-250.
The user selects tissues for the model and an exposure route Ritschel, W.A. and P.S. Banerjee. 1986. Physiological
from an anatomical flow diagram or from a menu. pharmacokinetic models: principles, applications,
Assumptions limiting the rate of mass transfer can be limitations and outlook. Meth. Find. Expil. Clin.
specified for each tissue. Parameters for each tissue, as well Pharmacol. 8, 603-614.
as dosage parameters, are entered via dialog boxes. The Savageau, M.A. 1969. Biochemical systems analysis. II.
model is cast in an S-system format for case of solution and The steady-state solution for an n-pool system using a
for added flexibility in simulating inherently nonlinear bio- power-law approach. J. Theor. Biol. 25, 370-379.
logical systems. The system generates a steady-state solu- Sebalt, R.J. and J.H. Kreeft. 1987. Efficient pharmacoki-
tion, which can be plotted as multiple tissue concentration- netic modeling of complex clinical dosing regimens: the
time curves on a configurable graph. The system allows one universal elementary dosing regimen and the computer al-
to examine concurrent concentrations of a substance and its gorithm EDFAST. J. Pharm. Sci. 76, 93-100.
metabolite(s) within vascular, interstitial, and cellular com- Voit, E.O. (ed.) 1991. Canonical Nonlinear Modeling: S-
ponents of a single tissue or organ; plot these values over System Approach to Understanding Complexity. New
time in the presence of single or repeated dosing; plot exper- York: Van Nosirand Reinhold.
imental data; and to generate data files for export to other Voit, E.O., D.H. Irvine, and M.A. Savageau. 1989. The
graphics and statistics packages. The pictorial flow diagram, User's Guide to ESSYNS. Charleston, SC: Medical
a table of all tissue parameter values, the steady-state University of South Carolina Press.
solution set, and the graphic plots can be printed.
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Productivity at stake: Challenges for
computing in the 1990's
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systems.

7 The computer technology in the 1990's One of the pressing challenges for
will provide many opportunities to improve management will be integrating existing
productivity. A company's strategy to integrate systems with new technology. Many
its existing technology with emerging current applications have been developed
technology will determine how well it takes in-house using methodologies that are now
advantage those opportunities. The goal of this obsolete. For example, databases may have
paper is to discuss the primary factors that been developed when there was little or no
will impact on productivity within the formal database management system
computing environment. The discussion will available. Failure to keep up with current
center on coping with existing technologies, technology through capital investment and
computing innovations, automation platforms continued education can lead to aging
and contemporary management issues., home-grown systems, housed in a

collection of primitive hardware.
Perhaps one of the major obstacles to

introducing new computing technology
remains ineffective communication.

COPING WITH AND CHANGING Systems managers as well as users have
OBSOLETE SYSTEMS communications responsibilities. Systems

managers should be well informed of
changes in computing technology and

g Traditions 2L ,e inform end users how it may benefit them.
(-own( Mtoy Users need to take the initiative to clearly

Sr.oo Comtnr ,cabon maogp- Pp define their application needs. InE sental tool of thru changesth s
Esoioooftuchanges ld >cooperation, these two groups can develop

Pnrtve Softwareso
Hadwae To Me.d or appropriate strategies to mend, change or

hange replace existing systems with new
technology. Additional communication is
needed with the general user community
so they undcr-tand how change will

IFigure 1 benefit them. Understanding the corporate
culture and traditions will facilitate these
communications. Figure 1, above,
highlights the essential components for
effective transition from obsolete systems
to a new technology.
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automation and data communication. The
Computing Innovation, major factors (see Figure 3) that will

impact these two areas are: the evolution
Computing innovations in hardware, of Integrated Services Digital Network (a

software and communication have technology that integrates data, voice and
revolutionized the way we process information, graphic information on digital lines),
The development of fast computer chips and integration of remote and central
processors, the advent of new and flexible processing capabilities and development of
operating systems, and improvements to data systems tolerant of different languages,
communication provide greatly enhanced software and hardware.
computing opportunities. Figure 2, below, An example of productivity
illustrates some of the features of these enhancements in clinical information
emerging technologies. processing is the development of the

concept of remote study monitoring (RSM)
and evolution of computing systems to
support it. Traditional clinical information

COMPUTING INNOVATIONS processing often involves a collection of
remote site investigators who treat

PC patients and fill out forms that describe
.... .. . - their medical history and responses to

-h,,aon'Oata Aess --- therapy. These forms are usually collected
Information Transfer or mailed to a central site for data entry,

- Resource Sharing [I- J data editing and study conduct monitoring.
* Computer Performance

Automated Processing Any discrepancies are mailed or
telephoned back to the remote investigator

I site for resolution. This process is often

complicated and time consuming. RSM
technology has been developed so that data
entry, editing, review and clean up can be

Figure 2 done at the remote site in a very user-
friendly manner. Data from the remote

The challenge is to effectively employ these site can be automatically transferred to the
innovations to facilitate rapid application central site overnight using modems and
development, data access, faster information telephone lines. Study monitors at the
transfer, resource sharing, enhanced computer central site can review the data and
performance and automated processing for the communicate with remote sites via
benefits of computer users. electronic mail. In principle, such systems

Productivity enhancement often requires can eliminate some of the complications,
large initial investments of time and capital. It reduce data errors and time delays in
is imperative that senior management traditional clinical information processing
understands the costs and benefits of systems. Implementation of these systems
computer enhanced productivity improvements may involve all the factors impacting
and provide adequate funding. productivity and automation mentioned in

Figure 3.
Other examples of productivity

Productivity in clinical information enhancing tools in clinical information
processing - an example. processing include digital imaging and

electronic note pad technologies. The first
Productivity enhancement in clinical could be used to electronically convert

information processing will involve both documents to digital data. The second
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could be used to directly enter clinical data on benefits. Figure 4, below, illustrates
hand-held electronic note pads without the use commonly introduced programs.
of paper forms. Introduction of automated
data processing should be ajoint responsibility
between systems managers and computer
users as discussed above.

EMPLOYEE MOTIVATIONS
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AUTOMATION DJvm .ro, neragtion
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Hih sped Conferencing
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Figure 3 Conclusion.

Contemporary Management Challenges. The growth in technology and
emphasis on productivity will put a

The advent of the personal computer has tremendous amount of pressure on the
dramatically changed the computer side of the knowledge workers of the 1990's. Unless
work place for the knowledge workers. The properly managed, the result could be
human side of that work place has also excessive stress and burnout, causing a
changed. For example, there is more cultural decrease in productivity instead of an
diversity in offices today than there was ten increase, lack of job satisfaction instead of
years ago. Experts predict that this trend will sustained motivation and poor
continue into the future. Senior and middle communication among peers and between
managers must face the challenge of supervisors and their subordinates. As the
effectively managing groups of workers with authors have described, successful
different skills, backgrounds and motivations, implementation of new technologies to
Specifically, managers and supervisors need to improve productivity requires clear
stimulate and sustain motivation on the job, understanding of existing systems and
provide exciting career potential for their corporate culture, firm grasp of the
workers and in general provide a work place benefits of new technologies, careful
conducive to productivity enhancements. It is transition planning among systems
unfortunate that many organizations spend managers and users, and management
tens of thousands of dollars recruiting talented appreciation of the special needs of the
workers only to provide little or no challenge knowledge workers.
for such workers. It is encouraging to note
that creative benefits are being introduced in
the work place. Flexible work hours and
educational assistance are two of these
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A Comparison Of Some Robust Procedures For Estimating A Linear Discriminant Function
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3. Robust estimate of Al , 2, E in LDF: e.g. Huber-type
M-estimates (Randles et al. 1978).
4. Estimate 13 and c directly to obtain an optimal

A number of methods have been suggested for robustly projection: e.g. nonmetric discriminant analysis(NDA)
estimating a linear discriminant function. These include (Raveh 1989).
substitution of robust estimates for the mean and Of these four different procedures, nonparametric
covariance matrix and methods which choose a projection density estimates (#1) require large sample sizes and the
to maximize a robust measure of separation. This paper algorithm is complicated; the disadvantage of transforma-
presents results of Monte Carlo simulations comparing tions (#2) is that each time to classify a new observation,
some of these methods along with various modifications to it is necessary to go back to find the rank or normal score
see whether relatively simple methods works as well as of this new observation; projection methods (#4) are very
complicated ones. difficult for more than a few variables. Robust substitution

procedures (#3) are relatively simple and easy to compute
Introduction and are the focus of this study.

The original purposes of this study were to
For the two population discriminant analysis, if t (.), f2 (.) 1. Compare effect of using different robust estimates of
are the density functions of the underlying populations and location and scale in LDF on misclassification rates.
assume equal costs, equal priors, then 2. Compare variability of misclassification rates under dif-

ferent procedures.
£1 (x) > M 1 However, the result of 1 indicated that a very simple
f 2 (x) procedure which I called MLDF worked about as well as

any of the other estimate procedures. Therefore, we added
gives the optimal discrimination rule. a third objective: compare the MLDF to other procedures
If further we assume that 1 (x) and f; (x) are normal with of all types in the literature.
common covariance matrix, then we have

Some Results from Simulation
I'x > ( : ) c

We used the following robust estimates of covariance in
where this study

( . - P2 ) Cov(XIX,)=R(X X ) *MAD(X )*MAD(X)

C = -- ( P1 + V2 )/.- 1 (pL1 - P2 ) where R(X,x) is Pearson's r, Kendall's T, Spearman's p,
or greatest deviation correlation coefficient Rg (Gideon &
Hollister 1987). MAD(XN) is the median absolute

In practice we use the sample mean R and pooled sample deviation. A Huber-type M-estimate for covariance was
covariance matrix S for p and E, and this gives the linear also used. Two robust estimates of location were used in
discriminant function (LDF) , which is widely used in addition to the mean: the median and a Huber-type M-
practice. But the LDF is not robust to violations of the estimate (Randles et al. 1978). We substituted these esti-
normality assumptions (Lachenbruch et al. 1973). mates of location and scale in LDF. In the simulation we

There are several approaches to deal with this problem: considered only bivariate distributions, that is p = 2. The
1. Use nonparametric density estimates of 4 (x),f; (x) distributional situations were normal, lognormal, mixture

(Koffler et al. 1978). normal and bivariate Cauchy distributions. We found that
2. Transformation: e.g., rank transformation, normal score for all these situations, the estimate of the covariance

transformation (Conover & Iman 1980, Koffler et al. 1982). matrix had little effect on misclassification rates, at least
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with the estimates we used. The median worked as well as Table 1. Average Percentages Misclassified Using
M-estimates for location, and both were better than mean. Different Location and Scale Estimators in LDF

Results for lognormal, mixture normal and Cauchy
distribution are reported in Table 1 and are representive Location Estimator
of all the results.

For mixture normal situation, the two populations were: Covariance Mean Median Huber-type MeanEstimator

0(4 1)]+0.1,4(2 01 (400 1001 Pearson MNa  39.0 33.7 33.3
) : 0".9* 0 1 '0 ' 100 1O00J LNb 12.4 13.4 12.0

Cc 41.6 34.8 35.7
Spearman MN 39.2 32.5 31.9

2.1)(41j..14()(40 00]LN 11.8 12.0 11.5
092:0.9 0 "o100 100+ *C 42.9 33.0 34.1

Kendall MN 39.8 32.8 32.1
LN 11.0 11.7 10.9

Lognormal distributions were generated from independent C 42.5 33.0 33.8
normal with unit variance and mean (3,0) and (0,0). Rg MN 40.0 33.0 32.1
Bivariate Cauchy random variables were generated by the LN 11.2 12.0 11.1
transformation Y = Z/sqrt(S) + p, where Z is multivariate C 42.7 33.0 33.6
normal distribution with mean 0 and covariance E and S Huber MN 31.9
is X2 (0) distribution with 1 degree of freedom (Johnson LN11.9
1987). The underlying normal distributions to generate LN 34.
Cauchy distributions were: C__4.7

a Mixture Normal

79: (i 0.5)]
0)J (015 1c Cauchy

We compared these two procedures with several

(4 published studies.
'[ 2  1.78) 3 9 (1) A Comparison with Randles et al. Study (1978)

: 1.7 8/ \' 9 Randles et al.(1978) introduced a generalization of LDF
i.e. RrH procedure and also LDF with Huber-type M-
estimate procedure using rank cutoff RLH. For R' H

A rank cutoff point was used instead of a zero cutoff procedure, they took a nondecreasing, bounded odd
point in LDF based on Randles et al. (1978). function T" as a measure of separation and found the

direction which maximizes this measure. They considered
the distributional situations in Table 2. To their results,Sugestion and Sonme Comparisons which are given in Table 3, we have added results for

the results above we chose the following proce- MLDF and RMLDF from a new simulation (with different
Based on the sudy: random numbers). We see from this table that the

(1) MLDF procedure Substitute median vector for the RMLDF procedure works as well as the more complicated
mean vetnLDF hiledue:ustiuteeing vto for Eadw the RT-H procedure. In particular, consider the situational

cu eto nsituation 8, where the distributions were contaminated, not(2) RMLDF procedure: Substitute median vector for the only by changing the standard deviations but also changing

mean vector in LDF while still using S forE but with rank the mean. The mean is a relatively bad estimate of
cutoff (Randles et al. 1978). Rank cutoff point is used to location, but the median is not much affected by the
balance the misclassification rates between two groups. We outliers and thus produced relatively good estimates.
chose as a cutoff point a point such that the relative
proportions of the misclassified observations of the two
groups by the discriminant function scores were as equal
as possible.
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Table 2. Distributional Situations compares favorably with the nonparametric methods. But
it seems that MLDF method doesn't work as effectively as

Population 1 Population 2 the RLDF method.

Al A2 al 02 Al P2 01 02 Table 4. Percentage Misclassified when

Na 0 0 1 1 1 1 1 1 nl= n2= 64 (lognormal situationst

N 0 0 1 1 1.781.78 2 3 1l = p=2 ju=3
LNb 1.65 1.65 1 1 2.65 2.65 1 1
LN 1.65 1.65 1 1 3.43 3.43 2 3 LDF 34.1 26.6 22.5
MN c  0 2 1 2.01 0 2 1 NN 31.8 22.7 12.4

0 0 20 10 2.01 0 20 10 P-C 35.0 19.5 7.8
MN 0 0 2 1 3.19 0 4 3 L-Q 34.4 17.5 7.0

0 0 20 10 3.19 0 40 30 GESS 30.9 17.5 12.4
MN 0 0 2 1 2.01 0 2 1 RLDF 32.5 15.4 6.3

2.010 20 10 0 0 20 10MN0 02 1 3.19 0 43 LDF 34.4 26.2 23.0
3.19 0 40 30 0 0 20 10 Huber 33.5 18.5 11.93.190__ 40_30_ 0_0__ 0_10_(with rank cutoff)

a Normal MLDF 33.7 21.1 16.7
b Lognormal RMLDF 33.7 20.5 12.0
c Mixture Normal (0.9 of first, 0.1 of second)

a Top part of table reproduces results from Koffler & Penfield(1978).
Table 3. Empirical Percentages Misclassified and results from Conover & Iman (1980). Bottom part of table contains

when nl = n2=30 results of a new simulation.

Situation LDF RLH RT H RMLDF Figure 1 displays the plots of the estimated standard
1 2929 2929 2929 2830 deviation of misclassification rates versus average overall
2 17 33 27 28 28 28 24 29 misclassification rate of the three procedures taken from
3 22 31 26 26 26 26 26 27 several simulation situations. If two procedures have the
4 1440 2526 2626 2627 same overall misclassification rate, but one has less
5 40 35 33 29 34 30 33 32 variability in the misclassification rate, then the first
6 23 44 30 31 3334 3033 procedure would be preferred.. The Huber-type M-
7 40 39 3331 3632 3433 estimate procedure and the RMLDF procedure have less
8 41 37 30 31 32 33 30 31 variability of the misclassification rate than the LDF

Notes: 1. Maximum SE of estimates is 1.8. procedure.

2. Results for LDF, RLH and Rr H are from Randles et al.(1978). Overall, the RMLDF method is simple and appaers to

(2) A Comparison with Koffler & Penfield(1978), Conover perform well relative to other nonparametric procedures.

et al.(1980)
Koffler and Penfield (1978) used four nonparametric Acknowledgement
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cohmed Birite aonrma rd vriese were tion as a method of discrimination with some Examples,"com pared. Bivariate lognorm al random variables were C m u i ai n nS ai t c ,T e r n eh d 9 5
generated from independent normals with unit variance Communications in Statistics, Theory and Method, A9(5)
and means p and 0 for population 1, and means 0 and 0 465-487.
for population 2, where Is = 1,2,3. The results appear in Johnson, M.E. (1987), "Multivariate Statistical Simulation",
Table 4. For lognormal populations, RMLDF is clearly to Wiley, New York.
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Abstract to choose an appropriate weight function we must first
explore the behavior of several weight functions with a

Noisy complex-valued data, for which robust regres- variety of long-tailed complex symmetric distributions.

sion techniques are the natural analysis approach, arise In Section 2 we briefly review the univariate complex

in many physical fields. Evaluation of the efficiency of normal. We then define several related univariate sym-

such techniques requires that their behavior be charted metric complex distributions.

over a series of known reference distributions. We have In Section 3 we discuss M-estimation of the regression

defined several symmetric long-tailed complex distribu- coefficients. We evaluate all the by now standard weight

tions (e.g., complex slash, complex Cauchy, complex functions (Huber, Cauchy, Welsch, Logistic, Fair, Ham-

double exponential) based on complex normal distribu- pel, tanh, biweight, and Andrews), the Thomson weight

tion. We have compared via the maximin method the ro- function (Chave, Thomson and Ander, 1987), and intro-

bustness of different regression M-estimators (as defined duce a new function that we call the Modified Thomson.

by their weight functions) over these distributions. The To find the best (robust) weight function for the M-

variances of the estimators of the regression coefficients estimation of the regression coefficients, we use in Section

are obtained by simulation over all the distributions and 4 the concept of relative optrim-efficiency. We compare

for all the weight functions. The relative efficiencies over the performance of the set of estimators over the set of

each distribution are obtained and then these relative long-tailed complex distributions by a simulation study.

efficiencies are compared over different distributions to Our recommended procedure for the M-estimation of

identify the best weight function. Three different sam- a complex-valued regression coefficient is to use two dif-

ple sizes 5, 11 and 15 have been used for this purpose. ferent sets of iteration, each based on a different weight

We apply our estimators to the evaluation of the Mag- function. We have used this technique to improve the

netotelluric response function. estimation of Magnetotelluric functions in a companion
paper (Ghosh and Heiberger, 1991).

KEY WORDS: Robustness; Regression; M-Estimators;
Complex-Distributions. 2. Symmetric Complex Distributions

1. Introduction We are interested in those complex random variables
Z = ZR+iZI whose density functions fc(z) are real and

Many physical settings provide data for which linear equal to the real-valued bivariate density gR(zR, zr), that
regression is the physically appropriate analysis tech- is
nique. In one such technique, the Magnetotelluric fC(z) = gR(ZR,zI) (2.1)
method, the complex-valued Fourier transforms of the Denote the real-valued marginal densities of the real and
electric and magnetic fields measured on the earth's sur- the imaginary components of Z by hR(zR) and kj(zt).
face are treated as the response and explanatory vari- We also require that
ables respectively. Robust techniques are needed to re-
move high leverage noise contamination in the electric hR(U) = ki(u) (2.2)
field attributable to electrical activity in the ionosphere. We list in Table 1 nine different symmetric complex

In this paper we use M-estimation, an iteratively distributions ordered according to increasing tail weight
reweighted least squares technique where the weight ma- (radius of the 93%ile), ranging from the almost-familiar
trix w is a diagonal matrix with real positive weights. complex normal to the heavy-tailed complex Cauchy
The distribution of the contaminating noise is not with independent real and imaginary components.
known; therefore the best function for producing the We give in Section 2.1 Goodman's (1963) definition
weights from the observed data is not known. In order of the complex normal. We constructed the remaining
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distributions and derived their density functions (Ghosh 2.5 Complex Slash with Dependent
1990). The derivations are straightforward applications Components, CS(D)
of the transformation of variables method and are ex- Let X = (XR + iX) - CN(0, 1) and Y - U(, 1)
ceedingly tedious. independent of each other. Then,

2.1 Complex Normal, CN Z = ( ) + i ( y ) (2.7)

Goodman defined a complex normal random variable is Complex Slash with Dependent Real and Imaginary

as a complex random variable whose real and imaginary Components, CS(D).

parts are independent bivariate normal. Let Z follow the
univariate complex normal, to be denoted Z - CN(O, 1). 2.6 Generalized Complex Slash, GCS
Both equations (2.1) and (2.2) are satisfied. The p.d.f. Y = (YR + iYj) is said to follow a univariate complex
of Z is give by uniform distribution CU in a unit disk if its probability

f(z) =e-(R+z') - 00 < ZR, zI < c (2.3) density function is given by 1/vr for Jy12 < 1. Let X =

Independence of the real and imaginary components in (X k iXI ) CN(O, ) and Y = (YR + iY) - CU(unit

the univariate complex normal has been assumed to al- disk) independent of each other. Then,

low easy extension to the multivariate complex normal. Z X~ ( 2Xgd) + i (X1YMY x~ar) (2.8)

2.2 Complex Cauchy with Independent has a Generalized Complex Slash, GCS, distribution.

Components, CC(I)
2.7 Complex I Distribution, CT

Let X = (XR+iXI) -" CN(O, 1) and Y = (YR+iY) 2i

CN(O, 1), independently. Then Let X = (XR+iXI) - CN(O, 1) and Y = (YR~iYI) -
CN(0, 1) independent of each other. Then,

Z = R Y1(2.4)
+=(!)= - 9 (XR}'R+XII',\ + (2.9)

is a Complex Cauchy with Independent Real and Imag- = k -P) \M mIy

inary Components CC(I). follows a Complex t distribution, CT, with 2 degrees of
freedom.

Note that the familiar real variable definitions do not
2.3 Complex Cauchy with Dependent always generalize to complex variables in the anticipated

Components, CC(D) way. The real-valued Cauchy distribution is defined as

Let X = (XR + iXI) - CN(O, 1) and Y - N(0, 1/2) the ratio of two independent standard normal variables.
independent of each other. Then, But the ratio of two independent standard complex nor-

mal variables gives a complex-i distribution with 2 de-
Z = (4-&) + i (- V) (2.5) grees of freedom, not a complex Cauchy. The complex

is Complex Cauchy with Dependent Real and Imaginary Cauchy was given in Sections 2.2 and 2.3.
Components, CC(D). Note that independence of the real
and imaginary components is not required to satisfy con- 2.8 Complex Double Exponential Distribution,
ditions (2.1) and (2.2). CDE

Let Xj = (XjR+iXj) - CN(0,1) j = 1,2,3,4
2.4 Complex Slash with Independent independent of each other. Then,

Components, CS(I)
Z = (X1RX 2 R+XaRX 4 R)+t(X'IX 21+X3IXI) (2.10)

Let X = (XR + iXi) -. CN(O, 1) and Y1,Y 2 both - Z

U(O, 1) independent of each other and also independent has a Complex Double Exponential distribution, CDE.
of X. Then,

Z - (Y)+i (') (2.6) 2.9 Complex Logistic Distribution, CL

is Complex Slash with Independent Real and Imaginary The CL distribution is defined so that the joint distri-
Components, CS(I). bution of the real and imaginary parts follows a bivariate
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logistic distribution and each of the real and imaginary where * is a N x 1 vector whose jth element is the in-
components follows a real univariate logistic distribu- fluence function 0(11). We solve equation (3.3) by ex-
tion. pressing it as a weighted least squares problem

XH wr = 0 (3.4)
3. Regression M-Estimators and Weight where r is N x 1 residual vector, w is N x N diagonal

matrix of weights whose jth diagonal element is wj =
The M-estimate, or maximum likelihood type esti- (!d )/('d)" The solution to equation (3.4) is given by

mate, TN based on a sample (XI, X2 ,.. , xN) of size N, iteratively solving

is the value of t that minimizes the objective function

j=1 p(xj - t). The loss function p is assumed to be 3 = (XHwX)- (X"wy) (3.5)
continuous, and has derivatives with respect to t at all
values of t. We calculate TN by finding the value of t The weights at each iteration are computed from the
that satisfies the equation YjI~ ik(z, -t) = 0 where residuals and scale estimate of the previous iteration.t(u) = d-4fpu) A practical choice of the scale factor d is ,a. SQ is

Let us consider the linear regression model the sample interquartile diameter of the complex resid-
uals and 0aJQ is the population interquartile diameter of

y = X # + r (3.1) the underlying distribution of r.
NxI Nxq qxl Nxl

The M-estimation process minimizes a norm of resid- 3.1 Modified Thomson Weight Function (M-
uals, as does the least squares process. But the misfit Thomson)
measure in M-estimation is chosen so that a few extreme Thomson's weight function is different from the others
values cannot dominate the answer. The M-estimate is lis on 1 be t is dtaeadaptive. the qtae-obtaned y sovinglisted in Section I because it is data adaptive. The quan-
obtained by solving tity a in Thomson's weight function is the nth quantile

min )-§= p ( ) = min, RHR (3.2) of the assumed underlying distribution. The point atwhich the downweighting begins depends on both the
where minimization is done with respect to /f, and R is a underlying distribution and the sample size n.

N x 1 vector whose jth element is P(!), r = Y -X /3 We found that Thomson's weight function is robust

is the jth residual, and d is a scale factor. In the special to several underlying distributions but does not work

case with p(u) = u2 and d = 1, M-estimation specializes quite well enough for very heavy-tailed distributions. We

to least squares estimation. therefore proposed a new weight function, a modification

Equation (3.2) yields solutions of the non-linear sys- of the Thomson weight function:

temxH = 0 (3.3) w)- exp [(ln a)(-e (1u1- ))] (3.1)

Table I displays the a values for the 80th, 91st and 93rd
quantiles of the complex distributions (corresponding to

Table 1. Interquartile diameter o'JQ and the 50th, 80th, n = 5, 11, 15).
91st and 93rd quantile radii for complex distributions. The advantage of the M-Thomson weight function

over Thomson's function comes from the change in the
Distributions oIQ 50th 80th 91st 93rd base of the exponential as a changes. It downweights

CN 1.66 0.83 1.27 1.55 1.64 the potential outliers as the sample size increases to a

GCS 2.52 1.26 2.16 2.35 2.37 greater extent than does Thomson's weights. For small-

CS(D) 3.50 1.75 2.47 2.53 2.54 tailed distributions like CN, GCS and CS(D), the M-
Thomson function puts more weight on the valid data

CDE 2.70 1.35 2.43 3.27 3.59 and also protects non-outliers from too much down-
CT 2.00 1.00 2.00 3.16 3.74 weighting. For mid-size distributions like CDE, CT and
CL 3.72 1.86 3.11 4.08 4.46 CL, M-Thomson's weight function rapidly downweights
CC(D) 3.46 1.73 4.90 10.95 14.97 data points that are beyond the nth quantile. For large-

CS(l) 4.23 2.11 5.60 12.39 16.91 tailed distributions like CC(D), CS(1) and CC(I), the
M-Thomson and Thomson weight functions give almost

CC(1) 4.40 2.20 6.23 13.97 19.31 identical results.
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4. A Simulation Study well enough for long-tailed distributions. The Modified
Thomson function is often the best, dominating all the

We have evaluated the weight functions listed in Sec- others except with the very long-tailed complex Cauchy
tion 1 over the distributions defined in Section 2. distributions where it gives results similar to the Thorn-

In order to find the best M-estimator (weight func- son function.
tion) of the regression coefficients for complex-valued
data we compare the different weight functions using the
maximin approach. Our presentation is based on Chap- 4 Recommendations
ters 10 and 11 of Hoaglin, Mosteller and Tukey (1983). In order to estimate a complex-valued regression co-
We have s different weight functions (wi(u), w2 (u), . efficient using the M-estimation technique, we use two
w,(u)) and therefore s estimators of 3 ( w,, 1 3, ", different sets of iterations. In the first set of iterations

,6w.). We want to investigate which estimator among we choose a weight function, usually the redescending
these is the most efficient over a wide range of distri- Huber or Hampel weight function so as not to reject too
butions. The optrim-efficiency for a specified estimator many outlier points too early, and iterate until the resid-
is the ratio of the variance of the best estimator (the ual norm Irnrl does not change appreciably. In the sec-
optrim) for a given distribution to the variance of the ond set of iterations we choose another weight function
specified estimator. With weighted least squares estima- dependent on sample size and iterate it similarly until
tors /3, the optrim-efficiency is we get the desired convergence. For most sample sizes

we looked at, the M-Thoinson weight function seems to
Optrim-Eff (. IF) = ((X WkX)-'11 (4.1) dominate. Other good choices for the second set are the

1 I(X"Wx)-1l Thomson, logistic, or hyperbolic tan functions.
where the notation wk means the diagonal matrix whose
jth diagonal element is wk(Irj/dI). Acknowledgement
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Abstract: Minimum total error, or L1, regression estimates n
are a generalization of the sample median to prediction prob- problem m in p jy -/4 . It is standard that the solution g is the
lems. Multivariate extensions therefore involve the concept of A =

a multivariate median. There are many inequivalent character- sample median. Similarly, the solution of the least squares

izations of a multivariate median in the literature, all of which location problem is the sample mean. When we proceed to

seem to have at least one of two major difficulties: either they several variables, it is still true in every sense that the multiva-

lack the property of affine covariance which we have come to hate sample mean, with the obvious definition, is the solution

expect from ordinary multivariate regression, or they are of the least squares problem. However, even the apprcpriate

computationally highly unpleasant. We here propose a defini- definition of a multivariate median is problematic; so that it is

tion of multivariate median, inspired by the theory of M- not obvious what is meant by multivariate L' regression.

estimation, that transforms appropriately under linear changes A number of possible definitions of multivariate median

of variables. Furthermore, it may be computed straightfor- are discussed in Small [19901. Perhaps the simplest is the

wardly using a fixed-point property. The result is a resistant vector of medians of each coordinate by itself. This corre-

multivariate regression estimate that is intuitively appealing sponds to solving the least total error problem for each depen-

and, surprisingly, increasingly efficient at the normal model in dent variable separately. For some applications this may be

higher dimensions. We share some computational experience reasonable, but it has one obvious major flaw: if we take a

with this estimator. rotation of the dependent variables, it is not generally true that
the median of the rotated data is the rotation of the median.

I. Introduction Another simple definition of the multivariate median is ob-
Linear regression is perhaps the central tool of modem tained by extending minimum total error to a minimum total

statistics; it seeks predictive models of the form 5 = Xb. distance criterion:

The classical criterion for fitting this model goes back at n

least to Legendre, the method of least squares: min =1 l
P1a

nA

min (Yi-Xb )2  This approach, called the L' median, which dates back at
b least to Weber [ 19091, amounts to choosing a point in space so

The simplicity and power of this procedure is unexcelled. that the stars are scattered as uniformly as possible over the

However, in modem times, statisticians have become increas- celestial sphere. It is obviously unaffected by rotations. Unfor-

ingly concerned with the lack of robustness of the least-squares tunately, this idea for a median fails to transform nicely if we

technique-its sensitivity to a few observations for which the rescale one of the coordinates differently from the others. For

model fit is very poor. Perhaps the oldest technique for dealing example, if one variable is in inches and the other in dollars,
with this problem (predating even least squares, see e.g. Stigler changing the scale on the first axis to centimeters will change

[19861) is the minimum total error, or L1, criterion: the median in a nonobvious way. Since in statistical practice
our coordinates are often inhomogeneous, the applicability of

mini Z I-Xibl this definition is too limited.
b i=1 One of the great virtues of the median is its covariance

f is m under any monotone transformation. It is not clear that thisThe naturalness of this method is to some extent offset by its desideratum is achievable for any multivariate location mea-

greater computational difficulty and by its relatively low

efficiency at the normal model. However, it is robust-there is sure. However, it is certainly desirable, as our two examples

an upper bound on how much influence any poorly-fitting suggest, to have a multivariate median covariant under as rich

observation can have on predictions. Thus, the minimum total as possible a set of transformations of the data. For example,

error criterion has attracted considerable recent attention. the mean is affine, that is E(a + Bx) = a + R E(x). Arbitrary
Extension of the linear model to several dependent vari- linear changes of variables adjust the mean in the obvious way.

ables, multivariate regression, turns out to be straightforward We shall therefore restrict our attention to definitions of
using least-squares. However, extension of the least total error multivariate median that are affine; a number of these are
criterion to several dimensions turns out to be more problem- discussed in Small's survey. However, all of these concepts
atic. Consider the simplest case of regression, the location have at least one of two serious drawbacks. Either they are
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rather difficult to compute, or they do not generalize in any try, then pt, if it exists, is the center of symmetry. V, if it exists,
obvious way to a definition of multivariate median for distri- is a multiple of the quadratic form that characterizes the
butions. elliptical symmetry.

We shall propose an affine location criterion, the m- We are left to decide on an appropriate value for b. From
median, inspired by Huber's m-estimates, that is plausibly a the definition, it is clear that this decision has no effect on the
multivariate generalization of the ordinary median. It will have definition of .. However, a definite solution for Vwill be useful
an obvious characterization on distributions; and we will in various inferences about our model, and b scales V. If our
propose a reasonably efficient method for computing it. It has goal were primarily robustification of the normal model, we
the nice property that it becomes more nearly efficient at the would choose the constant so that V coincided with the cova-
normal model as the dimensionality increases. Extension to a riance of a multivariate normal random variable. For the
general tool for robust multivariate regression will be straight- general problem of an appropriate definition of LP scale, the
forward. normal family plays no special role. Therefore, I propose the
II. Multivarlate LP Location Estimation following criterion for deciding b: For a distribution uniform

Least squares and minimum total error are each special on the unit sphere, let V be identical to the ordinary covariance
n matrix; that is, 1/d I, where I is the identity matrix. Then our

cases of the U' location estimate which solves m in -Yl scale behaves predictably on the simplest affine family, oneAL
= out of which all others may readily be built. A calculation gets

It is this which we shall generalize to several variables.
Following the lead of Gauss, we recognize that multivariate b = PId i-P/2 .
least squares arises as maximum likelihood estimates of the Ill. The M-median
parameters in the multivariate normal family of densities The case p=l of a multivariate L location estimate will

e_.___ V-i/2'(x _/ give us our desired affine multivariate generalization of the
e2 median.

(2n)4i'/ (deta)h Definition: The m-median is any vector gi which solves
The family is affine, with the transformation rule for the mean

Tmin nlogdetV + fdyti- }vIxi 1

as above and for the covariance matrix V'=BVBT ; the i.v 2
p..V 2i=l

location estimate is the multivariate mean and the scale esti- Thedefinition for distributions is analogous. The m-median is
mate is the sample covariance matrix. This suggests a natural affine, but coincides with the L' median for spherically sym-
way to achieve an affine U location statistic: let it be the metric data. In particular it is the ordinary median in the case
maximum likelihood estimate of the parameters in the family of one variable. Notice that it is not defined if the observations

e- I(x -  1V - (x - )IP/2/ /  all fall in a hyperplane. In that case, use the definition that
C applies to the smallest-dimensienpi hyperplane that contains

(det VJ /2 all observations.

where b will be chosen later (it is essentially arbitrary, but we One fact is immediate: given d+I noncohyperplanar vec-
need a consistent choice), and c is the constant that lets th. tors, an m-median is at the barycenterof the simplex they form.
family integrate to one (we will never need to compute it). The For, we may transform them to the corners of a regular simplex,
maximum likelihood criterion for estimating this from an i.i.d. where the result follows from symmetry, then transform back.
sample of n random vectors is Milasevic and Ducharme 11987] have shown that the L'

n median is unique for noncolinear data. But then the m-median

minni kogdetV+l- r 1 (xIi)Tv-lx_gjp/2 is also unique in this case, as we may transform to the casemv 2 bi__ Ly where Vis a multiple of the identity and so the two definitions

The solution .t to this problem will constitute our definition of coincide.
an affine U' location statistic. The following partial result is Proposition: The relative efficiency of the m-median to
immediate: fora fixed nonsingular Va solution for.t exists and the mean in the multivariate normal case is
the collection of solutions is convex. If the observations do not Id42
lie in a hyperplane, then for fixed g a solution V exists. Any 2 F
joint solution is affine: the transformed solution is a solution d 2
for the transformed sample.

Notice that an extension of this definition to one for The proof involves computing the expected square of the
distributions is immediate-simply replace the sums with infinitesimal influence function of the statistic after transform-
expectations. If the random vector possesses elliptical symme-
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ing to the spherically symmetric case. This generalizes a result algorithm is to obtain a starting estimate for li and V (for
of Brown 119831 for the L1 median. Here are some special example, the mean and covariance), then iterate until the
cases: estimates do not change significantly. In a large number of

trials this converged in all cases where I <_ p : 2. Our algo-
Dimension Efficiency rithm for computing the m-median is then just the case p= 1.

Surprisingly, this procedure was successful even in the case of
1 0.6366 the univariate median, though it converged very slowly and is

no competition for the usual median algorithms. In higher
dimensions, it usually converged moderately rapidly, getting

3 0.8488 6 significant figures in perhaps 20 iterations. The exceptions to
this were usually cases in which I.t coincided with a data point-

4 0.8836 then convergence was very slow. Presumably the algorithm
oo 1.0000 could be modified to recognize this special case. Except in one

dimension, it seems to be very unusual for the location to
Thus, the m-median becomes more nearly efficient in coincide with a data point.

higher dimensions, and because of its robustness (since the Scott et al [ 19781 report the serum cholesterol and triglyc-
influence function of a point is bounded) is a worthy competi- eride levels for 320 males who reported chest pain. The sample
tor to classical measures of location, mean was cholesterol 216.19 and triglycerides 179.35, with a

One interesting phenomenon should be noted: since the correlation of.228. After fewer than 20 iterations we found the
m-median is covariant under arbitrary linear changes of coor- m-median was cholesterol 212.71 and triglycerides 156.37
dinates, it is afflicted by a sort of nonrobustness in certain with a "correlation" of .240. A few very high triglycerides
cases. If all but a few observations lie in a hyperplane, points levels apparently distorted the typical value, and even diluted
off that hyperplane may be arbitrarily influential on the coor- the correlation slightly. The figure shows a sparse histogram of
dinates of the m-median in the directions orthogonal to the this data set (with several extreme cases unfortunate!y cen-
hyperplane. This seems unavoidable for nontrivial affine sta- sored). The digit 2 indicates the mean and I the m-median.
tistics. The extension to LU multivariate regression is straightfor-
IV. Computing the Estimates ward: replace f.t by a linear model with one or several indcpcn-

In the case p=2, we have closed form estimates for the dent variables, and V is then a sort of covariance matrix of the
multivariate mean and the covariance matrix. For computing multiple residuals. The first fixed point equation becomes a
the general affine U location statistic, we need system of weighted normal equations; our method is thus a

Theorem: A fixed point for the affine U location fitting special case of iteratively reweighted least-squares. Tests and
criterion is given by confidence statements for such a method raise a number of

interesting questions, which will be dealt with in a later paper.
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Validating a Large Geophysical Data Set:

Experiences with Satellite-Derived Cloud Parameters

Ralph Kahn, Robert D. Haskins, James E. Knighton,

Andrew Pursch, and Stephanie Granger-Gallegos

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

Abstract 1. Introduction

We are validating the global cloud parameters derived from the NASA's Earth Observing System (EOS) will generate vast
satellite-borne HIRS2 and MSU atmospheric sounding quantities of data. Hundreds of terabytes of data will be
instrument measurements, and are using the analysis of these acquired from orbit to characterize the Earth's environment
data as one prototype for studying large geophysical data sets with the kind of spatial and temporal detail needed to study
in general. The HIRS2/MSU data set contains a total of 40 climate change. Such high resolution is required to properly
physical parameters, filling 25 MB/day; raw HIRS2/MSU data sample the non-linear impact of small-scale phenomena,
are available for a period exceeding 10 years. Validation which can make significant contributions to the global-scale
involves developing a quantitative sense for the physical budgets of heat and momentum. It is also expected that the
meaning of the derived parameters over the range of data will be analyzed not just in the traditional manner,
environmental conditions sampled. This is accomplished by concentrating on a single data set at a time, but in new ways
comparing the spatial and temporal distributions of the derived that involve routinely comparing data sets from multiple
quantities with similar measurements made using other sources. Part of the need to study multiple data sets comes
techniques, and with model results... from a growing appreciation for the importance to global

conditions of transports across boundaries such as the air-
The data handling needed for this work is possible only with ocean interface (e.g., Earth System Science Committee,
the help of a suite of interactive graphical and numerical 1988).
analysis tools. Level 3 (gridded) data is the common form in
which large data sets of this type are distributed for scientific We are undertaking the validation of cloud parameters derived
analysis. We find that Level 3 data is inadequate for the data from the High Resolution Infrared Radiation Sounder 2
comparisons required for validation. Level 2 data (individual (HIRS2) and the Microwave Sounding Unit (MSU)
measurements in geophysical units) is needed. A sampling instruments aboard the NOAA polar orbiting meteorological
problem arises when individual measurements, which are not satellites. The instruments provide one of the few global
uniformly distributed in space or time, are used for the measures of cloud properties extending over many years.
comparisons. Standard 'interpolation' methods involve fitting They are also capable of obtaining near-simultaneous
the measurements for each data set to surfaces, which are then constraints on the physical characteristics of the atmosphere
compared. We are experimenting with formal criteria for and surface needed to derive cloud properties. One goal of
selecting geographical regions, based upon the spatial this work is to learn about analyzing large geophysical data
frequency and variability of measurements, that allow us to sets in general.
quantify the uncertainty due to sampling. As part of this
project, we are also dealing with ways to keep track of Radiances from the HIRS2 and MSU instruments have been
constraints placed on the output by assumptions made in the analyzed by Susskind and co-workers using an algorithm
computer code. The need to work with Level 2 data introduces that accounts self-consistently for the first-order physical
a number of other data handling issues, such as accessing data quantities affecting the emergent radiation (Susskind et al.,
files across machine types, meeting large data storage 1984; 1987). The standard data products are (1) monthly
requirements, accessing other validated data sets, processing mean values for forty meteorological parameters, including
speed and throughput for interactive graphical work, and effective cloud amount and effective cloud top height, on a
problems relating to graphical interfaces, grid of boxes 2 degrees in latitude by 2.5 degrees in

longitude, and (2) 'daily data' with twice-daily temporal
KEY WORDS: large data sets, validation, satellite sampling, a spatial resolution of about 125 kin, and spacing

data analysis between points of about 250 km. The monthly mean data
are referred to as a 'Level 3' (gridded) product, and the daily



134 R. Kahn et al.

data is called a 'Level 2' product (individual measurements We encountered a second problem when making
reduced to geophysical units) (Space Science Board, 1982; comparisons among Level 3 products with different gridding
EOS Data Panel, 1986). The size of the uncompressed schemes. The best concurrent cloud climatology available
Level 3 data is about 4 MB/month, whereas the Level 2 for comparison with the data in Figure IA was derived from
product fills about 25 MB/day (750 MB/month). the Temperature Humidity Infrared Radiometer/Total Ozone

Mapping Spectrometer (THIR/TOMS) on the NASA
By validation we mean 'developing a quantitative sense for Nimbus 7 satellite (Stowe et al., 1988; 1989). The standard
the physical meaning of the measured parameters,' for the THIR/TOMS Level 3 data product was binned according to a
range of conditions under which they are acquired. Our global 500 by 500 km grid that is also used for Earth
approach involves: (1) identifying the assumptions made in radiation budget studies. The July 1979 HIRS2/MSU Level
deriving parameters from the measured radiances, (2) testing 3 data, degraded using area-weighted averaging to the
the input data and derived parameters for statistical error, THIR/TOMS spatial grid, is shown in Figure lB. We then
sensitivity, and internal consistency, and (3) comparing with resampled the degraded HIRS2/MSU data back to the 2 by
similar parameters obtained from other sources using other 2.5 degree grid, and subtracted it from the original
techniques. A study of this type was performed for sea HIRS2/MSU data (Figure IC). Note that the differences are
surface temperature (Njoku, 1985), and our project is one of nearly as large as the range of the signal, with both positive
several parallel efforts currently underway to validate and negative values. The pattern of differences varies with
different cloud climatologies (e.g., Rossow et al., 1985; the location of edges in the original data, and is modulated
1990). The validation effort we are undertaking introduces a by the relative position of grid boundaries. Differences are
number of problems that may be of interest to specialists in especially large at high latitudes, where the spatial
computational statistics, such as the INTERFACE resolution of the THIR/TOMS grid is much lower than that
community, as well as to those involved in research directly of the HIRS2/MSU grid, and wherever there are sharp edges
related to interpreting large geophysical data sets. This generated by cloud patterns, such as in the intertropical
article summarizes the key data handling issues we have convergence zone and monsoon areas.
encountered.

With the Level 2 products, we have access to physical
quantities at the full resolution acquired by the instruments,

2. The Need for 'Level 2' Data and avoid introducing additional artifacts into the comparison
between data sets. Level 2 data are not uniformly distributed

Large geophysical data sets, such as cloud climatologies, are over the surface. At low latitudes there are gores in the
often distributed to researchers in gridded (Level 3) form. HIRS2 sampling between orbits, whereas at high latitudes,
This can reduce the data volume by orders of magnitude the surface is heavily oversampled. Data dropouts and
relative to the parameter values for each individual sounding calibration lines occur at all latitudes. The sample
(Level 2), and provides the user with a 'spatially uniform' resolution changes by more than a factor of 2 from nadir to
data product. For example, Figure IA is the global, the limits of each scan. As a first step toward making
monthly-mean cloud amount map for July 1979 from the comparisons among Level 2 data sets, surfaces that take
HIRS2/MSU data, in the original 2 degree by 2.5 degree account of non-uniform clustering of data points may be fit
averaging bins. All accepted cloud amount data from the to the data. We have begun experimenting with locally
individual atmospheric soundings that fell within each adaptive surface fitting techniques (e.g., Renka, 1988), and
geographic box were summed, and mean and variance values are exploring the use of methods that generate variance
for each box were calculated. surfaces together with each fitted surface (Cresse, 1989, and

references therein).
Several problems occur when using Level 3 products for
validation. First, if only the Level 3 parameter values and Binning, which is traditionally used to make comparisons
associated variances are available, there is no way to assess among global data sets, is performed as an automatic
how much of the reported variance is due to inherent non- procedure. In using Level 2 data for validating data sets,
uniformity of the parameter over the averaging region. geographic sub-regions of the globe must be selected for
Essentially, the instrument resolution is degraded to a scale surface fitting, based upon some criterion that evaluates the
comparable to the box size, and information originally density of points relative to the size of local gradients of the
acquired to measure smaller-scale phenomena in both the parameter field, possibly in several directions. Figure 2
spatial and temporal domains is lost. For example, in a 2 illustrates the role of interactive geographic subset selection
by 2.5 degree box, the surface temperature may exhibit a part of the software we are assembling to perform the
random fluctuations of half a degree and may change HIRS2/MSU validation. 'HDF' in this figure refers to
systematically by several degrees, whereas the box average Hierarchical Data Format, a transportable file format that
variance will assign all the variability to random error. eliminates all but an initial file conversion for exchanging

data among DEC, Sun, Macintosh, and other machines used
in the validation (NCSA Software Tools Group, 1990).
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This allows us to store single copies of data files on geophysical data sets. We need Level 2 data (individual
centrally located disks, that are accessible across the network measurements in geophysical units) (A) to perform
to machines with differing architectures. We are currently comparisons among data sets with different sampling, and
investigating the criteria for accepting subsets, choice of (B) to understand the effects of spatial and temporal
method for surface fitting, and methods for making formal sampling on the 'average' values obtained from a single data
comparisons among surfaces fitted to data from different set. The need for Level 2 data severely complicates data
sources. The important question of interpolation in the handling. Among the areas where advances would be most
temporal domain we set aside for the present. helpful are:

To summarize: in spite of the much larger volume of the 1. Surface fitting software for data distributed non-uniformly
Level 2 data, relative to Level 3, and the collection of issues in 2-dimensional space, and ways to obtain some measure of
related to the spatial and temporal sampling of Level 2 data, the associated variances.
we need the ability to access, store, and process Level 2 data
for (1) studies of the internal consistency and precision of 2. Software for making formal comparisons among fitted
the data set and (2) comparisons with other cloud surfaces from several sources, and their associated variance
climatologies, that are involved in the validation of the surfaces.
HIRS2/MSU cloud parameters. We anticipate that similar
needs will arise for interdisciplinary process studies, and in 3. Ways of documenting software and data files so they may
work directed toward using observations to better understand be exchanged and used by others easily.
mesoscale climatological phenomena.

4. Ways of documenting the assumptions embedded in3. Tracking Assumptions in the Code retrieval and processing algorithms, so a researcher studying
the data products can grasp the collection of constraints

Another issue that bears upon the degree to which we may placed on the output data by the code.
perform validation, and other scientific analysis on large
data sets, is our ability to grasp the collection of constraints 5. Additional ways of storing data. For a given Level 2
imposed on parameter values by the code that generates data product, we need readily accessible data storage capacity
them. An assumption embedded in a large data handling of between one and two orders of magnitude the size of the
code may produce results that hide important information in basic data set, for intermediate and derived products that are
the data, or may produce patterns in the data that could be created as part of the validation.
incorrectly interpreted as scientifically meaningful.

Several longer-term needs include:
We are experimenting with methods of charting the
collection of assumptions, as a way of calling the attention 6. The development of validation procedures that are easy
of the user to areas where the code may influence the output enough to apply so that it will be feasible to generate and
parameters. We are using standard charting symbols as access a large number of validated geophysical data sets for
much as possible (e.g., Yourdon and Constantine, 1979). interdisciplinary studies of all types.
An example of this type of chart is Figure 3. This shows
the flow of control and the flow of assumptions made in a 7. Ways of fitting surfaces to data values distributed non-
relatively small part of the HIRS2/MSU analysis code that uniformly in 2-dimensional space and in time, and obtaining
produces Level 3 data from Level 2 products. This chart a measure of the associated variances.
made clear the number and complexity of the assumptions
involved in generating Level 3 products, and it played a role 8. Better ways of discovering patterns and surprises in high-
in our assessment of the value of Level 3 data for the dimensional data sets.
validation exercise.

9. Ways of fitting hyper-surfaces to higher dimensional dataCharting the flow of control provides a needed context for sets, and techniques for studying them.
the constraints placed on the data. These charts take a step
in the direction of making it possible to keep track of We have described our data, the collection of problems we
assumptions, but they do not eliminate the work involved in are facing in the validation work, and our approaches to
carefully assessing the meaning of derived parameters. some of these issues. Solutions or partial solutions may

exist to some of the problems that are not widely known
4. Conclusions outside specialized data handling and computational statistics

communities. We hope to stimulate experts in these fieldsThe HIRS2/IMSU cloud parameter validation effort raises a to participate in the effort to improve our understanding of
number of data handling issues that are likely to arise Earth through the study of large, geophysical data sets.
frequently when scientific analysis is attempted on large
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From Observed Likelihood to Tail Probabilities:
An Application to Engineering Statistics

Augustine C. M. Wong
Department of Statistics and Actuarial Science, University of Waterloo

Waterloo, Ontario, Canada. N2L 3G1

Abstract compute approximate tail probabilities or cumula-

tive distribution functions, rather than densities. A
Inference for a canonical parameter in the pres- very accurate tail probability approximation for the

ence of nuisance parameters usually requires high sample mean derived by the saddlepoint method
dieno l isancegprames usuobtally th ri o h was obtained by Lugannani & Rice (1980) and fur-
dimensional integrals to obtain the marginal or ther discussed in Daniels (1987). Let (.1,..., )

conditional tail probabilities. A simple and very be asmsse of o aios e with c nt

accurate method is proposed to obtain any arbi- be a sample of observations, each with cumulant
trary level of significance for the parameter of in- generating function c( p). Then the Lugannani &trar leel f sgniicace or he araete ofin- Rice formula, which approximates the distribution
terest. This method only requires a fine tabulation fuct for th ap ma tes the fo

of the canonical parameter and the corresponding

observed likelihood function, which can be either 1 1
the full, marginal or conditional observed likelihood F(z) 6(z) + i(z) -- (1)
function, as input, and produces the left tail prob-
abilities at the observed data value as output. Ap- where 4 (-) and 4(.) are the density and distribution
plications of this method to some widely used engi- functions of a standard normal distribution,
neering statistical models will be discussed. z = sgn((){2n[0- c(o)]}'I 2  (2)

C = 0{ncII(0)11/2 (3)
1. Introduction

with 0 satisfies c'(0) = t, and c'(Wo) and c"(p) de-
note the first and second derivatives of c(V). If

A very accurate approximation to the density the sample mean is equal to the true mean, the
of the mean of a sample of independent and iden-
tically distributed observations was introduced to Lani ( rie a is u i hoever,Daniels (1987) provides a formula to handle this
statistics by Daniels (1954). This approximation situation. Since our main concern is the tail prob-
is generally referred to as the saddlepoint approx- abilities, therefore we will not discuss Daniels' for-
imation. It focuses on an approximate conversion mulation in this paper.
of a cumulant generating function to a correspond-
ing density function. However, it was not until the A detailed review of the saddlepoint methods in
appearance of the discussion paper by Barndorff- statistics is given by Reid (1988).
Nielsen & Cox (1979) that the importance and use-
fulness of this method became well known. Since In Section 2, a numerical program that uses the
then, many statistical applications of the saddle- observed likelihood function as input and outputs
point approximation have been developed, the significance function for a real parameter of in-

terest is developed. Some reliability models are
In many applications, it will be of interest to used to illustrate the accuracy of the procedure.
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Section 3 examines how the preceding numerical where
procedure can be applied to models with a scalar
parameter of interest and the pressence of nuisance r - sgn(q){2[/(O°I') - 1(0))}112 (5)
parameters. Some concluding remarks are recorded q = ( 05 )j(0 )" 2  (6)
in Section 4. 21(O)

0o92

2. Converting Observed Likelihood Function 0 obs

to Significance Function The accuracy of O(n- 3/2 ) of (4) in nuisance param-

eter case is discussed in Barndorff-Nielsen & Cox
Let us denote the observed log likelihood func- (1989), Daniels (1987), and Fraser & Reid (1990).

tion of the model f(z; 0) at an observed data point,
z b° , up to an additive constant , be Fraser, Reid & Wong (1991) showed that with

1(0) = 1(0; X bs) = log(f(z 6b; 0)). a numerical tabulation of 1(0) over a equally and
finely spaced grid of 0 in steps of ±6, and succes-

Also, denote the significance function as sive divided differences

p(0) = P(X < aob; 0),

which is the probability to the left of the data point, 11(0) = {1(0 + ) - (0)}/6 (7)

a9b'. A (1 - a) x 100% confidence interval for 0 12(0) = l1(0) - 11(0 - 01/6, (8)

can be obtained from the significance function by (6) can be approximated by
(p_'(1 - a/2),p-'(a/2)).

The aim of this section is to illustrate how to q :z (Obs _ ){12(jo0b} 1/2. (9)
convert an observed likelihood function, or equiva-
lently an observed log likelihood function, to a sig- Thus the significance function can be obtained form
nificance function. converting the observed likelihood function by us-

ing (4) with (5) and (9).

2.1. Exponential model
Example 1: The garmna distribution has wide ap-

For an exponential model plication in environmetrics and reliability. We con-

f(z; 0) = exp{t0 - c(O) + h(z)} struct a simple example where the scale parameter
is 1 and the shape parameter is the parameter ofwith canonical parameter 9 and minimal sufficient interest. Consider a sample of size 1, the density is

statistic t = t(), the observed log likelihood func-

tion at the data value, z 6b
s is f(x; 0) = r- (fle-Y - 1

1(0) = to"Io - c(O)
w=t( ). Then the Lugannani & Rice on (0, oo). Consider the data value xo'b = 10. The
whereobserved log likelihood function is

formula gives the significance function

p(0) = P(X < Xb;0) 1(O) = Olog(10) - log(r(0)).
= P(T < tob.;O) = P(O < Oob;O)

1 1 32 By using (4) with (5) and (9), the significance func-
r(r) + r q (4) tion is obtained.
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Moreover, we can also obtain the signifi- Thus, p(O) can be obtained by (4) with (5) and (10).
cance function from some standard approximations
namely the maximum likelihood estimate, Ezample 2: Consider the location gamma model

with the shape parameter is known. For this exam-
( _){j(o s)}I 2 , N(0, 1), ple, we choose the shape parameter to be 3. With

the sample size is 1, the model has density
the score statistic,

'2 N(O, 1), f(; ) = )2e

and the signed square root of the likelihood ratiostatistic, with x > 9. With the observed data z~b" - 1, the
observed log likelihood function is

sgn(jobs - 0){2[(o b1) - l(9)]}1/2 -! N(O, 1).
1(O) = 2 log(1 - 0) + 0.

Figure 1 plotted the significance functions ob- By using (4) with (5) and (10), the significance
tained by the 4 approximations and the exact signif- function is obtained and compared with the first
icance function obtained by exact integration. It is order methods and is shown in Figure 2. Again,
not surprising that the proposed method is more ac-
curate than the 3 standard approximations because tepropmtho dfa
it is a third order asymptotic method, whereas the
others are only first order methods. Furthermore,
the first order methods depend heavily on the nor- 3. Conditional and Marginal Inferences
mality assumption, which clearly does not hold here
because of the fixed left boundary. In the preceding section, we have discussed the

conversion of an observed likelihood function to a
2.2. Location model significance function for scalar parameter models.

Now, let us examine some multiparameter models.
Consider the simple location model

Let 0 = (4', A) with a scalar parameter of in-
f(z; 9) = f(z - 9). terest 4 and nuisance parameter A. Our aim is to

The observed log likelihood function at x0 is approximate either the conditional or the marginal
observed likelihood function for 4' such that the sig-

1(9) = log(f9(__b; 0)) = ( bs
- ). nificance function, p(4'), can be obtained by the nu-

merical procedure described in the previous section.

Fraser (1988) and DiCiccio, Field & Fraser (1990)
showed that for this model, the significance func- 3.1. Exponential model
tion, p(9) = P(X < z"b'; 0), can be obtained by (4)
with (5), and (6) is replaced by Consider an exponential model with canonical

q = Sparameter 0 = (4', A) where 4', a scalar parameter,
is our parameter of interest. The density has the

Moreover, by applying (7) and (8), we have form

q ;t l1(O){-l2(O6b')} - 1/2. (10) f(z; 0) = exp{'t, + A't2 - c(4', A) + h(x)}
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where (tl,t 2 ) = (t 1(X),t 2 (X)) is the minimal suffi- Wong (1991) applied the proposed procedure
cient statistic. and obtained the observed level of significance as

3.85%. The advantage of the proposed procedure
The conditional distribution of t, given t2 is free is its efficiency and simplicity, and the ability to

of the nuisance parameter and would typically be obtain arbitrary level of significance from the sig-
used for inference about 0/ in the absence of knowl- nificance function.
edge of A. An O(n -3 /2 ) approximation to the ob-
served likelihood from this conditional distribution 3.2. Transformation model
is given in Cox & Reid (1987) and Fraser & Reid
(1990); and the approximated observed conditional Consider a general location model
log likelihood function takes the form

f(;O) = f(tl - t2 - A).
1(1k) . 1(1k, ,g,) + log jx(1kbA¢,)J (11)

2 1The marginal density of t, is free of A and would
typically be used for inference concerning ip in thewhere A is the maximum likelihood estimate of A abecofkwldefA.Fsr&Rid(90absence of knowledge of A. Fraser & Reid (1990)

for a fixed t, and jx(o, Ai) is the observed infor- showed that for this model,
mation concerning A for a fixed ip. By tabulating 0 1

and 1(0k), the significance function, p(1k) = P(T 1 < I(1) ;Z (1,v" ) - I log jx(,A,4) (12)
tlba jt&';bV), can be obtained by (4) with (5) and 2

(9). Fraser & Reid (1990) showed that this conver- is an O(n - 3/ 2 ) approximation of the observed
sion is O(n -3 / 2) based on the conditional distribu- marginal log likelihood function based on the
tion of t, given t2. marginal density of tI. Again by tabulating 1k and

Example 3: Consider the Proschan (1963) data 1(0), the significance function, p(V,) = P(T 1 !S

which recorded the times between successive fail- tI'; 1), can be obtained by using (4) with (5) and
ures of air conditional equipment in 13 Boeing 720 (10). This conversion from observed likelihood to

aircrafts. For aircraft number 7909, the data is significance function is also shown in Fraser & Reid

recorded in Keating, Glaser & Ketchum (1990). (1990) to be an O(n - 3/2) approximation.

The model being considered is the two parameter We can now consider the location-scale model,
gamma model with density

r-(nVk)A-'% exp{-t 2/A + nt 2 } X f(z;o) = !f ( -I)t

r(no)rf-nf(0) exp{-n 0og(t 2 ) + lt }, where p is the location parameter and o is the scale

where n = 29, t ° = 118.8084, and t 6 = 2422. parameter. The sampling density can be written as

From (11), the conditional observed likelihood func- - _elog().o(a) eog(a)
tion is obtained. Keating, Glaser & Ketchum HIf e o) efoS
(1990) produces various tables to obtain the ob-
served level of significance. In particular, they where s2 is the sample variance, and p and y -

tested if the gamma distribution has an increas- log(et) are location parameters. Hence the joint ob-
ing failure rate (H0 : 1 = 1 versus H1 : > > 1) served log likelihood function can be written as
and they reported the observed level of significance
associated to the test is 3.84%. /(p,7) : -n7 + ]log(f((bs -p)e-')).
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By (12), we can tabulate the corresponding approx- this numerical procedure. It requires a finely and
imated marginal likelihood function and thus the equally spaced tabulation of the canonical param-
significance function can be obtained. eter and its observed likelihood function as input,

and produces the corresponding significance func-
Ezample 4: Let (zz,...,z,) are n observations sam- tion as output. The program is available from the
pled from a Weibull population with density author upon request.
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Table 1: Confidence intervals for p
(in units of y)

Exact Approximation
90% 1 (4.221, 4.590) (4.2205, 4.5891)

95% (4.182, 4.627) (4.1811, 4.6264)

90% (4.099, 4.701) (4.0989, 4.7041)

Table 2: Confidence intervals for a
(in units of y)

Exact Approximation

90% (0.386, 0.659) (0.3853, 0.6589)

95% (0.369, 0.700) (0.3689, 0.6999)

90% (0.340, 0.792) (0.3398, 0.7918)
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Abstract
As greater computing power becomes routinely available to researchers, analyses based on Bayesian
or likelihood methods become easier to perform, especially since the increase in computing power
has been accompanied by development of inventive statistical algorithms for inference. We consider
here the nonlinear regression model but these approaches to inference are applicable in more general
circumstances and we feel the comparisons will remain useful. Several methods can be used for
inference in nonlinear regression: propagation of errors, likelihood profiles, approximate marginal
likelihoods and posteriors, and Monte Carlo methods such as importance sampling and the Gibbs
sampler. These methods vary in computing intensity and in their ability to handle poorly conditioned
situations. Furthermore, since some of these methods have only been recently developed, it is not
easy for the practitioner to compare them and choose between them because they are not widely
implemented. We demonstrate the respective merits of these methods in a small but instructive
example. _

Keywords: Nonlinear Models; Profile Likelihood; Importance Sampling; Gibbs Sampler, Approxi-
mate Marginalization

1. Our Motivating Example

Electron Spectroscopy for Chemical Analysis (ESCA) is a
key technique at the Engineering Research Center for Plasma ..
Aided Manufacturing, University of Wisconsin, to study the -7.
chemical bonding structure of polymer surfaces. In our case,
the same material, a deposited polymer, will be examined
several times over a period of weeks, and the experimenters
want to know how the bond structure changes. A plot of the
data from a spectroscopic analysis of one sample, along with
fitted components and residuals, is shown in Figure 1.

The immediate objective of the analyst is to resolve these
data into a known number of peaks, each of the form ------ -

(1V jex n 29? 290 288 286 284

+0______+__xi-16) 2 Figure 1: Observed electron intensities ()versus bind-
+( -P ) I+ ing energy for the Carbon 1S peak in plasma polymer-

ized methyl methacrylate (PPMMA). Also shown are
the fitted spectrum (solid line), its components (dashed

Heethe aridthahamthe peakheightp, is the enter t on) of plines), the baseline (dot-dashed line), parameter esti-
the bandwidth at half the peak height, p, is the proportion of maeusnwigtdolnarestqaeadth

c' mates using weighted nonlinear least squares, and the
peak j in the form of a Gaussian curve (hence I - pj is the residuals.

' This research supported by the National Science Foundation under grants

I)MS-9005904 and ICVD-8721545
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proportion of the peak j in the form of a Cauchy curve), and to the sum of squares function (Bates and Watts, 1988, chapter
aj is the peak height. 2), which is used to form approximate standard errors and

Fitting four such peaks to these data using weighted least correlations. For likelihood and Bayesian analyses we usually
squares produces a fit as in Figure 1. Weights were used to approximate the log-likelihood or log-posterior density at the
accommodate systematic differences in the variance of the optimum.
response. Moreover, for this particular fit a strong prior was Propagation of errors is very simple but often quite in-
enforced on the spacings between the peak locations, because accurate. For greater accuracy, two basic approaches to
these spacings are known fairly well for this polymer. Without exploring the objective function can be used. These are: I)
the prior the problem would be overparameterized and the re-optimizing the objective with one of more of the parame-
parameters would be unidentifiable. ters held fixed or 2) Monte Carlo methods designed to create

Important characteristics of the example are that it employs a sample from a density represented by the objective func-
a nonlinear statistical model with rather precise data and a tion. Re-optimization is known as profiling. The Monte Carlo
reasonable understanding of the mechanism under study, and methods include importance sampling (Rubinstein, 1981) and
that the model parameters carry physical meanings. the Gibbs sampler (Gelfand and Smith, 1990). In his discus-

Specifically, interest centers on the relative heights of the sion of this paper, Luke Tierney described the use of another
peaks, which are related to the relative concentrations of MonteCarlo method, the Metropolis algorithm (Metropoliset
the corresponding chemical bonds. This requires careful al., 1953). Hybrid methods, where information from profiling
inference about some of the parameters, the peak heights, is used to enhance the efficiency of the Monte Carlo methods.
and of functions of them, while the others enter as nuisance are also possible.
parameters. Such inference is notoriously difficult, and In profiling we chose a parameter, say 01, and while fixing
although we have been working on the ESCA problem for itat a value close to but different fromtheestimate, say -&
a considerable amount of time, we have not arrived at a optimize the objective with respect to the remaining param-
satisfactory solution yet. However, the new methods which eters. If S represents the objective, the profiled objective
we shall describe in our paper seem powerful enough to can be written S(0 1 ) with the conditionally optimal values of
handle problems ofthis degree ofdifficulty in the near future. the other parameters written 6-1(01). This is repeated for

In Section 2 we shall introduce the new methods and in 01 - 2- 6, ... and 0n + 6, 0l + 2- 6, ... until , is sufficiently
Section 3 we shall demonstrate how they perform on an different from S(O). It produces three pieces of information:
example which is much simpler than the ESCA problem, 1) the profiled value of the objective, ,5, 2) the conditional
but which displays some of the characteristic difficulties. In estimates of the other parameters, 0-1(01), called the pno-
Section 4 we shall summarize our results. file traces, and 3) the conditional Hessian of the objective.

Piece 1) can be used by itself to define univariate empirical
2. Exploring The Objective Function parameter transformations as described below. Pieces I) and

3) are used in Laplacian integration methods to approximate
For making inferences about the parameters in a nonlinear marginal posterior densities (Tierney and Kadane, 1986; Tier-

model, we measure the "quality" of a parameter vector with ney, Kass, and Kadane, 1988) while pieces 1) and 2) can be
an objective function such as the residual sum of squares or used toapproximate projections of contours (Bates and Watts,
the likelihood or the posterior density. For point estimates, 1988, Appendix 6).
we usually quote the values of the parameters that optimize To define the univariate empirical parameter transformna-
the objective function. To measure the variability of the tions, we note that if the objective were quadratic in the 0.
parameters (or the variability of their estimates) jointly or then 9 would be quadratic in 01 and
individually, the most sensible and direct ways are through
the objective function. Thus we want to plot contours or ((01) = sign(0 1 - (0) /"(0)v (21)
projections of contours of the objective function, we want
to integrate the objective function over nuisance parameters would be linear in 01. For the nonlinear regression model,
and, in general, explore how the objective function depends dividing (2.1) by s, an estimate of standard deviation of the
on the parameters. We may want to do this for the original disturbance produces

parameters or for functions of these parameters.
Several different methods can be used for exploring the r,(0i) = sign(O, - 0() O,)(01) - s( (2.2)

objective function. The simplest method, based on a local 0

quadratic approximation to the objective function near the a nonlinear analogue of the t-statistic (Bates and Watts, 1988,
optimum, is often called the -propagation of errors" method. chapter 6). If objective being optimized is the negat',e of'
For the nonlinear regression model, a linear approximation to the log-likelihood, (2.1) defines a nonlinear analogue of a
the expectation function produces a quadratic approximation statistic. Whenever the objective is unimodal, ( is monotone
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over the range of interest and a univariate transformation. 25

If these transformations are used on each parameter, the
objective function is much closer to being quadratic. To
e x a m i n e t h e o b j e c t i v e f u n c t i o n i n t h e o r i g i n a l p a r a m e t e r s , * ..................

the transformation 0 t-4 T has to be inverted. Usually 1-5 .
the 7- values are sufficiently well behaved that the forward
transformation can be defined by an interpolating spline but
the backward transformation has to be defined with some ,

care.
One deficiency of the profiling methods is that they give ,/

good information about the parameters chosen for the model
but not about functions of the parameters. Especially for o

Bayesian analyses, Monte Carlo methods that generate a 0 2 4 6 a

sample from the posterior provide a simple method of eval- 1"P3
uating the behavior of functions of the parameters. The
primary advantage of these Monte Carlo methods is that they Figure 2: Biochemical Oxygen Demand (BOD) data and
change a problem in parametric inference into a problem in fitted curve
data analysis and we have good tools for data analysis in
several dimensions. where 0 is the least squares estimate of(01,02), these contours

can be labeled by their approximate frequency content. Such
3. The BOD Example contours, created by evaluating 0(0) on an equispaced grid

of 100 steps over [-20,50] x [-2,6] are shown in Figure 3.The model yi = 01 -(I - exp(-02 - ti)) + (i is to be fitted to

the data, from Table A 1.4 of Bates and Watts (1988, p.270),
shown in Figure 2. Note that the variability is very high and
that the observation interval is too short to capture the steady
state behavior with respect to time. The small sample size and
an unfortunate experimental design cause pathologies of the
likelihood surface, and, since there are only two parameters,
these pathologies can be studied conveniently. In practice,
such a problem should be approached by improving the exper-
imental design and by taking more data; not by overanalyzing'
the existing observations. But inference procedures should
also work in ill-conditioned cases or at least point to the
causes of the ill-conditioning, so we use the BOD example as
test case...

-20 0 20 40

3.1. Likelihood Contours th"'

The likelihood for the BOD example is of the form Figure 3: Sum of squares contours for the BOD data.
S=,Levels are chosen to give nominal coverage of 80%,

L(1,0 2 1 , C .exp (- 0na 2)) 90%, 95%, and 99.9% as confidence regions.

The contours indicate ill-conditioning. Contours at high
with levels are open in the 02 direction and fold over as 02

n passes zero. Since 02 is a rate constant, large values for
S(01 , 02) Z [Yi -01 -exp(-02-/i))]

2 - 0, mean that the response will increase rapidly, reaching
the asymptote almost instantaneously. If 02 is so large that

hence contours of the sum of squares S(01 ,02) are also the curve is near the asymptote at the first data value, the
sum of squares is insensitive to further increases in 02. As

likelihood contours. Using the approximation 02 - co, the response changes instantaneously from zero to

[ (] the asymptotic level. The Y value for this case defines the
[S(O) - So)]l/p level above which likelihood contours will be open in the 0,
S(6)/(n - p) direction. Alternatively, if 02 passes zero from above, the
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model will become locally overparameterized. If the absolute is only affected by intrinsic nonlinearity while the regions
value of 0, is small, the expression 01 • [1 - exp(-0 2 -t)] from the linear approximation are affected by both intrinsic
reduces to 01 • 02 -t and hence the 01 that minimizes the nonlinearity and parameter-effects nonlinearity (Bates and
sum of squares function for fixed 02 will be approximately Watts, 1988, Chapter 7).
01 = C/02 and will jump from +oo to -oo as 02 crosses zero.
In practice one would tend to restrict 02 to be positive so the 3.3. Likelihood Profiles
latter effect would not occur. For our purpose of illustration The likelihood contours in Figure 3 were obtained by evalu-
we will leave 02 unrestricted and on its original scale. ating 0 over afine gridin 01 andO2 . While this approach is still

reasonable for two parameters and a small region of interest,
3.2. Inference Based on First Order Approximations the amount of computation necessary increases exponentially

The least squares estimates are 01 = 19.14 and 02 = 0.53 with the number of parameters and quickly surpasses the
with approximate covariance matrix available computing power. Therefore it is desirable to have

methods which can be used to create good approximate like-
= 6.2296 -0.4323 1 lihood contours with a computing effort which is linear in ther, -0.4239 -0.42 (3.1)
-0.4323 0.0412J " number of parameters. Profiling the likelihood is one of these

methods. We shall now show how this method performs in
Figure 4 shows 80%, 90%, 95%, and 99.9% contours based the case of the BOD example. Using the definition of r from
on the approximation (2.2), we computed a selection of (01, r-1) and (0,, 12) pairs

[ - ] over the intervals -3.5 < ri < 3.5 and obtained approximate
(6- 6)T - _)j/IP 0 -r transformations for both parameters by spline interpo-

0(J ) = S()(n - p) p,n-p" lation. Then we constructed approximate likelihood contours
by generating ellipses based on the linear approximation in

the - coordinates and transforming them back into 0 space.
Figure 5 shows the back-transformed contours for the levels
80%, 90%,95%, and 99.9%.

•20 0 20 40

Figure 4: Approximate 80%, 90%, 95%, and 99.9% -20 020 40

likelihood contours generated using the linear approxi- ',l*

mation to the model function. Figure 5: Approximate 80%, 90%, 95%, and 99.9% like-
Clearly, these regions differ greatly from the likelihood lihood contours generated using a linear approximation

regions displayed in Figure 3. Which ones are right? The in the -r parameters and back-transorming to 0.
answer is "both" and "neither". Both sets of contours are
based on approximations. While the likelihood contours cor- These contours are already quite similar to the ones con-
respond to parameter pairs which produce fits of equal quality, puted with the grid method. They can be enhanced further by
measured by the sum of squares, the ones obtained from the using the profile traces as described in Bates and Watts (1988,
linear approximation are the correct asymptotic (large sample) Appendix 6).
contours from a frequentist's point of view. Nevertheless, in
this small sample case, the likelihood contours seem more
appropriate to us. An additional reason for this is that the While in likelihood methods one describes features of the
validity of the .Y approximation for the likelihood contours likelihood function (maximum, contours, etc) and uses fre-
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quentist arguments to attach probability statements to these 6

features, in the Bayesian approach one treats the posterior,
whose main part is the likelihood, as a probability distribu-
tion and bases the entire inference on it. Using a likelihood 4

together with a flat prior provides a bridge between the like- .

lihood and the Bayesian approaches. However, a likelihood " "2
does not always define a proper posterior because the integral - ".

over the entire parameter space may be infinite. The BOD
problem is an example of this. Since the high level contours ..... :Y..
are open for large values of 02, the integral of the BOD -'', -.

likelihood is infinity. The methods we shall describe now all
require a proper posterior, and therefore the BOD likelihood .2 1

needs to be modified. One way of doing this is by restricting -20 0 20 40

the BOD likelihood to a finite domain such as range of the theta 1

previous plots. This amounts to an indicator prior on the
rectangle [-20,50] x [-2,6] and a flat prior on a2. Note Figure 6: Importance sample for the BOD parameters
that this prior is chosen for the purpose of illustration only. from a direct approximation with a multivariate t density.
In real life, negative values for 02 are impossible. Therefore
one should reparameterize the problem by, for example, in-
troducing 6 = log 02 and possibly use a prior which is locally
uniform on the expectation surface in the new parameters
(Bates and Watts, Chapter 6). 4

3.5. Importance Sampling X

Importance sampling is one of the Monte Carlo techniques
for exploring posterior distributions. Since we are interested
in 01 and 02, we first have to marginalize the posterior with 0 .
respect to a 2 . The resulting posterior for 01 and 0, becomes: . -

A-2 , 0') = C.- [S(O , 01)]-_ .2 1

-20 20 40

with theta I

c= .. [s(01 , 0 2 )]- 1 d(0 1 ,0 2 ) Figure 7: Highest and lowest weights for the importanceC J[-20,50x[-2,6] sample in the original parameters. x" indicates points
of high weight and " indicates points of low weight.In importance sampling we create a sample {09(') } rn from

an approximation 1(0) to the posterior and attach weights wi
proportionaltop(O(')/1(0('))toit. Usually we normalize the posterior p(O) and the importance distribution 1(0). In the
weights such that 7--i = 1. These weighted samples can case of the BOD problem, this mismatch becomes apparent if
then be used as substitutes to samples from p(O) in forming one compares the contours of the likelihood with the contours
histograms, integrals, etc. based on the linear approximation. The contours of the

Our first attempt is to use a multivariate t distribution with density corresponding to the multivariate t approximation
the least squares estimate 6 = (19.1426, 0.5310) as location follow the contours of the linear approximation; the contours
parameter and ± from (3.1) as the scale matrix. The sample of the true posterior follow the likelihood contours. The
of 10000 observations is shown in Figure 6. locations of the 10 highest and the 1000 lowest weights are

Unfortunately, the highest weight is about 0.17 and the sum shown in Figure 7. The sample points with high weights are
of the 10 highest weights is 0.6. Thus, of the 10000 samples, exactly in places where there is still considerable posterior
only 10 really enter into any further analysis. This means density but the t density is close to zero. This means that
that the Monte Carlo variance for this sample is very high and these sample points are likely under the posterior and rare
that the statistics computed from this sample are essentially under 1(0). The weights have to make up for the difference.
useless. Failure of importance sampling due to dominating In turn, the weights which are essentially zero correspond
weights results from gross mismatches between the true to samples which are likely under the t distribution but rare
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under p(O). approximations to the marginal conditionals based on evalu-
Since in nonlinear regression, the likelihood, and subse- ations of the posterior over one dimensional grids. Figures

quently the posterior, often has strongly non-elliptical con- 9 and 10 show how grid based Gibbs sampling starting with
tours, direct importance sampling based on 0 and X' cannot 500 uniformly distributed points quickly recovers the charac-
be recommended. However, if the likelihood profile trans- teristic features of the BOD likelihood. In this example the
formations are available, the situation is better. Then, one grid based Gibbs sampler was used in its simplest form with
can conduct the importance sampling in the ir coordinates 40 equidistant grid points in both 01 and 0, directions. The
using - and the transformed covariance matrix .N', which is sample stabilized after only five to ten iterations. A total of
just the cotrelation matrix in the original parameters. The 40 iterations were conducted but no further changes could be
likelihood contours in the - coordinates usually look much observed.
more elliptical than in the original coordinates and therefore
importance sampling based on multivariate normal or t dis-
tributions will work better there. Importance sampling done
in -r coordinates helps to eliminate the dominating weights
for the BOD example. Figure 8 shows the resulting sample 4 .

points transformed back to 0 coordinates where they trace the "- .
likelihood contours quite well. 2 -

6. . . . . - -

0• , . ... . .. . .. . .. . .. ... .. -.... i

4 . .. '

-2 , • •. • • . .. . -

4*.2

-20 0 20 40

• . .•theta 1

.Figure 9: Grid-based Gibbs sampler - starting sample

0-2

.2 ~6
-20 0 20 40

theta I

4

Figure 8: Importance sample from an approximation
by a multivariate t density in the -r parameters back- 2

-2

transformed to the 0 parameters.

Sotme caution is needed, however, when doing importance 0
sampling in T coordinates. Using the likelihood in -r- coordi-
nates with a flat prior is not the same as using the likelihood
in the original coordinates under a flat prior. In this case a .

Jacobian of the transformation may be necessary. -20 0 20 4

theta 1

3.6. The Gibbs Sampler
Rather than sampling from a rough approximation to the Figure 10: Gid-based Gibbs sample - after 5 iterations.

posterior and using weights to bridge the gap, one can attempt
to sample from the posterior directly. Gibbs sampling is an Grid based Gibbs sampling requires little. For example
iitiv technique foi ioing so (Gelfand and Smith, 1990). it does not require a least squares estimate or a covariance
However, Gibbs sampling in itsusual formisnotapplicableto matrix. However, it is rather computing intensive. In the
nonlinear rearession since the posterior is only known up to a above example, the 10 first iterations required 200,000 eva-
multiplicative constant and since the conditional distributions ations of the posterior distribution while for the ipor tance
are not given explicitly. Grid based Gibbs sampling (Ritter sampling the posterior was evaluated only 10, t0 imes. Yet.
and Tanner, 1990) overcomes this difficulty by working with the above implementation of the Gibbs sampler was not the
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most efficient. For example, by using flexible grids with very high. The spikes in the right part of the picture are
fewer points, the amount of computation can be cut easily to caused by single observations with high weights.
about 100,000. Figure 13 shows the histogram for the importance sample

Gibbs sampling is just one member of a larger class of created using the profile transforms and a Jacobian. This
sampling algorithms based on Markov chains. Another importance sample performs much better than does the direct
member is the Metropolis algorithm which has also been used one, yet still not as good as the Gibbs sample.
successfully for the BOD problem. Since these algorithms
are very new as tools in nonlinear regression, little can be said
about their respective strengths. Further research is needed.

3.7. Marginal Inference 0.8

Often, one is interested in individual components of the 0.6

parameter vector or in functions of the parameters. Such in- .
ference is notoriously difficult unless one can resort to Monte .
Carlo type methods. In this context importance sampling
and Gibbs sampling show their true strengths although they
require a high computing effort. There are other methods for
obtaining approximate marginal distributions, (Tierney, Kass,0 0.0

and Kadane, 1988; Leonard, Hsu, and Tsui, 1989) which
require less computation. Recent work by Leonard, Hsu, and .2 0 2 4 6

Ritter reformulates the approximating integrals in a t-type theta 2

setting and yields for one-dimensional margins Figure 11: Marginal density for 02. The dotted line is

from numerical integration and the bars are from pooling
p(ojx, y) = C* I RU) 112Literations 6-10 of the Gibbs sampler.

where -S(0) is as before and RO' ) is the Hessian of the
conditional sum of squares evaluated at the optimum. Note 1.0

that in usual applications of Laplace-type approximations, the
exponent of .3 is -(! - 1). Replacing n by n - p takes 0.8
into account that the t-type distribution has "n - p degrees
of freedom". We shall now demonstrate and compare these 0.6

methods.7
0.4

3.8. Marginal Distribution of Rate Parameter

Using the previously introduced posterior in 01 and 02, we 0.2

can compute the 02 marginal by numerical integration or, in
this case, analytic integration. We will restrict ourselves to 0.0 _0 1

the numerical integration since the direct integration is messy -22 46

and does not reveal any interesting features. Numerical in- ,heta 2
tegration is easy and fast for integrating out one dimensional
parameters (in this case 01 ), yet it becomes difficult and coin- Figure 12: Marginal density for 02. The dotted line is
puting intensive if the dimension over which the integration from numerical integration and the bars are from the
is to be conducted increases. In these situations Laplace-type importance sample in the 0 parameters.
approximations and Monte Carlo techniques are preferable.

Figure I I shows a comparison of the integrated 02 marginal Finally, Figure 14 shows a comparison of the integrated
and a marginal histogram derived from the combined Gibbs marginal and the marginal obtained using t-type approximate
sample of iterations 6 through 10. The match is very good. marginalization. To make the latter marginal comparable with

Figure 12 shows the corresponding picture for a histogram the integrated one, we set the marginal equal to zero for the
derived from the importance sample in the original coor- points where the conditional minimum of the sum of squares
dinates. Clearly, there are too few points with large 02 fell outside the domain for 01 and 02 and we normalized the
component and consequently, the corresponding weights are resulting curve to integrate to unity over the 0, domain.
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Figure 13: Marginal density for 02. The dotted line is Figure 14: Marginal density for 02. The dotted line
from numerical integration and the bars are from the is from numerical integration and the "*" are from the
importance sample in the -r parameters. Laplace t approximation.

The shape of the curves matches perfectly for much of box"-style automation of the methods becomes much more

the range. As, however, 02 approaches zero, the conditional difficult.

minimum of S moves outside of the domain. Since the con-
ditional maximization is being done routinely in the profiling References
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Markov Chain Monte Carlo Maximum Likelihood
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Abstract the NILE have lbeenl devised. one uses direct, Monte
(Carlo cal culiation of the likelihood (I ont-t hien, 1984:

Markov chain Monte Carlo (e. g., the Metropolis algo- (eer I1 99:1yraiIfinisi. 9) nte
rithrn and Gi1bbs sami. pler) is a general tool for simulation uss.ohsi prxmto ( Younes. I 988: MIoyeed
of complex stochastic processes useful in miany types of and Badl(leley, 1991). A third is that, of 0gat a and
statistical inference. T'he( basics of Markov chainl Monte aeur(18)Onytefstotheprmste
Carlo are reviewed, including choice of algorithmis and 'Iaeua(99.Ol h frto hs emt h
variance estimation, and some new inethods are intro- computation of mniy estitiiates front one Monte C arlo

duced. The use- of Markov chain Monte Carlo for iiax- an vndspemtrpiprmticbotapol-
iniuni ~ ~ ~ ~ ~ ~ ~ ~ P lieiho esiato isepand n ispr ual an 1( sinmulat.ion stutdies. Thlese are imipor taint

onmnc lielioopd sito maisu plaid lnitser-oo ways of strudying the properties of the estimlators, and
foriane i cof~aed ithmaxnniin seuo I keihiod the' other miethiods will not, be further discussed . C od-

est inmation. * ing anl inaximiuiii pseudolikelihood est imates (MP1~LE)
KEY WORDS: Markov chain, Monte Carlo, Maximum (flesag, 1974. 1975) have also b)eent used for such tprol)-

likelihood, Metropolis algorithm, Gibbs sampler, Van- letiis, but t liese estimators do not approximate the M LE.
ance estimation. except. in the linilt, of zero dependence.

Mote Carlo mlaximumt likelihood is Illustrated tusing

1 Introduction the two-paranieter Ising model as anl exaumple. '[his
tnodlel is slinple enou01gh so that extenisive slinulat ions are

For many complex stochastic processes very little canl possib~le but, has nost of the comiplexity of more elab-
accomplished by analytic calculations, but simulation of orate models, in particular, the behavior of "freezing,"
the process is possible usiag Markov chain Monte Carlo which presents severe problems for maxiniunm pseudo-
(Metropolis, et al. , 1953; Hastings, 1970; Geman al(]lIi kelihood , but, none, for niaxinitnumlikelihood. ML.E is
Gernari, 1984). The simulation canl be utsed( to calcu- cmae oM11 nacs hr h adi il
late integrals involved in various forms of statistical ill- has strong dependence (is near freezing) where the su-
ference. Most work in this area has conicentrated onl periorit~y of NILE over NIPLE is clearly shown.
Bayesian inference (Geman and Genian, 1984; Gelfand
and Smith, 1990;1 Lesag, York, and Molli6, 1991). But, akvCai ot al
Markov chain Monte Carlo is a general tool for simula- 2 Mro hi ot al
tion of stochastic processes; it should be useful, and has Before disctussing the use of Markov chain Monte Carlo
been applied, In other forms of inference, for miaxinmumn likelihood, it is first, necessary to briefly

One such area is likelihood inference. For complex revie'w these NIarkov chain tmethodls, since the lite(ratutre
stochastic processes such as the Markov ratndom fi-ids is confused and contains some bad advice.
(Gibbs distributions) used in spatial statistics (and( othe'r Nlarkov chain Monte C arlo is anl old miethod of sinmnl-
areas, with Markov randomn fields de(finedl onl graphs, lation that. goes back to the dawn of the comlpuiter age.
networks, pedigrees, and the like) exact calculation of but which has bad, until recently, little application in
the maximium likelihood estimate (NILE) is impossible, statistics. '11wl( main idlea is very simiple. In ordinary
but, several methods of Monte Carlo approximation of Motnte Carlo, if one( wishes t~o evailuatre ali integral

*Researrh supported in part by NSF grant DI)S-90078:11. j
Some of this work was contained iii the author's P~h. t). disserta- ~j~ I
tion (lone at the U niversity of Washuingt on under Ithe supervision
of Elizabeth 'Vtompson, some wa~s done thiIring a t)ost(I(oct.oral year where P' is a probabIi lit y invtasuti i ami one i has a in n i h o
at the University of Chicago ofsittitlatiig a sequence X 1, Y.. . of i. I. d. rf'alizat iouts
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from P, the obvious estimate is m chains having the same transition probabilities and
1 7stationary distribution P. Take

P.g= g g(Xi, (2)
z~ gXp) (5)

since 3=1
Pn g-Lpg (3)

as an estimate of f gdP. This formula, which may be
by the strong law of large numbers whenever g is P- referred to as the "many short runs" school of Markov
integrable. The notation in (1) and (2) is standard in chain Monte Carlo (as opposed to the "one long run"
the empirical process literature and very convenient; (1) school) has some problems. As rn - c, (5) converges to
treats the symbol P interchangeably as a measure and something by the strong law of large numbers; it does
as an operator, (2) treats the empirical measure (the not, however, converge to f g dP. That would require
measure-valued stochastic process that puts mass 1/n that both m and n go to infinity. One can, of course,
at each of the points Xi in the sample) the same way. collect multiple samples in each short run, and this does
Though ordinary Monte Carlo is very powerful, it has ameliorate the problem but relies on the "short" runs
its limitations. In particular there are no general meth- actually being "long." The closer many short runs is
ods for simulating independent realizations of multivari- made to one long run, the better it is. This was well un-
ate random vectors or, more generally, from complex derstood in the statistical physics literature and in some
stochastic processes. This difficulty is gotten around by of the early statistics literature, but needs reiteration.
Markov chain Monte Carlo in which one simulates not This is not a purely theoretical point; many short runs
independent realizations from P but a Markov chain X 1, also has practical drawbacks. To see these we need some
X 2, . . . with stationary transition probabilities having P discussion of the practice of Markov chain Monte Carlo.
as a stationary distribution. If the chain is irreducible, Typically a chain is run for a while to "forget" its start-
(3) still holds, though it is now referred to as the ergodic ing point before samples are collected; then the chain is
theorem rather than the strong law of large numbers. subsampled, a sample being taken every kth step. The

Since a countable union of null sets is a null set, (3) number of samples 7n thrown away at the beginning of
can be taken to hold simultaneously (for the same null the chain will be termed the "burn-in" (there is no stan-
set of sample paths of the Markov chain) for all func- dard terminology), and k will be termed the "spacing."
tions g in any countable family. If the state space of the The empirical estimate for such a subsample is defined
Markov chain (the sample space of the measure P) is a by
second countable topological space (such as Rd) and the I
countable family of functions is taken to be indicators P. g -n (N,+k i), (6)
of open sets in the countable base, then, for almost all I=1
sample paths of the Markov chain, rather than (2). Of course the subsample is again a

P. 1B a. s- P IB, for all open sets B, Markov chain with stationary transition probabilities.
and (3) still holds. The reasons for choosing any m

ta V (4) other than zero and any k other than one have not been
made clear. The spacing k is often chosen to be large

(the empirical converges in distribution to the truth). in order that the samples Xm+k i be "almost indepen-
This is the sense in which Markov chain Monte Carlo dent" as if reliance were being placed on some hypo-

"works." The samples X 1 , X2, ... are neither indepen- thetical "almost" law of large numbers rather than the
dent nor identically distributed, and none has marginal ergodic theorem. Simple variance calculations, which
distribution P (though typically the marginal distribu- will be explained below, show that in many cases k = I
tion of Xn, is close to P for large n). They behave like is optimal and in almost all cases the optimal k is less
samples from P, however, in the sense that (4) holds, than five. The role of the burn-in m is also not well
just as if X 1, X 2 , .. were i. i. d. P. understood. It is often thought, that n must be chosen

Some confusion in the literature has resulted from large enough so that Xm "almost" has marginal distri-
failure to understand this basic nature of Markov chain bution P, something that typically cannot be checked.
Monte Carlo. One sees described without justification This leads to using very large m for "safety." If the one
in various places the following way to do Markov chain long run method is being used, a fairly large burn-in.
Monte Carlo. Let X11 .... X,,i be independent real- say five per cent, of the total run length, is not exces-
izations frori some distribution. For j = 1. in, sir- sive and will usually be more than adequate. In any
ulate X 2 ,. N.. , Xj a Markov chain starting at. Xj1 , all case, the accuracy of the method is relatively insensi-
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tive to the burn-in. Even inadequate burn-in will have step 2 of the Metropolis update, I" be redefined as
only a small effect on the results. The many short runs p(y) q(, y)
method perversely arranges the calculation so that not r-
only does burn-in dominate the cost of the calculation p(') q(y. r)
(the method is really only valid as the burn-in becomes (so it can no longer be called an "odds ratio.") The
infinite), but also the accuracy critically depends on the algorithm works just as well with this modification. The
adequacy of burn-in, which is uncheckable. The many Hastings algorithm allows an essentially arbitrary choice
short runs method arranges to have many burn-ins at of "candidate" points.
much cost and to no benefit. A more recent algorithm is the Gibbs sampler (Ge-

At this point many people remark that even if one man and Geian, 1984). This algorithm is applica-
is willing to concede the point just made, multiple runs ble only when the state variable is a random vector
have some diagnostic value, at least. This is, of course, x = (X1 .. x ) it does not apply to arbitrary state
correct. It is clear that if two runs produce completely spaces. At. each step one variable, say xi. is changed by
different answers, the runs are too short. But this di- giving it. a realization fronm the conditional distribution
agnostic value is a "one-edged" sword. It is not valid of xi given the rest of the variables under the stationary
to draw any comfort from the agreement of short runs, distribution.
even many short runs. Counterexanples exist that prove Though this looks very different from the Met ropolis
such hopes illusory. The best diagnostic is t ,ry long aid Hastings, it, is almost a special casc cif the Hast-
run, which will find places in the state space that one ings algorithm in which the one-dimensional conditional
never thinks to start. distributions play the role of the auxiliary function q.

With these general comments out of the way, we now The analogy with Hastings does suggest that when one
turn to specific algorithms. The first Markov chain cannot sample exactly from the one-dimensional condi-
Monte Carlo method was given by Metropolis et al. tionals, one can do a Hastings-like rejection to correct
(1953) and is generally known as the "Metropolis al- inexact. sampling, as long as one does know the density
gorithm." This algorithm received wide use in the sta- one is sampling from. For more on this subject see Besag
tistical physics community from the beginning, but has, (this volume).
even today, had little use in the statistics community.

Suppose the desired stationary distribution has a den- 3 New Methods
sity p with respect to some measure p. The algorithm All of the literature on Markov chain Monte Carlo de-
employs an auxiliary function q(y, x) such that q(-, x)
is a probability density with respect to p for each x and

q(x,y) = q(y, x) for all x and y. The Markov chain is (a Metropolis algorithm) or pure Gibbs steps (a Gibbs

generated by repeatedly applying the following update sampler), although there is no reason for this. Any steps

step. that preserve the stationary distribution can be mixed
in any order. To make a chain with stationary (ransi-

1. simulate y from the distribution with density tion probabilities, it is necessary that, a fixed sequence

q(., x). of steps (called a "scan") be repeated over and over and
that samples be collected only after com)lete scans or

2. calculate the odds ratio r = p(y)/p(x) multiples of complete scans. This is typical for the Gibbs
3. if r > go to y sampler, a scan consisting of updating each xi, running

through the variables in some fixed order. But. much
4. if r < 1 go to y with probability r, else stay at. x more general scans are possible. There is no reason not

to mix Gibbs, Metropolis, and Hastings steps in a single
Simple calculations show that the Metropolis algorithm chain, or for that matter, otheri update steps yet to be
has the desired distribution with density p as one sta- invented. Large increases in speed can be obtained by
tionary distribution (see, for example, Ripley, 1987). If clever choices of update steps.
the chain can be shown to be irreducible (which depends A simple example is to attempt to make a variety of
on the specific structure of p and q), it is ergodic and steps of various sizes. When the distribution of inter-
can be used for Monte Carlo. est. has two (or more) modes, it is important to make

One problem with the Metropolis algorithm is the re- attempt s to jump from one mode to the other, if at all
quirement that. q be symmetric. Htastings' (1970) al- possible. This will he illustrated below in the discussio01
gorithm drops this requirement. In order to maintain of the Ising model. where the modes are roughly sym-
the correct, stationary distribution, this requires that in metrically (list ributed in the sample space and hence
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easy to identify and one cal jump between modes via a Ising model is described. For now, let us close this sec-
"symmetry swap," changing the sign of all variables at tion with the point, that if one is worried that the (ibbs
once. Metropolis rejection of the swaps steps preserves sampler, or whatever Markov chain scheme one is using.
the desired stationary distribution. mixes too slowly, one should try to speed it up. There

It is not, always possible to find steps that jump be- are many possible tricks for doing so. These are exam-
tween modes, or even to find out (apart from Monte pies of what. is possible.
Carlo experiments) how many modes there are. What
is needed is some way to make large steps without ex- 4 Variance Calculations
plicit detailed knowledge about, the distribution of inter-
est. A device which we are calling Metropolis-coupled Given the consistency (3) of Markov chain Monte ('arlo,

Markov chain Monte Carlo, (;11C) : for short, provides the natural next question is 1.o examine the error

a way to do this (Geyer, 1991b). Suppose we run m v/n(P,,g - pg). Typically one would like there to be

Markov chains in parallel, having different, but related, a central limit theorem

equilibrium distributions, P1 ... .,,,. For example, if V/-n(P, g - P g) _D N(0, a ) (8)
the distribution of interest is a Gibbs distribution with .

density proportional to eW'- )/ , I(x) tbeing the poten- (note that (7 2 depends on g). When the state space oft he

tial function and T the temperature, we could take P, to Markov chain Monte Carlo is finite, the central limit the-
have density proportional to e 7(x)IkT. After each scan orem (8) always holds, (see, for example, Chung, 1967,
(in which all of the chains attempt one 4ep for each p. 99 ff. or lbragimov and Linnik, 1971. pp. 365 369).

variable) we attempt to swap the states of two of the There are Markov chain central limit theorems for non-

chains. This is a Metropolis update since swapping is finite state spaces, but the regularity conditions seen.

symmetric, so the swap of chains i and j is accepted or difficult to apply (this is a subject of active research by

rejected according to the odds ratio a number of investigators).
Markov chain liruit theory is of use only in demon-

r - Pi(Xj)pj(Xi) (7) strating that (8) holds with or2 finite; it does not yield
pi(Xi)Pj(XJ)" the value of uo?, which must be estimated from the

The coupling itiduces dependence among the chains, and Markov chain. This is easily done using standard tine-

they are no longer (by themselves) Markov. The whole series methods. Hastings (1970) gave references to meth-
stochastic process (the in chains together) does form ods then current; only slight changes are needed to bring
a Markov chain on the rn-fold cartesian product of the these recommendations up to date. In cases of practical
original state space. Since (7) is the odds ratio assuming interest, a 2 will have the form
independence of the distributions for the chains, the sta-
tionary distribution of the whole process, is the product, a. = - (9)
of the Pi. The chains are asymptotically independent t
with the desired stationary distributions.

If the coupling does not change the stationary distri- where
butions, what is the point? It may make all of the chains = (g(A0),g(A1 ))
mix much faster, faster than any one of them uncoupled. the expectation being wit 11 respect to the stationary dis-
This effect is due to the chains having different, distribu- tribution. The -11 are easily estimated by
tions. It is clear that if the distributions are the same,
every swap is accepted and the chains produce the same --(
realizations with or without, swapping. If one untan-
gles the swapped chains (following one state as it jumps For why we (ivide by n rather than n - t see Priestly
back and forth among the distributions), one gets a dif- (1981, pp 323-324). On mnighit think that the sui of
ferent process. Now, by symmetry, all of the untangled the would be a natural estimator of a, but this is a
chains have the same marginal distribution, though they ea for te folwigras For la qt
are no longer even asymptotically independent, aiud this bad idea for the following reason. For large t le variance

marginal distribution must be the equal mixture of the

distributions P. This says thatr in some sense the speed 2
of the chains is that of a mixture of the update steps for Var(lt) o - (10)

71
the separate chains. This mixture may run faster than - I

any of the pure chains. (Bartlett, 19',6); I lie right, hand in (10) (oes not depend
Exampls of these devices will be given later after the on /. This assumes that g(-\) has a fourth mnoment and
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that some mixing condition holds (p-mixing suffices). variance '1o that would be obtained if one could do in-
Thus the sumn of the -ft differs from (9) hy n terms of dependent sample MNonte Carlo. Since the convergence
size 1/n. It (does not, decrease with n; the estimate is is exponentially fast. t here- is little bellefit to large spac-
niot even consistent. In order to get a good estinnate it is ings. To see this more clearly, let B be t he cost of saii-
necessary to downweight the terms for large lags, which pling (typically computer time), and let C he the cost
are essentially noise. One estimates o, 2 by of "using" a sample. If thie samples cost almost nothing

to rise, one may take C =0. If oine uses it sampilles with

6,21( (1 spacing k, the Cost is 1371' k± ('71, because thre chain runs
for nk steps aiid 7) saiiples are usedl. The variance of

= - ~ the estimate is applroximately Sk /n. Hence to get a fixed

where u) is some weight function that satisfies w'(t) 1 accuracy one, must have 71 proport ionial to .sk. Thus lte
for small t, w(t) =0 for large 1, and makes a smooth cost for spacing k' is proportional to (B3k + (')-ik. For

mionotone transition between these levels, large k' this inc-reases linearly in V' '[he injiniun cost
The right. haiid side of (10) is useful in choosing w. will be at tained for somne siiall value of k, t he opt imial

One cati ake ut(t ) =I for t such that ite exceedls two spacing. Note fiat if C ' 0 lie( optinial spacing is
"large t" standard deviatrions. Since i, is usually impos- greater t hain oiie only if *s > 2.st.,. which is t yplically riot
sible to arrange a chain Withi significant negative auto- the case. One needs sonie cost of using saniples (cost of'
correlations, one can take we(t) =0 when It < 0 and calculating estiimates, cost of storing samnples. p~lotting
for all larger t. Any smooth curve connecting these two samples. or whatever) to miake subsampling a good idea.
points is satisfactory. NVe use a scaled cosineC. If one is intercstetl in calciulatiiig integrals of iianv,

Before leaving this subject. thle frequency domain ver- functions g, there is no one, spacing that is opt imial for
sion of the same procedure should p~erhlaps be explained, all, nor would on(, want to (ho variaiice calculat ions for
since one, may see t his described instead andl the equiva- all. Fort. u nat ely. t his is riot necessary. Tyvpically t he
fence of the two methods is riot obvious. (9) is 2r times cost curves will be, V-shaped wit!) a broad bott ;1 -.1id(
the value of spectral density at the origin (of the tinie the curves for a rep~resent at ive samipJle of functions will
series fq(,) ). To est inmate the spectral densi tv one may have mniinia in rouighly the sainie place. We do riot rec-
use, a kernel smloot her withI kernel 6i; on the empirical oiiuiend elaborate variance calculations ac('oniPaniiyig
sp'ct ral estimate, which is the Fourier t ransformi of the every M1arkov ('lialn Ii onte C arlo (estillmat e. bulthlere' is

If one use(s the F~ourier transformi of ut for the simoot h- no substitute for son, ( variance calculations for con it ar-
Ing kernel it,, oun' obt aiiis t'xact ly tire sanie estimate as iiig iiiet hods. for selectinig spacings. and Just g'iit'rallv
(IfI). Inlite usual t imle-serles parlance ir is ('alledl a lag gettinig a feel f'or how Well a scliein' Works.
window and 6- a spect ral window.

5 Chosin th Spaing6 The Ising Model
5 Chosing he SpcingThe model emiployed for our e'xampfle, i, aI standard two-

Having aI nietthod of est imiat ing variances gives usa parameiuter Isitig mtodel on a 32 x3:2 iiiiare latt ice' Witlli
inet(1 of mesring tie "-speed" of aM arkox' chaini periodic boundary coid it Ions e ,dnt i adi

scheme.lit A chin is rapidly mixing if the aiitocorrela- variable at Iatt Ict, sit' i which takes valits In 1-.1
I ons tdecrease rapidIly t'noiugh so t hat Ite variance of our ;ItI(] x ={i, ftIidnot thle whiole randomi field. Lett I '

est inmate( s) of int erest is small. This is a relat i ve tetrmi denote t hat sites i i(] j art' nearest neighbors. F;vt r%
we can only say that one, chiain mixes more rapidly t hanl site hias four netighebors, since tHit' lattice is coiisid'ret'1
anothe.r. 'llert' is no' absolute staiidard. ;a torus. [l" 'h stitial iw itl is ;.two'liaraitter ex-

One' obvious compiharisoin is betwten ('hails tia atirt' ponent iah famiily Witlli nliiuml st oIst ics 11 (j'-) Z '

alikte t'xt't'; for diffrtrit spacing. Suppose t liat t hit, ('hiaiii and l f(x) , ,i 1 I-or c' uir'ttiitss wct will
is p-tniixieg (always triue if the state, spact' is finite) so50 I cll hIt' it t sitt's Witlli ., I 'itpixt'l!'' ant IItI(t

t'e , dt'creast' t'xptonet'tially fast. Thien thre asytiiptot ic re'st ''black pixt'ls' full twing t't lainiua~gt' of imliaIgt' pro-
varlatict' for i chiaiin wit Ih spat-Ing k' wilt 1, ct'ssling. lt-ii 11 1s t li,- t'xco.s of' wliit' over black pixels.

:1(1 ~aned /1- Is thit' t'xct'sN of culcordthait nit';irts neighibor pairs
< '- 1 ___- Auvt'r discordaint lairs.

p' f~~~Ilit' ItrtthailitY if ;i Ittili x' ii IHit' s,;tilct sIpac.' is

fujr s~,re ''uristartt A1 '0 and 0t < 1, A 'tark -
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where (tO. ~ l1 1-1 202 and provided it is started in the right place: all pixels the

) = (tx)o). (12) same color, If one chooses a random starting point, and
_ L) (12) 3 is well above the critical plOl, i tak',s a %ery longES time to get to any likely configuration.

The parameters 01 and 0, are referred to here as the Symmetry swaps solve all difficulties of simulating
"level" parameter and "dependence" parameter respec- Ising models (and other lattice processes with only a
tively. We also use the notation o = 01 and .3 = 0,. few colors). Hence Nletropolis-coupling is not needed.

At 3 = 0, the pixels are independent; for large 3 the To avoid introducing anot her model, however, let us also
distribution has two modes, almost all of the pixels are solve the ising model difficulties using Metropolis con-
the same color with just a speckle of the other. The pling. At values of 3 well below the critical value, a sin-
proportion of realizations that are predominantly white gle chain runs fast. the distribution is unimodal. and the
or black depends on ck; when (A = 0, the modes are region of high probability is rapidly explored. For very
equally probable. This behavior occurs for all lattice high 3 the chain runs arbitrarily slowly; the waiting time
sizes, even for an infinite lattice, where the transition for a transition between modes can be arbitrarily long.
from patches of both colors to (almost) all one color If low and high .3 chains are coupled with a sequence
occurs sharply at, the critical value , sinh-l'(1) = 0.4407. of intermediate 3 chains, swaps will occur frequently if
The transition is not sharp for finite lattice sizes, but adjacent 3's are close enough, and all of the chains will
occurs in roughly the same place. mix rapidly. Thus Metropolis coupling can produce an

For any lattice site i, let x-i denote the rest of the arbitrarily large speed up in some situations. This so-
variables besides xi. The conditional distribution of xi lution to problems of slow mixing is completely general.
given x-i plays an important role in both likelihood and it does not even require knowledge of a good starting
pseudolikelihood methods. This conditional distribution point (as did symmetry swapping). All that is required
is denoted po(xi lx-i). Let, ni = Xji xj denote the sum is that some of the coupled chains mix rapidly.
of the nearest neighbors of lattice site i. Then It is possible to get an infinite speed up from coupling

logitpo(xi = lx_i) = logitpo(x7 i = lini) chains. If one couples a chain that is not ergodic (so

= 2(01 + 02ni. (13) that it would never get the right answer) with one that
is, this can make both chains ergodic. Thus coupling can

The first equality, that the distribution of xi given the be used to solve difficult problems of finding a Markov
rest del,cnds only on its neighbors, is called the spatial chain that is ergodic as well as problems of slow mixing.
Markov property. It simplifies calculations, but other-
wise plays no role in the analysis.

A Metropolis algorithm for the Ising model runs over 7 Monte Carlo Maximum Likelihood
the variables in either fixed or random order attempting Consider a family of probability densities {fs } with re-
to swap the state of the variable at each step (from 1 to spect, to some measure p. where the densities are known
- I or vice versa) according to the odds ratio of these two only up to a norializing constant
states. A Gibbs sampler does the same thing but instead
samples from the conditionals. Metropolis makes more
transitions and hence is a bit better. but there is not () =(0)
much difference.

Whichever is used, it is wise to follow each scan of where hp is a known function for each 0 but nothing is

all the variables with a symmetry swap. attempting to known about : except that

change x for -. where -' denotes the slate derived t"

from x by changing the sign of all the variables. The (O) =/ ho(.) dj( x).
odds ratio for this swap is Y = exp (11(-r )a - tl (x)r)
since 12(.) = 1.(-x). WV hlen o is small and 3 is large so the Integral being analytically iniractable. lhe Ising
tile model has a biniodal (list ribution, these swaps jutp liIdel serves as an exam"pe with h ( ') c ) Other
between Imodes. For other paranletf.r values, the swaps xatiiples inclutide spatial lattice and point processes.
are not usefiul. bit they are also not needed since tho Markov graphs. logislic regression with dependent re-
(list ribut ion is uninlodal and th l Markov chain mixes sponses (Net, (Geyer and Thompson. 1992).
rapidly in any case. The swaps do no harm. though. The unknown normaliing roIst ali is ito bar to
since they consume a siall frac oIon of lhe running tittie. Markov chain Monte,' ( ';rlo which can provide a sain-

\'ith syntmmetry swaps le .Iarkov chain for the IsIng pie N,.\.. . ... froin ;il\ ,, ii the paramt'ter space. This
nodel runs fast no miatter what the p~arameter Calnles, ne u sed to ,'slinial, Ili log likelihood ratio for all
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observation x

1(0) = fo(x) log ho(x) z(o)fo~x) ho(x) z(O)

as follows. Since

z (0 ) _ 1 h (x ) d '(x ) E h (X ) 6.._--

Z() - z()(X)
we have the natural estimate "

log 1 he(Xi) (15)

of the last term in (14). Let 1,,(0) denote (14) with the

last term replaced by (15). By the ergodic theorem we
have that 1(O) -- 1(0) simultaneously for all 0 in any
countable set, which if the parameter takes values in Rd

may be chosen to be dense. This along with the "usual"
regularity conditions may be enough to ensure that if O,
is any maximizer of 1,, and 0 the maximizer of 1, then
,n a-A 0, i. e., the Monte Carlo MLE converges to the 4"__

true MLE as the size of the Monte Carlo sample goes to
infinity. For the Ising model no regularity conditions are
needed because both I and 1n are concavu functions. Sec-
ond order theory, V/-n(On -0 ) converging to some normal
distribution is also available, again under the "usual"
regularity conditions, when the asymptotic variance of
V/-niV1l(9) can be shown to be finite, since this can then
be estimated empirically using the methods of Section 4. .1 0.0 01
Details will appear elsewhere.

This method can be generalized to use Monte Carlo
samples from distributions other than those in the para- Figure 1: Comparison of MLE and MPLE. Top MLEs,
metric family, in particular to mixtures of distributions bottom MPLE for sample of 500 points from Ising iiiodel
in the family. This improves performance when 0 is far with a = 0 and i = 0.425.
from 0, and is the method used for the example in Fig-
ure 1. Details of the theory and the calculation of this Furthermore, it is a good estimate for small depen-
example are given in Geyer (1991a). dence, when po(xi = lxi.) p0(x) when it well ap-

Given that maximum likelihood can be done, how well proximates maximum likelihood. For high dependence.
does it compare with other methods? Is it worth the ef- MPLE can do much worse than MLE, as shown in Fig-
fort of the elaborate Monte Carlo calculations? What is ure 1. The true parameter value is where the solid lines
analytically tractable about the Ising model (and other cross. Both estimators cluster around the truth, but
Markov spatial processes) is the conditional distribu- MPLE has much wider scatter. Moreover, maximum
tions po(xi = lx_j) defined by (13). The pseudolike- likelihood "senses" the critical point, shown by the dot-
lihood is the product of these conditionals. This is not., ted line, in a way that MPLE does not. Of the 500 points
of course, a likelihood, since these conditionals do not in the sample, only six are above the critical point, only
combine in the right way to make a probability. The two appreciably so. The dotted line in the figure is like
MPLE is found by maximizing the log pseudolikelihood a cliff of the likelihood surface. These samples from a

process below the critical point do not, look at all like
(0) l ogpq(Xi I X..) they came from a process above the critical point..

Pseudolikelihood is oblivious to the critical point.
(Besag, 1975). For the sing model this is computation- which is not surprising, since it only looks at local de-
ally equivalent to doing a logistic regression of each pixel pendenco and the critical point phenomenon is a global
on its neighbors. The estimate takes negligible time to property. There are 134 of the MPILE lying above
compute compared to Montv (arlo MLE. the critical point. Some so high that true realizations
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fromt such parameter values would he hard frozen, not. Besag. J., York, J. and Mlolli6, A. (1991 ) Have11siati iriage
remotely resembling the observation from which the restoration, with two applications in spatial t sis
MPLE was calculatedI. (with discussion). Ann. Inst. Statist. AMath. 13:1 39.

Chung, K. L. (1967) Alarkov Chains with Stationary

8 Discussion Transition I roha bili ties, 2nid edI. Spriniger-Verlag.
Gelfand, A. E. and Smnith A. F. M . (1990t) Sampling-

Though consistency arid asymptotic normality of MPLE based approaches to calculating imarginial densities. ..
has been proved in a variety of situations, these results Ani. Statist. Assoc. h5:398 4t09.
do riot, guarantee good behavior at fiiiite sample sizes. It Genian, S. and Gemian, I). (1981) Stochastic relaxation,
has never been claimed that MPLE would provide good Gibbs distributions, aiid the Bayesian restoration of
estimates for parameters of a frozen (or nearly frozen) imiages. IEEE'f Trans. Pattern Anal. Machine In tell.
Markov random field, so the nmessage that in1 solnel cases 6:721 74 1.
MILE behaves well when MPLE does poorly is 110 sur- G everC ,(90Liehoda]ExnntlFii-
prise. '[hat MPLE call be inefficient had been noted lis Cl. 1. (1990) Uieio a asdinton.ilFar
for Gaussian random fields on lattices (Besag, 1977), le.P.1.'hss nvriyo aligoi
where the efficiency goes to zero at the boundary of the -( 1991a) hteweighting Monte Carlo Mixtures. lin

parameter space where stationarity is lost. Moderately preparation.
large efficiency is maintained, however, for fairly large - (19911)) Metropolis-Coupled Markov Chain Nionte
dlependence, which gives the impression that, MPLE is a Carlo. in preparation.
reasonable method of estimation for Gaussian fields so Geyer, C. J . and Thompson, E. A. ( 1992) Constrained
long as the true p)aranmeter value is riot near the hound- maimu ieiodadatlgsi oeswtI
ary of the parameter space. maxpimuatikelitod l a fngepr itg dti aoel with aisus

[sing models and other non-Gaussian rand~om fields aplctotoDAfneriigdta(thdcis

can have critical parameter values not on the boundary sion) J1. R. Statist. Soc. B to ap~pear.

of the parameter space at which the qualitative behav- Hlasti ngs, W. K. (1970) Mionte C arlo sampling nimethI-

ior of the field changes. Near such values, and for high osuig Makvcan n h iaictos

dependence in general, MPLE can give had results. One( Bioinetrika 57:97 109.

Ising model example is given here; a more complex ex- lbragimov, 1. A. and( Linnik. Yu. V. (1971) Ind('Jen-
ample is given in Geyer and Thompson (1992). This dent andJ Stationarly Sequences of !?andorn Variables.

does not say MIPLE is bad in all problems; it seenris that, Wolters-Noordhof.
comparisons must be made problem by problem. Metropolis, N., Hiosenbluth, A. W., hiosembluthi. MI. N..

'Teller, A. It. and 'Feller, E. ( 1953) Equat ]i of st ate

Acknowledgentent calculations by fast coniput ing miachiines. .1. (Chen.

PhYs. 21:1087 1092.

The author wishes to thank Julian Besag, Augustine Moyeed, R. A. andl Haddeley. A. .1. (1991) Stochastic
Kong, Alan Lippman, Elizabeth Thompson, amid Luke approximation of the XILE for a spatial point pattern.
'riermey for discussions of this subject,. Scand.Statist. 18:39 50.

Ogata, Y. and 'lanemnura NM. (1989) Likelihood Est inia-

References tion of Soft-Core Interaction Potentials for Gibhsian
Point Patterns. Ann. lnst. Statist. Math. '11:583 600.

Bart lett , M . S. (1946) Ont the theoretical specification lPentltiinen. A. (1984) Nlodellinug ilt ract ion iii spatial
of samnpling properties of atitocorrelated tunme series, point, pat terns: P~arameter est imiat ion by thle iiaxi-
.J. 1H. Statist. .Soc . Suppl. 8:27 41 , inun likelihood mret hod. *vkvliStumdies in C oln-

Hesag, J1. (1974) Spatial interact ion andl thle st atistical puter Science, IVconomic. and~ .Sta'tistics 7

analysis of lattice systems (with discussion). .1. 1?. P~riestly, ;N1. B. ( 1981 ) .'pectral Anmalis anid 'line Se-
Statist. Soc. B 316:192 236. ries. Academic Press.

- (1975) Statistical analysis of non-hat tice dat a. H ipley. H. 1). (1987) St ochast ic Simulat ion. W iley.

Statistician 24:]179 1 95. Youmies, L. (I 988) Estimation anid annealing for ( bb-

-(I 977) Efficiency of pseudloli keli 1100( est iniaiomi sin fieds 294. ) nvI.Picp;Poa.Sait

for si iple(, Gauissian fields. fliounet rika 6~4:616 618. 2:924



92-1954792195471 AD-P007 126

Parallel and Sequential Implementations
for Combining Belief Functions*

Mary McLeish and Fei Song
Dept. of Computing and Information Science

University of Quielph
Guelph,(Ontario)Canada- NIG 2W1

Abstract tions: a direct combination based on Dempster's rule and
This paper reports our experiments about parallel and an indirect combination through M6bius transforms. We
sequential implementations for combining belief func- further explore parallel algorithms for combining more
tions with an application to a medical diagnostic system. than two belief functions in order to improve the effi-
We use as a basis existing methods for combining two ciency, as different pieces of evidence can be combined
belief functions: a direct combination based on Demp- in any order as long as they are independent of each
ster's rule and an indirect combination through M6bius other.
transforms. We further explore various parallel algo- To further test our algorithms, we consider a medi-
rithms for combining more than two belief functions,
as different belief functions can be combined in any or- cal domain that involves the diagnosis of different types
der as long as they are independent of each other. Our of canine liver diseases (McLeish et al. [1989], [1990],
results indicate that for the general case, the parallel [1991]). This is a domain on which doctors have diffi-
implementation based on fast M6bius transforms proves culty predicting precise or single outcomes, as both the
to be the most efficient. However, for practical applica- numbers of possible outcomes (14) and available tests
tions where most subsets of a frame of hypotheses have (40) are quite large. In terms of the DS-theory, this
zero probabilities, the parallel implementation based on would require a combination of 40 belief functions over a
an improved direct combination rule remains the most frame of 14 different hypotheses1 . Although our parallel
efficient. - algorithms can largely speed up the implementation, the

amount of time used is still quite long. Fortunately, for
1 Introduction practical applications, especially our domain, we found
This paper presents parallel and sequential algorithms that most of the subsets have zero probabilitie-: the num-
for combining belief functions. The Belief Function ber of subsets that have non-zero probabilities, called
approach for approximate reasoning, also called the the focal elements, are just about 10 on average. Thus,
Dempster-Shafer theory [Shafer, 19761, can be seen as a special versions of our algorithms can be designed to fa-
generalization of the Probability approach [Pearl, 1988], cilitate the practical application. Our algorithms are all
since probabilities are a-,iigned directly to subsets of a set implemented on a Sequent machine using the parallel C
of mutually exclusive and exhaustive hypotheses rather language and the experimental results are reported later
than each of the hypotheses. in detail.

One important problem for the application of the DS-
theory is the efficiency for combining the belief functions 2 Review of the DS-theory
from different evidences. Barnett [1981] proposed a poly- In DS-theory, probabilities are assigned directly to sub-
nomial algorithm which only applies to sets of single hy- sets of a frame of hypotheses, called a mass function
potheses or singletons. Work by ([Shafer and Logan, (in). Two pieces of evidences can be combined using the
19871 and [Shafer et al., 1987]) deals with extended sub- Dempster's rule, where in and i., are the mass func-
sets that form a hierarchical structure. More recently, tions for the given evidences:
Kennes and Smets [1990] apply fast M6bius transforms
to reduce redundant computations and thus improve the m(B) {nl(Bl)ln2(B 2 ) I B1 f t32  B}
efficiency even for the general case. 2{int(B ),n 2 (B 2 )I Bi n B2

In this paper, we are concerned with the efficient com-
bination for more than two belief functions. We use as The rule, as stated in [Buchanan and Shortliffe, 1984],
a basis existing methods for combining two belief func- provides a way of narrowing the hypothesis set with the

*This research ha been supported by the NSERC Net- 'Sec [McLeish and Song. 1991] for the general framework
works of Centers of Excellence Program in Canada. of our expert system for diagnosing canine liver diseases
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accumulation of evidence and naturally captures the pro- ml ® mn
cess of diagnostic reasoning in medicine and expert rea- (ml,m2) M m
soning in general.

There are two ways for combining mass functions
proposed in the current literature ([Shafer, 1976] and
[Kennes and Smets, 1990]). One is the direct combina- mtoq
tion based on the Demspter's rule, for which it can be mqtom
shown that the following theorem holds:

Theorem 2.1 The direct implementation of the Demp- *
ster's rule needs (2' - 1)2 additions and 2'(21 - 1) mul- (Q1,Q2) Q
tiplications.

The other way for combining mass functions is the in- Figure 2: Combination through M6bius Transform
direct combination through M6bius transforms. Based
on a mass function, a commonality function (Q) is fur-
ther defined in [Shafer, 1976]: Lemma 2.1 Suppose m and Q are two functions defined

Q(A) = Z{m(B) I B D A} over a frame 0, then we have:

With commonality functions, the combination of differ- Q(A) = 1 m(B) iffm(A) = Z ()IB-AIQ(B)"
ent evidences is reduced to the multiplication of the com- BDA BDA

monality functions, Based on the above lemma, we can now construct a fast
Q(A) = KQI(A)... Q.(A) Mobius transform from Q to m. It is the same as the

where K 1 is a constant that does not depend on A. transform from m to Q except that all the links have

A M6bius transform is a function defined over a weighting factor (-1) (see [Kennes and Smets, 1990] for

partially ordered set. For example, the computations detailed discussions).
from m to Q and vice versa are all Mobius transforms. Theorem 2.2 The indirect implementation of Demp-
The idea of a fast M6bius transform is to decompose ster's rule through M6bius transforms needs 3n2' - ' ad-
the whole transform into a series of simple transforms ditions and 2

" +1 multiplications.
[Kennes and Smets, 1990]. In each step, as illustrated
in figure 1, we only consider one hypothesis and its re- 3 Algorithms for Combining Belief
lated transform. For example, the first step will achieve Functions
the transform: {(X,Y) I X i 0 and (Y = X or Y =
X U {c})}, where X and Y are two subsets of 9. Then, In this section, we consider how to combine r pieces of
by recursively doing this for all the hypotheses, we will evidence efficiently, with r > 2. In particular, we present
be able to transform from one function to another func- three pairs of algorithms for combining r mass functions:
tion. sequential, parallel, and practical methods.

{} {a} {b} {a,b} {c} {a,c} {b,c} {a,b,c} 3.1 Sequential Combination Methods
0 *Based on the two methods introduced earlier, we can

provide two sequential algorithms for combining more
than two belief functions. A sequential algorithm based

0 on Dempster's rule can be given as follows:

algorithm 3.1 sequential & direct implementation
input m[l : r][0 : 2n - 1], r bodies of mass functions,

and n, the cardinality of the frame
output m[l][0 :2 - 1), the combined mass function
begin

{ I {a} {b} {a,b} {c} {a,c} {b,c} {a,b,c} for i = 2 step 1 until r do
conib-two(m[l], m[i])

Figure 1: Diagram for the Transform: m - Q endendfor

To combine mass functions, we follow the path from Here, we use a n-digit binary number to represent a
{ mi) to {Qj) to Q to m, as shown in figure 2. lowever, frame of size n, and for each subset, the ith element
although the transform from Q to m is not provided is 1 if the corresponding element, is in the subset. Also.

in [Shafer, 1976], it can be proved, following a similar "comb-two" is a procedure for combining two mass func-
approach, that the following lemma holds. tions.
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Corolary 3.1 Algorithm 3. 1 needs (r - 1)(2" - 1)2 ad- qtom(m[1])
ditions and (r - 1)2n(2 n - 1) multiplications, end

Another way of implementing the Dempster's rule Corolary 3.4 Algorithm 3.4 needs n2 n additions and
is to compute the combined mass function indirectly 2' + r multiplications.
through M6bius transforms. A sequential algorithm for
this method can be given as follows: 3.3 Practical Combination Methods

algorithm 3.2 sequential & indirect implementation To further test our algorithms, we choose a medical do-
begin main that involves the diagnosis of canine liver diseases.

for i = 1 step 1 until r do We found that for such a domain, most of the mass func-

mtoq(rn[i]) tions only have a small number of non-zero subsets, or
endfor focal elements. Although the above algorithms work for

general cases, for practical reasons, we must revise them
for i = 0 step 1 until 2 ' - 1 do to facilitate the almost null distribution of mass func-

for j = 2 step I until r do tions.
in[1][i] - m[1][i] * m[j][i] In the following we first provide a revised procedure

endfor for direct combination based on Dempster's rule.
endfor function comb-two'(mi, m9, L 1 , L 2)
qtom(m[1]) begin

end for i = 1 step 1 until L 1 do
for j = 1 step 1 until L 2 do

Corolary 3.2 Algorithm 3.2 needs n(r + 1)2n1 addi- f = st[p I un
s - s1 [i] & s2[j]

tions and r2' multiplications. rn[s] - r[s] + ml[i] * n2[j]

endfor
3.2 Parallel Combination Methods endfor
Since in DS-theory, different pieces of evidence can be K ,- 1 - m[0]
combined in any order as long as they are independent for i = 1 step 1 until 2' - I do
of each other, we can further explore parallel algorithms if m[i] > 0 then
for the combination of more than two belief functions. L - L + 1

algorithm 3.3 parallel & direct implementation sdifL] i; mi [L] rnUi/K

begin endfor

while r > Ido return L

r' = r/2 end

for i = 1 step 1 until r' do in parallel
comb-two(m[ij, m[r' + ij) Htere, "&" is the bitwise operator for the logical opera-

endfor tion "AND", corresponding to the intersection operation
if odd(r) then between two subsets.

rn[r' + 1] = m[r]; r = r' + 1 Then a parallel algorithm for combining more than
else r = r' two mass functions can be designed as follows:

endwhile algorithm 3.5 practical par. & dir. implementation
end begin

Corolary 3.3 Algorithm 3.3 needs [log r](2' - 1)2 addi- while r > I do
tions and [logr]2"(2' - 1) multiplications, where [logr] r' - r/2

stands for the smallest integer that is greater or equal to for i = 1 step 1 until r' do in parallel

logr. eL[i] - comb-two'(rn[i], m[r' + i], L[i], L[r'+ i])log r.endfor

algorithm 3.4 parallel & indirect implementation if odd(r) then
begin rn[r' + 1] - m[r]; r - r' + 1

for i = I step I until r do in parallel else r - r'
mtoq(m[i]) endwhile

endfor end

for i = 0 step I until 2 n - I do in parallel To see how speed can be gained for the above algo-
for j = 2 step 1 until r do rithm, let us consider our domain of canine liver dis-

milffi] ,- m1][i] * Mnj][i] eases. For a frame of size 14, 2' 4 gives us 16,384,. Thus,
endfor the direct, combination of two mass functions would re-

endfor quire (214_ 1 )2 addit ions and 214(21 4
_ 1) mult iplicat ions.
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However, the above improved direct combination would improved direct combination (algorithm 3.5) is still the
only need about 100 additions and 110 multiplications, most efficient 2 .
as the average number of focal elements is 10 for any Further work is being carried out to minimize redun-
mass functions in our domain (see [McLeish and Song, dant computations in a M6bius transform and explore
1991] for different, methods of extracting mass functions parallelism in Dempster's rule. Methods working with
from medical data collected over time). continuous data are also being investigated with an ap-

Similarly, we can add a testing statement in a M6bius plication to our domain of liver disease diagnosis.
transform and only perform an addition when the new
element is non-zero. Since the cost of a testing statement References
is usually less than an arithmetic operation, we would Barnett, J.A. 1981. Computational methods for a
expect some saving of time when most of the subsets mathematical theory of evidence. In Proceedings of the
have zero probabilities. The modified algorithm based IJCAI Conference. 868-875.
on the N6bius transforms will be called algorithm 3.6 in Buchanan, B.G. and Shortliffe, ElI. 1984. Rule-Based
our experiments. Expert Systems: The MYCIN Experiments of the Stan-
4 Experimental Results ford Heuristic Programming Project. Addison-Wesley

4 ExerimntalPublishing Company.

Our algorithms are all implemented on a Sequent Sym- Ken Roan .
metry machine using the Parallel C language [Osterhaug, Kennes, R. and Smets, P. 1990. Computational aspects
metry.ASeqent machine n harall lanag e otrug, of the Mbbius transform. In Proceedings of the Sixth
1989]. A Sequent machine has an architecture of truly Uncertainty Management Conference. 344-351.

multiple processors and a shared memory, all connected

through a system bus. This provides a way for increasing McLeish, NI. and Song, F. 1991. A framework for medi-

the accessibility of data and minimizing the communica- cal expert systems using Dempster-Shafer theory. Sub-
tion cost. As a result, we can actually run our algorithms mitted to First World Congress on Expert Systems.

on this machine and observe the improvement of speed McLeish, M.; Cecile, NI.; Yao, P.; and Stirtzinger, T.
for a problem of reasonable size. 1989. Experiments using belief functions and weights

In our experiments, we run our algorithms on a ma- of evidence on statistical data and expert opinions. In
chine of ten processors. Our results can further be im- Proceedings of the 51h Uncertainty Management Con-
proved when more processors are available, say 16 or ference. 253-264.
32, which become more and more common for Sequent McLeish, M.; Stirtzinger, T.; and Yao, P. 1990. Using
machines. Although our system is not large, it already weights of evidence and belief functions in medical diag-
shows the potential of using parallel algorithms for effi- nosis. In Proceedings of the AAAI Spring Symposium,
ciently combining belief functions. AI in Medicine. 132-136.

McLeish, M.; Yao, P.; and Stirtzinger, T. 1991. Exper-
# Mass [ Alg3.2 I Alg3.4 I Alg3.5 [ Alg3.6 iments on the use of belief functions for medical expert

02 13.26 9.18 0.43 7.56 systems. Journal of Applied Statistics, Special Issue on

03 17.71 9.25 0.95 7.59 Statistics and Expert Systems 155-174.
04 22.19 9.31 0.95 7.72 Osterhaug, A., editor 1989. Guide to Parallel Program-
05 26.74 9.37 1.51 7.76 ming on Sequent Computer Systtms. Prentice lall, sec-
08 40.22 13.88 1.49 11.30 ond edition.
10 49.19 14.00 2.04 11.46 Pearl, J. 1988. Probabilistic Reasoning in Intelligent
15 71.68 18.65 2.35 15.15 Systems: Networks of Plausible Inferenee. Morgan
16 76.21 23.01 2.34 18.65 Kaufmann Publishers.
20 94.21 23.30 2.88 18.86 Shafer, G. and Logan, R. 1987. Implementing Demp-
30 140 2.6 3.54 26.29 ster's rule for hierarchical evidence. Artificial Intelli-30 140.49 32.60 1 3.54 26.29 e c3 :2 1 98
32 149.74 37.03 3.86 29.70 gence 33:271-298.
35 164.69 37.20 4.39 30.01 Shafer, G.; Shenoy, P.P.; and NMellouli, K. 1987. Propa-

40 188.18 41.84 1 4 39 33.67 gating belief functions in qualitative Markov trees. In-
ternational Journal of Approximate Reasoning 1:3.19-
400.

Table 1: Results of Sequential and Parallel Experiments Shafer, G. 1976. A Mathematical Theory of Etidence.
Princeton University Press.

As our results illustrate, for the general case, the par-

allel implementation based on the fast M6bius trans-
forms (algorithm 3.4) is the most efficient. Ilowever, for 2'l'he experiments for algorithms 3.1 and 3.3 are not fully
many real applications where most of the subsets have conducted as even for one combination, it already takes about
zero masses, the parallel implementation based on the 1.5 hours on our Sequent machine.
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Abstract 2 Multiprocess Models

Dempster [1] has characterized the dynamic linear
model (DLM) as a probabilistic belief network, showing
that recent algorithms for propagation of information 2.1 The Dynamic Linear Model
in such networks generalize Kalman filtering, predic-
tion and smoothing algorithms for the DLM. Recently The dynamic linear model [3] is a discrete time
the Bayesian network technology has been extended to linear model that captures a variety of familiar models:
model mixed discrete and continuous random variables regression models, time-dependent covariate models,
using conditional Gaussian (CG) distributions [5] with exponential smoothing models and linear time-series
analogous propagation schemes [6]. This paper applies models. The series described by the DLM is a 2-stage
the theory of CG probability networks to character- hierarchical model with stage 1 of the hierarchy defined
ize the multiprocess dynamic linear model (MPDLM) by the observation equation and the second stage de-
and its requisite computations in a unified way. The scribed by the system equation. The system equation
complexity of exact computations is determined and describes how the underlying process that drives the
approximate methods are proposed. 1-- observed series evolves with time t..

Y,- Xto, + E, observation equation
1 Introduction )3 G)3,_, + u, system equation

In this paper we apply the theory of conditional where Ot is a p x 1 state vector , Gi is a p x p
Gaussian networks to a class of dynamic linear models known transition matrix, ut is a p x 1 vector of sys-
that incorporate uncertainty as to the underlying gen- tem errors, Y, is a r x 1 observation vector, X, is a
erating model. This class of models has the property r x p known regressor matrix, and c, is a r x 1 vector
that its dependency structure can be modelled graph- of observation errors. It is assumed that u, - inde-
ically. The resulting graph falls under an umbrella of pendent Np(O, V,), c, - independent N (O,E,), where
names: a causal probability network, a Bayes belief net, I' and E, are known for all t > 0. We also assume for
a causal network, a Bayes network, or an influence dia- simplicity ut and c, are mutually independent.
gram. Interest centers on the posterior distributions of Suppose we have prior information available
various sets of random variables. The motivation for about /, say 0) - Np(,t0 , SO). Interest centers on in-
using a graphical representation is for computational fererences for 3,, t = 1, 2,. .. If we denote the present
convenience; the calculations are reduced to a series of time by T, then for t < T, t = T and t > T
efficient local computations. To implement the compu- the problem becomes one of smoothing, filtering and
tations, the graph is transformed into another structure forecasting respectively. Recursive equations for fil-
called a junction tree [4]. It is in the junction tree that tered, smoothed and forecasted estimates are available
the calculations are performed. [7, Pages 216-2241,[8].
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2.2 An Extension: MPDLMs 4 Graphical Representation
[3] The causal graph D for the MPDLM is given in Figure

The class of multiprocess models []reflect un- 1. The generating model at time t is indicated by the

certainty about the model by formally allowing the generating variable m. Dropping directions and join-

model generating the process, henceforth the gener- g en t s yie an D i ngt d raph a jin-

ating model, at any given time to be a random choice ing parents yields an undirected graph G with cliques
from a discrete number of alternative DLMs. form (I,-, 1),(1,Y),t 1,2,...,T+ K,

where T is the current time and prediction is K steps

Denote the model at time t with generating ahead. The potential for the first clique is given by

model j by MP') for j = 1, 2,--,N where N repre- the system equation multiplied by the prior for It and
sents the total number of alternative model choices. the potential for the second clique is given by the ob-
Assume that the probability that model j obtains at servation equation. Additionally, the prior for 0,, is a

time t is ra'j) . It can be shown that by appropriately factor in the potential on (Ii, 3(,'31). The joining of
characterizing the system and observation variances, a parents has insured that these potentials are defined
set of DLMs can be constructed that reflect level and on the cliques of G. Thus G can form the basis for a
trend changes in the series as well as accommodate ob- junction tree.
servation outliers [3].

The estimation method proceeds in the same 4.1 CG-junction trees and the
manner as that for the DLM. However, passing from MPDLM
time t to t+1, N 2 posteriors are obtained. This number
increases with time, indicating the need for an approx-
imation. One technique [3] approximates the mixture discrete and continuous random variables using CG po-

of Gaussian posteriors by a Gaussian with a mixture tentials. Lauritzen [6] gave approximate algorithms

mean and mixture variance. The mixture mean is cal- based on CG potentials which maintain a CG repre-

culated by weighting the posterior mean for each gen- sentation. [61 assumes that the joint distribution be

erating model by the posterior probability that model expressed as a product of CG-potentials on the cliques

MP() obtained at time t and summing over all p )ssible of G and the existence of a junction tree for which each

generating models. A similar characterization of the separator Sk satisfies the following additional property:

mixture variance holds. Sk C A or Ck \ 5k - r (1)

where A is the set of discrete variables and F is the
set of continuous variables. We refer to a junction tree

3 Junction Trees with the above property as a CG-junction tree. The al-
gorithm [6] is approximate in that it employs an opera-
tion called weak marginalization when propagating in-

A junction tree [4] J for a graph is a tree whose nodes formation away from the root of the CG-junction tree.
are the cliques of the graph, and separator sets Si, as- The weak marginal approximates the true marginal by
sociated with the edges, which are the intersections of a CG distribution with compatible moment properties.
each clique C, with its parent. The defining property A junction tree satisfying (1) exists if and only
of a junction tree is that if Ci and C. have elements if it represents the clique structure of a graph G' which

in common, all the separators on edges connecting Ci 1) does not contain any path between two non-adjacent
and C, in J contain those common elements. discrete vertices passing through only continuous ver-

Propagation algorithms [4] for computing clique tices and 2) is triangulated. The first condition can be
marginals in the junction tree involve only local op- satisfied for the MPDLM only if all discrete vertices
erations between neighboring cliques. The clique size are adjacent. It follows that there will be a clique of
determines the complexity of the operations. The algo- G' containing all T + K discrete variables, and hence
rithms lend themselves to object-oriented inplementa- a multivariate marginal distribution of very high di-
tion and parallel processing. The pattern common to mension. After connecting each It to all other gener-
these algorithms is: to propagate information from one ating variables we must triangulate the resulting graph
clique to another, a marginal for the separator on the by filling in edges to break cycles of length four or
link connecting the two cliques is taken in the source grcater. We used the method of 101. The cliques of
clique, and then that marginal multiplies a conditional thc triangulated graph are next organized in a june-

distribution calculated in the destination .clique. tit graph, where cliques with nonemnpty intersection



170 S.-L. Normand and D. Tritchler

are adjacent. Finally, we determine a spanning tree adequacy of the method for different choices of R, for

JCG satisfying (1). The root clique is not arbitrary. In filtering, smoothing, and prediction.
fact, the root clique must have CG distribution. Figure
2a gives a CG-junction tree Jc(; for the MPDLM. In
the figure, the rectangles are separators and the round References
nodes are cliques. We have chosen a fill-in which yields [1) A.P. Dempster (1988). Construction and local

Jc G rooted at time T. This has advantages for imple- co mp s t s of nt ructief fn ctons.
mentation and also allows the distribution of 31 to be, computation aspects of network belief functions.
in theory, exactly known at time t. The updating of In "Influence Diagrams, Belief Nets and Decision
clique distibutions to the right of the root is prediction, Analysis", John Wiley and Sons Inc., Ch. 6, pp.
smoothing is in the left subtree, and conditioning the 121-141.
distribution of the root on yr is filtering. As the cur- [2] K. Gordon and A.F.M. Smith (1990). Modeling
rent time is incremented to T + 1, the tree grows by and Monitoring of Biomedical Time Series. Jour-

adding leaves for T + K + I and identifying the root nal of the American Statistical Association, 85,
with T+1. In general, the root is the only clique whose No. 410, 328-337.
distribution is known. Only the moment characteris-
tics of other cliques are known. [3] P.J. Harrison and C. F. Stevens (1976). Bayesian

Although this method allows recursive, local Forecasting. J. R. Statist. Soc. B, 38, 205-247.

computation, it does not solve the computational prob-
lem. The root clique must store the mean and vari- [4] V. Jensen, K. Olesen and S. Andersen (1990). An
ance for 01-r, and a probability, for each cell in the high Algebra of Bayesian Belief Universes for Knowl-
dimensional table formed by all combinations of the edge Based Systems. Networks, To appear.
T + K generating variables. For N models, the corn- [5] S. L. Lauritzen and N. Wermuth (1989). Graphical
plexity is of order NT+I. There is no hope of avoiding Models for Associations Between Variables, Some
this with Lauritzen's method, since no matter how we of Which are Qualitative and Some Quantitative.

contruct the CG-junction tree, it must include a clique The Annals of Statistics, 17, No. 1, 31-57.
cuntaining all of the state variables.

[6] S. Lauritzen (1990). Propagation of probabilities,

means and variances in mixed graphical associa-
4.2 An approximate topology tion models. Res Rep R-90-18, Inst Elec Systems,

Lauritzen has suggested reducing computations by car- Aalborg University, Denmark.

rying the idea of weak marginalization further, intro-
ducing weak marginalizations when propagating to- [ sitch (9) tocai ll n
ward the root. This is equivalent to implementing Lau-

ritzen's method in a modified CG-junction tree, illus- [8] S.L. Normand and D. Tritchler (1989). Kalman
trated in Figure 2b. Essentially, when we propagate Filtering in a Bayesian Network. American Statis-
evidence, we 'forget' all but R generating variables. tical Association, 1989 Proceedings of the Statisti-

The junction tree provides a unified computa- cal Computing Section, 259-264.
tional framework. Filtering, prediction, and smoothing
are seen to be the same operation, evidence propaga- [9] A.F.M. Smith and M. West (1983). Monitoring

tion, in different parts of the tree. The sequence of data Renal Transplants: An Application of the Multi-

collection is arbitrary. At time any time a missing ob- process Kalman Filter. Biometrics, 39, 867-868.

servation can be 'found' and its influence propagated [10] R.E. Tarjan and M. Yannakakis (1984). Simple lin-
thoughout the tree. We thus generalize all operations ear time algoritms to test chordality of graphs,

in the MPDLM. test acyclicity of hypergraphs and selectively re-

The CG-juntion tree for R = 2 duplicates the ue acyclic hypergraphs an selct.e 13,

filtering calculations of [9]. The power of the network 566-5791

representatiun is that for any R it also implements pre-

diction, smoothing, and the handling of non-sequential
(e.g. missing or delayed) data collection. For filter-

ing, [9] report that the approximation for R = 2 is
adequate, but [2] express dissatisfaction with the ap-
proximation. Work needs to be done to investigate the



Multiprocess Dynamic Linear Model 171

12* 0

0'P2

I~ oY2

Oyt-1

517W

Figure 1. The causal graph for the MPDLM. Conitinuous variables are circles,
discrete variables are dots.
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Some Interface Issues for
Interactive Statistical Graphics

Catherine Hurley
George Washington University

I Introduction 2 Plot-data connection
Ionventional statistics packages such as S [31 or SAS (101, Using examples, the benefits of a general plot-data inter-

iave a limited choice of data structures for representing sta- face are discussed. A software model for statistical graphics

istical datasets. In particular. for an operation to be invoked based on a tight coupling of plot and data is outlined.

n a dalaset or a subset of the data. the data has first to be The following data taken from Andrews and Herzberg [1]
onverted to a specific format, typically l-d or 2-d arrays. will be used as an example. There are 42 apple trees in a
rhis leads to confusion for the analyst who ends up having designed experiment with 4 treatments and 4 blocks, with 8
o juggle many versions of the same data. In addition the qualitative variables measured on the fruit from each tree.

inalyst has to remember the connections between the differ- Each treatment x block combination initally had 4 trees, but
,nt versions, and connections between analysis results and some trees bore no fruit. Figure 1 shows a scatterplot matrix
he original dta. of 4 variables, the lower left plot displays treatment number

Multiple data versions are especially problematical for in- versus block number for each of the .6 groups. and the plot

'eractive statistical graphics. Ideally, a plot acts as graphical on the lower right shows mean weight for each of the 16

interface to the underlying data, allowing all sorts of queries groups plotted against block number.

;uch as requests for information on individuals and variables
in the dataset. The plot could then be modified by choosing 2.1 Conventional plot-data interface
i new variable to replace one currently appearing in the plot. At this time, many statistical graphics systems are primarily
Ione of this is possible if a scatterplot (for example) was drawing programs, yielding static plots and supporting little

,onstructed using two I-d arrays extracted from the data. or no interaction (for example, commonly available versions
Interactive techniques for linking plots such as painting of S [31). For purposes of illustration. I describe a plot-data

brushing) [2.7,8] require that the system be able to deter- interface for such a system.
nine which point (if any) in one plot 'corresponds' to a point The convention in statistics packages is to represent data
n another plot. Corresponding points typically represent the by multi-way arrays. For example, the apple data could be
;ame dataset individual, so multiple data versions are a nui- a 2-d array with each row representing a tree. Typically
;ance: either the analyst or the system has to remember the plotting functions require as arguments one or more l-d ar-
:onnections. rays (depending on the dimensionality of the plot), so the

In this note I consider the domain of interactive and dy- plot-data interface consists of selecting slices of the data for
iamic graphics. I describe how such a graphics system need plotting. Suppose two columns are selected for a scatterplot,
tot enforce a particular choice of data representation. By then each pair of column entries becomes the subject of a
dentifying the components of the plot-data interface, I con- point in the plot.
truct an abstraction barrier between plot and data. Imple- To construct either of the lower plots in figure 1 requires
nentation of the interface relies on generic funclions. (see. constructing a new I-d array whose entries are averages of
or example Steele [II]. or Keene [61) which may then be weight for each treatment x block combination. Other pos-
pecialized for an arbitrary data representation. The need for sible plots would use medians instead of averages for exam-
nultiple data versions is reduced by encorporating a general pie, or weight rather than calcium, but we must first compute
lata transformation capability within the plot system. new i-d arrays for these quantites.

The statistical graphics system referred to here is part of The advantage of such a plot-data interface is that it is
he forthcoming Zed system [91, and described in Hurley familiar and relatively easy to work with. The disadvantage
nd Oldford 151. Implementation is in Common Lisp and is that we must tirst of all convert the data to arrays. and then
'LOS 111.61. so examples given here use a small amount construct new arrays for derived variables. As the analysis
,f Common Lisp syntax. becomes more involved it is easy to loose track of all the

i i i I IA
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dcrived data and their inter-relationshiops. series of data transformations called a viewing pipeline for
obtaining plot coordinates from the data, where any pipeline

4:__ element could be modified resulting in an updated plot.

+ + ++:m The plot-data interface should accomodate such a viewing

++ pipeline, so plot system rather than the analyst looks after
-computation of derived variables, and subsequent plot up-

, dating.

0 0 ' o Linking of plots using interactively modifiable drawing
* .w - *style attributes of points is another common example of dy-

o + N namic graphics. In figure l each of the 4 treatment groups
4 0m+ 4 + • are represented by a different plotting symbol.

Iu,+ + % In standard implementations of linking [2.12.131, each
" 

-  plot has one point per case. and all points representing a
o •case are required to have the same drawing style. This is

i, 0 ,1 also true for points contained in the scatterplot matrix of
u+ % figure 1. However, in the lower plots each point represents

. ............. ...-.... the trees (typically 4) in a particular treatment x block com-
mnn • • • a bination. In fact. all three plots are linked. The lower left

S, plot was constructed specifically so that selecting a partic-
ular treatment x block combination would be easy: using

________'_______-_-____the painting operation we color the points for the fourthtreatment red say, then all points representing trees in this
a s l treatment group change to red. Conversely, we could color a

single point in one of the scatterplot matrix panels blue, and* * * *all points representing the same tree change to blue. This

a -+ 28 tells us immediately the treatment and block assigned to the
.0 0 *0 0 selected tree.

0 0" 0 -- 0 More accurately. a point in the lower plot now represents

+ + + 3 red trees and I blue tree, but because a point is small we
-+ + + I E do not allow proportional coloring. (We do however use

proportional coloring for the bars of a histogram or barplot.)
Figure 1 One could draw a point using its majority color (red). and

use blue for short time following the color change of the

2.2 Interactive graphics linked point. This way we still obtain the subset membership
information for the changed point.

The plots displayed in figure I are both interactive and dy-
namic. An interactive plot is one with which the user can
communicate, whilst dynamic plots are plots that can change
instantaneously, typically but not necessarily in response to In the previous section we noted that many plot moditica-
a user action. Of couse, interactive, dynamic plots require a tions in dynamic graphics are characterized by modifying
richer plot-data interface. a transformalion applied to the data. Also. for linking the

We use a point and click style interface to retrieve in- system needs to know which point represents which piece of
formation on the underlying data: for the scatterplot matrix data. Here I outline an organisational scheme for statistical
selecting the 'identify' operation on a point gives the name graphics. where the system keeps track of the associations
of the tree it represents, whilst in the lower plot 'identify' between plot and data. More details are given in Hurley and
returns the names of all trees in the group represented by a Oldford 15].
point. Similarly the 'inspect data' operation returns all in- Slalistical plots are collections of objects such as points.
formation available on the :tree (or trees) represented by the lines, labels and axes. These objects may be arranged in a
selected point. hierarchy- a scallerplot consists of axes. label and a point-

Changing to another variable provides a simple example .oud which itself consists ol points. Similarly a scaterplot
of plot modification. The new variable could be present in matrix consists of pointclouds and labels, though arranged
the dataset. or a derived variable computed using a trans- in a different format. An object appearing in the plot has
formation of existing variables. Buja et al.141 describe a an associated piece of stalislical dala- for the scatterplol it's
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the entire datasel. for a point it's typically a case and for These steps are easily generalized to arbitrary data represen-
the pointcloud the collection of cases. Each component of a tations using generic functions. A generic function differs
plot we term a view. so-called because it provides a graph- from an ordinary function in that its implementation is dis-
ical representation of some piece of data, called the viewed tributed across one or more methods. When a generic fune-
object. A view object contains a refercnce to its viewed ob- tion is invoked, there is an automatic mechanism in place
ject, and an image of a view is used as a graphical interface that chooses a method approriate to the arguments, where-
to the viewed object, upon that method is executed and its values returned, see

The following discussion relies on such a conceptual for example 16.111. The implementor of the graphics pack-
model for statistical graphics. age assumes that methods for the generic functions exist.

In order to use the graphics package.the implementor of a

3 A general plot-data interface dataset should define appropriate methods list-subjects
and value-of.

In this section, a general plot-data interface is described, As demonstrated by figure 1. for a given dataset there are
without assuming any particular data representation. We many possible interpretations of subject. In the lower plots
will use the scatterplot as an example. a subject is a number of trees instead of just one. Note

that any subset of the data may be considered a subject. In
3.1 Plot construction general a subject will be a data item (typically a case) or a

Suppose we invoke the following function: list of data items. Therefore, as in the following example,
we may supply the plot with a function to use to extract the

(scatplot :data apple :x "calcium" subjects:
:y '(log "wgt"))

(scatplot :data apple
This builds a scatterplot of the apple data with "calcium" :x 'treat-no
on the x-axis and (log "wgt") on the y-axis. The steps :y "wgt" :y-function
involved are: :subj-fn 'treat.block)

1. Construct a scatterplot with the dataset apple as its Subjects are obtained by applying treat. block to the
viewed object. datasel, rather than the default list-subjects, yield-

2. The scatterplot then extracts subjects (trees) from the ing a list of subjects, where each subject is a list of

dataset. constructs a pointcloud and two axes each trees corresponding to a particular treatment x block

viewing the subjects, constructs title and axis labels, combination.

and assigns positions to these views. o The x-coordinate is obtained by applying the treat-no

3. The pointcloud in turn constructs one point object for function to the list of trees.

each subject. and positions the points by extracting e The y-coordinate is obtained by extracting "wgt" from
"calcium" and (log "wgt") from the subjects. the subjects, then applying the function mean.

4. The x-axis computes tic marks and tic labels by extract-ing"caciu" cordnals fom he ubjcts siilaly This assumes functions treat . block, treat-no and mean
ing "calcium" coordinates from the subjects, similarly have been appropriately defined.
the y-axis. The plot system uses additional generic functions to ex-

There are two stages where the plot obtains information from tract (i) the dataset name (used for the plot title), (ii) a list
the data: of variables (which are used when constructing a menu for

choosing a new variable) (iii) a subject label, and (iv) for
1. In construction of subjects. The scatterplot by default inspecting the underlying data. When necessary, the default

uses the list-subjects function, generic functions may be overidden by providing additional

2. For obtaining coordinates from the subjects. The arguments to the view constructors.

pointcloud obtains the x-coordinates by applying the
value-of function to each subject with "calcium"

as argument. For the y-coordinate the subjects do not We extend the plot-data interface to include a series of data
have a variable called (log "wgt"): this assumes the transformations, so the plot system rather than the analyst
value-of function will extract "wgt" and compute the looks after computation of derived variables, and subsequent
log. plot updating.
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The discussion in the previous section suggests modifying linked. A generic function eqc is used to compare a pair of
the plot by (i) changing subjects and (ii) changing coordi- data items to see if their views may be linked. The default

nates. just checks for identity. Linking can be used with alterna-
The subject selection may be modified by deleting or tive data representations simply by defining the appropriate

adding in subjects. Most generally, subjects would be mod- method for eqc. For instance, if dataset individuals were
ified by supplying a new function to extract them from the identified by position or by a label, the eqc method could
dataset. However, this could result in a plot bearing little test for identical positions (labels).
relation to the original, and so it is just as easy to make a
new plot. References

There are three steps involved in extracting say the x- Andrews. D.F. Herzberg, A (1985) Data: A Collec-coorddewsnates fromgA (98theaa:data:ec
coordinates from the data: tion of Problems from manv Fields for the Student and

1. Extract the subject value (or values). The value ex- Research Worker Springer Verlag, New York.

tracted is specified by the :x argument, which may [2] Becker. R.A. Cleveland. W.S.. Wilks. A.R. (1987) Dy-
be any legal argument to value-of. In my imple- namic Graphics for Data Analysys Statistical Science
mentation using a simple dataset representation the 2: 355-395
value-of arguments can be used to extract func-
tions like (log "wgt") . or linear combinations '(+ 131 Becker. R.A. Chambers. J.M. Wilks, A.R. (1988) The
"carbon" "wgt"). The ;x agument may also be a New S Language Wadsworth and Brooks/Cole.
function which is then applied to the subjects. 141 Buja. A., Asimov, D.A.. Hurley, C.. McDonald, J.A.

2. Transform the value from step I to a single real number. (1988) Elements of a Viewing Pipeline for Data Anal-
This transformation is specified by the :x-function ysis In Dynamic Graphics for Statistics. Cleveland.

argument (the default is the identity transformation). W.S.. McGill, M.E. (eds) Wadsworth and Brooks/Cole.
The transformation could be log or square root. assum- [5] Hurley. C.. Oldford. kW. (1991) A Software Model
ing step I returns a single value, or the mean or median for Statistical Graphics. In Computing and Graphics in

function when step I returns a list of values. Of course, Statistics. IMA Volumes in Mathematics and its Ap-
we could eliminate this step (incorporate it in 1) but this plications. vol. 36, Buja, A..Tukey, P. (eds), Springer-
way is simpler for the analyst. Verlag.

3. Transform the values from step 2 from R" to R". where [61 Keene, S.E. (1988) Object-Oriented Programming in
ii is the number of subjects. The transformation is spec- Common Lisp. Symbolics Press and Addison Wesley.
ified by the :x-transform argument, again the default
is the identity. This step allows for projections of vari- 171 McDonald, J.A. (1982) Interactive Graphics for Data

ables, common in linear regression. With transforma- Analysis, PhD thesis, Stanford University.
tions defined for the space spanned by a selection of 181 Newton. C.M.. (1978) Graphics: From Alpha to
predictor variables and the orthogonal subspace. one Omega in Data Analysis. In Graphical Representation
immediately obtains residual plots and added-variable of Multivariate Data. Wang. P.C.C. (ed). Academic
plots.Press.

Any of the above arguments may be changed to modify [91 Oldford. R.W. and others, Zed. undocumented soft-
the plot coordinates, either by a command-style interface ware. University of Waterloo.
or selecton from a menu. For I). the menu offers choice
of all variables known to subjects in plot, for 2) the menu [101 SAS Institute 1nc.(1985) SAS User's Guide, SAS Insti-
offers choices like square root and log, while the menu for tute:, Cary, NC.
step 3 is empty by default. The user can add other choicesto he enu fo stps an 2,or dd ranfi~ms o te lIll Steele. G.L. (1990) Common Lisp. The Language 2nd
to the menus for steps I and 2. or add transforms to the ed. Digital Press.
transformation menus.

1121 Stuetzle, W. (1987) Plot Windows, J. Am. Stat. Assoc
3.3 Linking views 82(398):466-475.

Usually we link views in the sense of using common draw- [13] Tierney, L. (1990) LISP-STAT An Object-Oriented En-
ing style attributes (color, shape. size) when displaying a vironmentfor Statistical Computing and Data Analysis.
data item. In the example of figure 1, points whose viewed Wiley.
objects are identical or have a non-empty intersection are
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An Empirical Evaluation of 3D Spinplots

Richard A. Faldowski, Forrest W. Young & Nada L. Ballator

LL. Thurstone Psychometric Laboratory, University of North Carolina, Chapel Hill, NC 27599-3270

,-,Abstract structure of artificial three-dimensional data spaces gener-
ated by the first and third authors. Each data space consisted

'Despite the recent explosion of software development and of I or more trivariate normal point clouds.
computer programs capable of bringing dynamic visual data
analytic techniques to a wide range of users, little empirical A priori, one might expect the success of a subject in this
evidence has been offered to justify or support claims about task to depend on the separation of the true clouds of points,
the potential usefulness and efficacy of dynamic graphical and on the internal compactness of the true clouds of points.
data analytic procedures as a class. In the current investiga- Perhaps the greater the separation between two clouds rela-
tion, artificial data with a known three-dimensional "clus- tive to their compactness, the more accurate will be the iden-
tery" structure was submitted to a sophisticated data tification of the correct cluster-structure. Furthermore,
"visualizer" who attempted to identify the structure in the clouds containing many data points may be more accurately
data. Additional variables which were taken into account identified than clouds with few points.
included (1) the number of true clouds of points present in
each data set, (2) the number of data points per each cloud,
and (3) the distance between pairs of clouds within a data 2.0 Design and Methods
set. Results indicate that distance between clouds relates
positively to the accuracy of cloud membership judgments. 11 Twenty-four trivariate data sets were constructed by the first

and third authors. Data sets contained between one and six
clouds of data points randomly sampled from trivariate nor-

1.0 Purpose mal distributions with a constant variance-covariance of

Does the visual exploration of multivariate data using 0 1.2 4.0 1.21 The centroid of each cloud within a dat

dynamic three-dimensional spinning scatterplots (which we L=.2 1.2 4.0]

call "3D spinplots") provide a sophisticated user with infor-

mation and insights about the data he is examining? Do 3D set was positioned (within sampling error) at a discrete loca-

spinplots let an experienced visualizer identify real structure tion (x,y,z) on a three dimensional lattice (where

which exists in the data? For virtually anyone who has seen XE {-2.5,0,2.5}; yE { -2.5,0,2.5}; & z E {-2.5,0,2.5}).

videos of 3D spinplot software such as PRIM-9 (Tukey, Sizes of individual clouds within a data set varied to contain
Friedman and Fisherkeller, 1973), Dataviewer (Buja & either 'Large' (approximately 60), 'Medium' (approximately

Tukey, 1987) or VISUALS (Young & Reinghans, 1991), the 30), or 'Small' (approximately 10) numbers of data points.
answer would unambiguously be "quite possibly". Unfortu- In addition, three data sets contained a supplemental 'Tiny'
nately, a more definitive answer is not available since these cloud of 3 data points, one data set contained an 'X-Large'

methods have not been evaluated with data having known cloud of 120 points, and another an 'XX-Large' cloud of 180

structure. points.

The current investigation was undertaken to directly address Using the VISUALS (Young & Kent, 1987) data visualiza-

the question of how well and to what degree 3D spinplots tion software system on a 22Mhz. 80386-based microcom-
permit an experienced user to identify real structure which puter equipped with a 640x480 pixel VGA monitor, the

has been built into sets of artificially generated data. Specifi- second author was presented with the task of identifying the

cally, the second author, acting as a subject in this expcri- cluster structure of the data points by classifying them into

ment, attempted to accurately identify the true cluster- subjective groups. Initially, the data points appeared as white
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dots on a black background with no cues to the true structure I I I IV
of the data clouds apparent. The subject knew only that each [ 1i
data set contained between one and six data clouds and that A 5 0 0
they were generated by sampling from trivariate normal dis- B 6 0 0

tributions. He was not informed of the exact number of C = C 020
clouds in a data set, their relative sizes, shapes or locations, D 5 0 (EQ 1)
or even that the trivariate normal distribution used to gener- E 1 2
ate all clouds had the same variance-covariance structure.

Note that elements of C indicate the frequency with which
The subject spun the three dimensional visualization space mebrfomdfrntcus(ow)eejdgdobei

and formed subsets using the VISUALS software system. the same subset (columns).
He worked at his own schedule, dividing his work into 6 ses-
sions, spending about 17 minutes per dataset (range: 2-55 4.0 Objective Cloud Measures
minutes; standard deviation: 12 minutes). 4___ObjectiveCloudMeasures

Since VISUALS displays objects in a Euclidean space, we
3.0 Data use measures based on the relationships between data points

and data clouds in Euclidean space. Our measures concern
Figure 1 schematically depicts (in 2-dimensions) a fictitious each cloud's compactness and the separation. Note that
data set containing five clouds of points designated by the these are "objective" measures, since they measure the
circular regions labelled 'A' through 'E'. The sum of the "true" characteristics of the point clouds. In the next section
Arabic numbers within the boundaries of each cloud-circle we define "subjective" measures based on the subject's judg-
denote how many data points it contains. Let us assume that ments about cloud characteristics.
these clouds were generated by randomly sampling from
trivariate normal distributions with the common variance- Compactness of data cloud k, denoted x,,, is defined as
covariance (or correlation) matrix specified above. In the the root-mean-squared distance between the points in the
figure the subject's classification of the data points into sub- cloud and the cloud's centroid. If xik equals the vector of
sets are indicated by the polygonal regions labelled with
Roman numerals. The Arabic numbers at the intersections of coordinates for the i'th data point in the k'th data cloud, Xk

cloud-circles and subset-polygons specify the number of equals the vector of coordinates of the centroid of the k'th
data points in a particular cloud which the subject classified cloud, and nk equals the number of data points in the k'th
as members of a particular subset. Thus, the subject classi- cloud, then in matrix algebra form:
fled all 5 data points from cloud 'A' into his subset 'I' along
with 5 out of 12 data points from cloud 'D'. The subject's AI __
subset 'II' contained 4 data points from cloud 'D', 1 from t=- X k - Xd (x.X - i(EQ 2)
cloud 'E', and 6 from cloud 'B'. Likewise for the remaining k

subsets. The information in Figure 1 can be summarized by a
p (number of clouds) by g (number of judged subsets) In Figure 1, the atk for any data cloud is represented by the
matrix C, which cross-tabulates the number of data points in radius of its cloud-circle.
each cloud that were placed into each subjective subset.

Separation of data clouds i and j in the same data set,
denoted Is.. is the distance between the cloud centroids:

AB 5= ix,(i .j)(Q3
5 3 6 - '- E3

1 where x, and i.are defined above. In Figure 1, this is the

C 2E 8 distance between the centroids of two cloud-circles.

2 
!

Figure I
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5.0 Subjective Subset Measures since the subject knew that data sets contained at most six
clouds (the upward bound is 1). Thus, our (adjusted) cohe-

Each of the measures described above reflects "objective" siveness measure, which ranges between 0 and 1, is:
characteristics of the data clouds-- known only because the
data were artificially generated. However, in order to fully ai = (ii - ci) / (1 - ci ). (EQ 6)
understand what information the subject took into account as
he formed his subsets, we must also develop "subjective" Distinctiveness of a pair of clouds i and j, denoted bij, is
measures paralleling the "objective" measures. These "sub- defined as a function of the (ij)'th off-diagonal element of
jective" measures should reflect the perceived characteristics the matrix (M1CC'M - ) introduced above. In general, the
and relationships among the clouds. off-diagonal elements measure the degree to which points

from different clouds are incorrectly paired with one
Our "subjective" measures use the relative frequency with aoth er e d over all subs et y are ie o e

whic pars f pint ina jdgedsubet re orrctl or another, summed over all subsets: They are an index of thewhich pairs of points in a judged subset are correctly or degree to which elements from two clouds are "confused"

incorrectly grouped together. Notice that our indices are not with one another. However, these indices are confounded

based on "correctly or incorrectly classified points". This is

because as judged by the subject, subsets of points cannot be with the measure of cohesiveness defined above. Thus, we

bound to any prior point classification scheme, making define the matrix k = [diag (CC') 1 1/2. Then an index of
notions of "correct" and "incorrect" classification meaning- confusability of a pair of clouds corrected for the cohesive-
less. However, after judgments are made, we do know ness of the pair of clouds is given by the off-diagonal ele-
whether two points judged to be in the same subset actually ments of R-1 CC'*I . Since this confusability measure is
do or do not belong to the same "objective" cloud, allowing inversely related to the distance between two data clouds, we
us to define correctly or incorrectly co-classified pairs of define the distinctiveness bij (which is directly related to
points, distance) as the off-diagonal elements of

Even though our measures concern the subjective judg- .- I ..-1
ments, they are measures about the objective clouds: They B = I'- M CC'M (EQ 7)
measure how the objective clouds are subjectively per-
ceived. Our two measures are the perceived cohesiveness of Note that b0 varies from 0, for complete perceptual confu-
each cloud (the subjective analog of compactness), and the sion of point-clouds i and j, to 1, for complete perceptual dis-
perceived distinctiveness of pairs of clouds (the subjective tinction of the two clouds.
analog of separation).

Cohesiveness of cloud k, denoted ak, is defined as a func- 6.0 Results
tion of the square-root of the frequency with which points in
one cloud are correctly judged to belong with other data As stated earlier, we expect that the success of the subject in
points in the same cloud, summed over all subsets, and the task posed by our experiment will depend on the separa-
divided by the maximum possible number of correct co- tion of the point-clouds and on their compactness.
occurrences of the cloud members. If C is the classification
matrix described above, and M is the diagonal matrix formed We expected that the "objective" compactness of data
from its' row martingales, M = diag [Cl] , (1 being a col- clouds, as measured by a,, would be positively related to the
umn of g ones), then (unadjusted) cohesiveness is: "subjective" cohesiveness, as measured by a,. However, the

diag J 1CC'M'I (EQ 4) observed correlation between ai and ai was essentially zero,
indicating that the size of the point-cloud had no effect on
the accuracy with which the subject grouped points. This

The diagonal matrix A contains the (unadjusted) cohesive- result may be due to the fact that all point-clouds were gener-
ness ai1 of the i'th cloud on its diagonal. We call i, "unad- ated by sampling from populations possessing the same vari-
justed" because its' lower bound, in this study, is ance-covariance structure.

_ 2r(w+ ,)2 (6r)w2  _ Rem We also expected that thc"objective" separation of pairs of
C- - ; where (EQ 5) data clouds, as quantified by the separation measure 13j,would be positively related to the "subjective" distinctive-
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ness, as measured by the distinctiveness values b11. The We also considered the effect of cloud size on the relation-

observed correlation between Pii and bij was .57, indicating ship shown in Figure 2. We discovered average cloud sizes
of all types (small, medium, and large) represented in allthat generally, the farther point-clouds were positioned apart, regions of the scatterplot. Thus, no matter how many points

the more accurately the subject grouped points from within they contained, clouds which were close together were not
them.The scatterplot of the relationship between distinctive- distinguished as well as clouds which were far apart. Fur-
ness and separation (Figure 2) reveals a nonlinear relation- thermore, among all clouds which were far apart, the sub-

ject's performance was excellent, across all cloud sizes.

* 7.0 Discussion

- "The results of the current investigation are "tantalizing, but
preliminary". The intuitively appealing notion of a relation-

UO * ship between the distinctiveness and separation of clouds
appears to have been borne out (albeit in a nonlinear fash-

* •: ..*. *! * ion). No firm conclusions regarding the relationship between
data cloud size and accuracy may be specified; although it

0 0.2 0 4 0. 6 0 8 1would appear that cloud size, if it does have an effect, may
exert it on a subject's ability to refrain form incorrectly frag-
menting data clouds, rather than on his ability to differentiate

Figure 2 between points belonging to two different clouds.

ship over the range of data we have considered. Closer study
shows that this nonlinearity results from a trend in which In the future, studies should vary the variance-covariance
clouds separated by distances greater than 12 were, essen- structure of the populations from which the cloud points are
tially, perfectly distinguishable; clouds separated by 8 to 12 sampled in order to investigate effects on perceived cloud
distance units show distinctivenesses between .85 and 1 cohesiveness. Second, our results provide rough guidelines
(with 2 exceptions); while clouds separated by less than 8 for redefining "interesting" ranges of distances to examine in
units reveal a very mildly positive relationship. A three-piece more detail (at least for the variance-covariance structure we
linear spline has been drawn by eye for emphasis. (Note that used). Third, future studies should contain more heteroge-
a separation index normalized by compactness correlated .56 neous mixtures of cloud sizes than we used. Finally, our
with distinctiveness and showed the same scaterplot shape). "subjective" cloud measures belong to a class of covariance-

type measures; while our "objective" measures are distances.
Last, we expected that clouds containing many data points While comparison between these two classes of measures
would be more accurately identified than clouds containing should correctly point out relationships between "subjective"
few points. Both subjective measures, cohesiveness and dis- and "objective" information where such relationships exist,
tinctiveness bear on the question of accuracy. Cohesiveness they will not necessarily follow any "nice" functional form
describes how well data points which belong together are (c.f. Figure 2). Consequently, we are actively exploring ways
kept together, while distinctiveness describes how well to define distance-like "subjective" measures.
points that belonged apart are kept apart. The correlation
between cohesiveness, ai , and number of data points per References
cloud equaled .24, suggesting a very modest tendency for -efe-r---
large clouds to have more of their observations correctlygrouped together than small clouds. This result must be Buja, A. & Tukey, P. (1987) Dataviewer: A Program for

groued ogeher hansmal cluds Ths reultmus be Looking at Data in Several Dimensions. (Video) Bell
viewed as inconclusive, however, due to the potential corre- Lokin at Datn mV
lation induced between cohesiveness and cloud size during Comm. Res., Morristown, NJ.
the scaling of ai onto the unit interval. Finally, no relation Tukey, J.W., Friedman, J.H. & Fisherkeller, M.A. (1973)

was seen between distinctiveness and cloud size (using the PRIM-9. (Video) Stanford Linear Accelerator Center,

average number of points in the two clouds under consider- Stanford Univ., Stanford, CA.

ation), indicating that the average size of pairs of data clouds Young, F.W. & Rheingans, P. (1991) Visualizing Multivari-
did not affect the accuracy with which data points from the ate Data with VISUALS/Pxpl. (Video) Univ. N. Carolina,
two clouds were placed into separate subsets. Psychometrics Lab., Chapel Hill, NC.
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1 Abstract of T"AtA

Exploring mnultivariate data with the grand tour[1]
is a visually exciting way to discover interesting struc-
ture. However, one criticism of this method is that as
dimensionality increases the chances of quickly discov-
ering views of interest diminish rapidly, because of the
random nature of the grand tour, and the expanding SfArvf' -

volume of space.
To improve the chances of discovering interesting

structure we propose a method for controlling the explo- -l tle,
ration by motion control and directing movement along ProjL i o'lc
the gradient of a projection pursuit function. + P

The benefits of this approach are two-fold. Firstly, it 11AA4t C
provides a fast, powerful exploratory data analysis tool, W
and secondly, it provides a vehicle for exploring and com - 1
paring projection pursuit functions. *VirecA0o Ct~AK-

2 Introduction

Suppose that we are in a two-dimensional world in Figure 1: Jump random walk tour with indices of
a higher-dimensional universe, and suppose that despite interest plotted over time.
this handicap we are interested in exploring our universe dimensional view of the data. The meaning of interest
via sequences of two-dimensional views. Essentially this varies somewhat in data analysis. For example, Fried-
isman and Tukey[3] thought local clumpiness was interest-

Our implementation of the grand tour, coined the ran- mn Tu ate thought loc ies interest -
dom jump walk tour, is one in which a starting plane is ing but later Riedman4] associated interest with non-

fixed, an ending plane is generated randomly in the p- normality.

dimensional data space, and the jump walk tour path A projection pursuit function is used to assign an in-

is the geodesic interpolation between the two. When dex of interest to each two-dimensional projection of
the data. By choosing a smooth function the deriva-

the ending plane pane it becomes the new starting tive can be used to determine the new motion direction,as opposed to randomly generating directions in the un-
the tour progresses, essentially randomly walking on a restricted tour.
Grassmann manifold in p-space[2]. Combining this with jump size control means that we

To begin providing control in the tour we first look Cobngthswhjupizcnrlmestatetry to direct the tour towards views with higher indices
at controlling the jump size. We define the jump size to of interest, and thus hopefully, views that expose the
be the distance between the starting and ending planes, structure in the data.
that is, the norm of the canonical angles. In a random
jump walk tour this jump size fluctuates randomly, in an 3 Projection Pursuit Indices
unrestricted manner. If we provide control over the jump There are four indices of two basic types which we
size, by restricting it to be small, we keep the exploration have currently implemented; two indices based on ex-
local, whilst increasing the jump size allows more global pansions, and two indices based on density estimates.
movement over the space. For two-dimensional projection pursuit it is usual to ini-

In addition we assign an index of interest to each two- tially sphere the data, either by principal components
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or using a robust variance-covariance matrix. Here the data. We have implemented a bivariate adaptation of
following notation is used: this index based on the L2-norm of a local depoity esti-

zi = data vector; i = 1, ..., n mate. Because we initially sphered the data, we disre-
a, ,8 = projection vectors gard the local scale measure, and have:

li = a'I zi, X2i = 'zi I,)f2(x)dx
Yli = 2$(xi) - 1, Y2i = 2$(x2i) - 1

3.1 Polynomial Indices where f is estimated by a kernel density estimate
Friedman's[4] index is the L2-distance between the 1

function g, obtained by inverting the empirical density f(x) = - K h(x- x,)}
through a standard normal cdf, and a bivariate uniform l
density on [-1, 1] x [-1, 1]. The empirical density ex- with r 4(1- x'x)3 if x'x<1
panded in P-. ents by Legendre polynomials as follows: K(x) = / 0 otherwise

,(a,,/3) = f{g(YY2) - 112dyldy2  The kernel is one that is proposed by Silverman[9] for
- - 2 bivariate density estimation, because of its differentia-

l bility properties. Normally in calculating a density esti-
= 4 E 1-(2j + 1)(2k + 1) x mate one would optimize the window width parameter,

j=o k=0 however this would be impractical to do for each two-
2 p 1 dimensional projection, so we set a value and allow the

where 4 user interactive control of this.
Po(Y) = 1, Pi(y) = Y, The fourth index we consider is negative entropy
Pj(y) = [(2j - 1)yPj-.(y) - (j - 1)Pj-2(y)] which is very similar to the Friedman-Tukey index, in

are the Legendre polynomials. that it is based on a local density estimate, as above:
In response, Hall[5] suggested that Friedman's index

is not useful for heavy tailed distributions, by showing I(a,3) -Jf(x)logf(x)dx
that this index will be infinite if the tails of the distri-butin d no dereae a leat a fat a exfX/4} This index is discussed by Jones and Sibson[7], and Hu-
bution do not decrease at least as fast as exp{-z 2 /4}, ber[6].
As an alternative he proposed an index based on the L 2
distance of the empirical density, g, from a standard nor- 4 Implementation
mal density, with the expansion of the empirical density The implementation of projection pursuit is embed-
obtained by Hermite polynomials. Our bivariate version ded into XGobi, the dynamic graphics program under
of this approach is as follows: development by Swayne, Cook and Buja[10]. Figure 2
I(c,/3) = 00 9(zX, X2) - 0(X, X2)}2dxdX2 gives an indication of the setup.

f, f j 0 An XGobi window is initiated with the data of inter-
00 0 est. Tour mode is activated. The top plot window has

= EE E 2 {hj(xl)hk(X 2)} the data dynamically touring. When ProjPursuit is se-
j=O k=0 lected the bottom window pops up. In this window the

e-Exprojection index is plotted over time. The current value
where -27r E~ho(z)ho(X2)} + Ir

- 1  of the index is also printed in a small window beside the
hi(x) = (i!)- 

127r Hi(x)O(x) projection pursuit button.
and In addition the data is sphered by principal compo-

Ho(x) = 1, Hi(x) = x nents, as indicated by the PrnCmp Basis button being
Hi(x) = xHi_,(x) - (i - 1)Hi_2 (x) highlighted, and the variable labels become PC1, PC2,

are the standardized Hermite polynomials[11]. etc.
Both of these indices are estimated by truncating the Projection pursuit can be either Active or Passive.

sum at some finite number (Friedman[4] suggests be- In active mode the direction of movement is determined
tween 4 and 8 for his index), and estimating the expected by the derivatives of the projection pursuit function
values by sample means. whilst in passive mode the tour reverts to the random

3.2 Density Estimate Indices jump walk but we still get the indices plotted over time.
Friedman and Tukey[3] originally proposed an index Beside the Active button is one labelled Bitmap.

based on a local scale measure multiplied by a local den- Clicking on this generates a small picture in the bottom
sity estimate designed to search for dumpiness in the window of the view in the top window at the time. As
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Figure 2: Implementation of direction and motion

control Figure 3: Comparison of the polynomial indices on

we can see the view corresponding to the first local max- flea-beetle data.
imum is one in which three distinct clusters within the
data are separated. In each case the starting point is the view given by the

The scrollbar below the active allows the user to con- first two principal components. We see that this is not a

trol the tour jump size during active projection pursuit. very discriminating view of the three species. However

The effects of this are seen in the bottom window. Ev- upon activating projection pursuit guidance we see that

ery time a direction change is made a small vertical bar all the indices immediately move the tour into a view

is drawn on the horizontal axis. When the jump size is of a three group separation, so with very little work we

small the tour sharpens up the nearest local maximum have discovered a very informative picture of the data.

and when large the tour moves globally over the Grass- In figure 5, a comparison of the polynomial indices is

mann manifold in p-space, illustrated on a nine-dimensional hypercube. The views

The next scrollbar controls the number of terms in the that distinguish the hypercube based on two-dimensional

expansion of the polynomial indices, and also allows the projections are ones where the data collapse into the four

window width to be adjusted for the density estimates. vertices of a square, During an unrestrained random

Lastly there is a menu for selecting a projection pur- jump walk tour, most views of the hypercube appear

suit index. close to being bivariate normal, aside from the interfer-

5 Exaplesence patterns. It is virtually impossible to see a complete
Examplescollapse into the four point view.

In this section we are looking at the uses of this So it is interesting that starting at an arbitrary view,
methodology in exploring data, and comparing projec- in this data, the projection pursuit directed tour very
tion indices. For this purpose we show window dumps quickly finds a view of the data collapsed into a square,
in figures 3, 4 and 5 of the bottom time series window for both of the two polynomial indices. The one differ-
of the progress of the tour guided by projection pursuit ence between the two indices is that Hall's index seems
over time. Every time a new gradient is calculated a bar to need to do less work to find this four point view,
is drawn on the horizontal axis. Keep in mind that in whilst Friedman's index needs to wend its way through
the setup on a workstation this is happening dynami- some lower level maxima. (The apparent planar non-
cally, and we see the data touring simultaneously in the equivariance of Hall's index is due to the truncation of
top window. the infinite sum.)

The data in figures 3 and 4 comes from Lubischew[8].

It consists of 6 measurements on 3 species of flea-beetles, 6 Cocuin
with a total of 74 cases. The window dumps in figure We have found that the polynomial indices show the
3 are brief sessions wit.h Friedman's index and Hall's in- most promise cue to their speed of cothputation. The
dex, respectively. Figure 4 has window dumps of the computation of these indices is of order n, as opposed
Friedman-Tukey and entropy indices, to order n for the density estimate indices. In practice,
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Figure 4: Comparison of the density estimation in- Figure 5: Comparison of polynomial indices on
dices on flea-beetle data. nine-dimensional hypercube.

Friedman's index doesn't appear to be overly sensitive for Subspace Interpolation in Dynamic Graphics. Bell-
to outliers and heavy tails as Hall suggested, but this core Technical Memorandum.
doesn't mean that both indices behave identically, as [3] Friedman, J. H. and Tukey, J. W. (1974) A Projection
we saw in the last section. However, other than non- Pursuit Algorithm for Exploratory Data Analysis. IEEE
normality it is difficult to quantify what it is that the Trans. Comput. C 23 881-889.
indices are actually searching for. [4] Friedman, J. H. (1987) Exploratory Projection Pur-

Quite readily, beginning at the view given by the first suit. J. Amer. Statist. Assoc. 82 249-266.
two principal components, our guidance system finds in- [5] Hall, P. (1989) Polynomial Projectioi Pursuit. Ann.
teresting structure, but the inherent optimization prob- Statist. 17 589-605.
lems with noisy functions arise. Using simple derivative- [6) Huber, P. J. (1985) Projection Pursuit (with discus-
based direction control doesn't assist in finding tight lo- sion). Ann. Statist. 13 435-525.
cal peaks and creates problems when the function con- [7] Jones, M. C. and Sibson, R. (1987) What is projection
sists of long trenches or ridges. These structures tend pursuit? (with discussion) J. Roy. Statist. Soc. Ser. A
to be more common in as dimensionality increases. We 150 1-36.
counter some of the problems by switching to passive [8] Lubischew, A. A. (1962) On the Use of Discriminant
mode and allowing the random jump walk tour to move Functions in 'I xonomy. Biometrics 18 455-477.
over the space before beginning active projection pursuit [9] Silverman, B. W. (1986) Density Estimation. Chap-
again, man and Hall, London.

Whilst it is simple to sphere the data by principal [10] Swayne, D. F., Cook, D. (1990) XGobi: A Dynamic
components, it is not ideal, and so our next question Graphics Program Implemented in X with a Link to S.
will be to explore these methods with robust sphering. Proc. of the 22nd Symp. on the Interface between Corn-

Despite the problems we have encountered, we have put. Sci. and Statist., Springer-Verlag, New York.
devised a tool which readily allows a comparison and [11] Thisted, R. A. (1988) Elements of Statistical Coin-
development of indices, as well as providing direction puting. Chapman and Hall, New York.
and motion control in the grand tour to increase the 8 Acknowledgements
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Abstract created for the user without any modification to the
existing SCA System.

In this paper we develop an approach for creating a

graphical user interface (GUI) for an existing 2. Design and Philosophy of the Composite
command driven mainframe program. As an exam-
ple of this approach, we present an implementation User Interface
using the SCA Statistical System. The windows A primary goal of our user interface design is to
front-end to the SCA System runs on a personal allow graphical and command user interfaces to co-
computer using Microsoft Windows. The front-end exist in the same application software. In addition,
communicates with the SCA System running on a we wv it the user interface portion of the software to
mainframe or workstation through a serial commu- be as independent of the computational portion of
nication device. This implementation demonstrates the software as possible, and ideally the same user
the advantage of using such an approach. interface program is able to function with different

versions of the computational portion of the program
1. Introduction for different computers and operating systems.

These are the key emphases of "system-indepen-
A general goal in the computer industry has been dence" in our user interface design. In trying to
towards making computers and software more user fulfill these goals we have developed a hybrid user
friendly. A recent trend towards reaching this goal interface, that we refer to as the composite user
is through the use of a graphical user interface interface. Below we outline the basic features that
(GUI). A common problem with GUIs is that they comprise the composite user interface presented in
either favor novice users over experts, or favor this paper:
expert users over novices. In this paper, we present
an approach for combining command and graphical 1. The functionality of the program is independent
user interfaces into a single user interface that from the user interface. To facilitate this sepa-
bpnefits both novice and expert users. We will refer ration, we use two separate programs: a computa-
to the user interface presented in this paper as the tional program and a front-end program. We
composite user interface (CUI). will refer to this separation of the front-endW e have im plem ented this approach for the SCApr g a f om t ec pu ti n l r g am sthprogram from the computational program as the
Statistical System and later we will discuss certain segmented feature of the interface.
features that have resulted from our design 2. The computational program provides a command
approach. The SCA Statistical System consists of user interface which is the same across different
three packages which provide capabilities for fore- host operating systems.
casting and time series analysis (Liu et al. 1986), 3. The front-end program provides a graphical user
quality and producitivity improvement using sta- interface which conforms to a native GUI envi-
tistical methods (Liu et al. 1987), and general sta- ronment. The user accesses the computational
tistical analysis (Hudak et al. 1989). The graphical program through the use of dialog boxes, and
front-end to the SCA System runs on a personal other GUI devices. These graphical objects will
computer using Microsoft Windows. The front-end generate syntactically correct commands for the
communicates with the SCA System running on a computational program.
host computer through a serial communication 4. The front-end program should also provide a

device. When the mainframe SCA System and the command window which preserves a command

SCA Windows/Graphics Package (Liu et al. 199 1) are usernefaedo thc pr ommand

used together, a complete windowing environment is bss terac a of the ront-end
bypass the graphical objects of the front-end
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program. We will refer to the support of extensive syntactical structure, which includes
graphical and command user interfaces in one modifiers to each command. This makes a GUI
program, the dual feature of the interface, extremely beneficial to users who are not familiar

5. The user si..)uld be able to customize the envi- with all the features of the SCA System. In this
ronment and use both graphical objects and section, we employ a set of data from Box, Hunter,
commands interchangeably in the same session. and Hunter (1978) to illustrate the command user

interface of the SCA System. The data employed
The primary purpose of the composite user interface were the results of a chemical experiment. In this
is to support an interface in which graphical and experiment, it was believed the initial rate of the
command user interfaces can be integrated. Such a formation of a chemical impurity causing a discolor-
dual feature is very desirable. We envision that ation is linearly depedent on the concentrations of
software development is anevolutionaryprocess, and monomer and dimer. The rate is zero when both
the extension of graphical user interfaces is part of components are absent. The data are entered direct-
this process. Since the currertt base of users have ly and stored in the SCA workspace in the variables
already made an extensive investment in the current IMPURITY, MONOMTER, and DIMER. A regres-
command language, we see the need to preserve the sion analysis with zero intercept (i.e. no constant
command language as it currently exists, term) is then performed. The SCA commands to

The need for a segmented approach is also driven perform the above analysis is listed below:
by the requirements of system-independent, mod- INPUT VARIABLES ARE IMPURITY, MONOMER, DIMER.

ularity, and portability. The most plausible ap- 5.75 0.34 0.73
proach to implment this feature is to develop the 4.79 0.34 0.73
front-end interface as a separate program. 5.44 0.58 0.69

9.09 1.26 0.97The approach outlined above will result in more 8.59 1.26 0.97
portable code, since the functionality of the program 5.09 1.82 0.46
does not depend on the GUI. Also since command END OF DATA

programs are usually less machine dependent, it REGRESS VARIABLES ARE IMPURITY, MONOMER, DIMER. @

should be fairly easy to move the command program STOP NO CONSTANT.

to new environments. In addition, if the new envi-
ronment does not support a GUI, the command pro- In the above SCA session, we have executed three
gram is still a viable program in its own right. SCA commands: INPUT, REGRESS, and STOP. The

function and syntax of these commands are illus-
3. An Implementation Using the SCA System trative of SCA command syntax. An SCA command

is also referred to as a paragraph. The first word ofIn general, the approach outlined in Section 2 can be the command is called the paragraph name. In this
applied to any existing command program. In this example, INPUT, REGRESS, and STOP are para-
section, we illustrate this approach using the SCA graph names. The paragraph name is followed by
Statistical System. In this implementation, the front- various modifiers to the command, the modifiers are

end program runs on an IBM compatible personal referred to as sentences. In the REGRESS para-

computer running Microsoft Windows. We have graph there are two sentences: "VARIABLES ... "

tested the front-end program with the SCA System and "NO CONSTANT". Notice that sentences are

which runs on IBM /TSO. IBM /CM S, VAX/VM S, or a d by theS delimi t e (".").

UNIX operating systems. This software is currently separated by the delimiter period

available from SCA as the SCA Windows/Graphics 3.2 The SCA Windows/Graphics Program
Package (Liu et al. 1991), which we will also refer to
as the SCAWIN program in this paper. Here we outline the features of the SCAWIN pro-

gram. To start the SCAWIN program, the user must
3.1 The SCA Statistical System first login to the host computer using the terminal

emulator window included with the SCAWIN pro-
Even though the proposed approach theoretically can gram. After the user executes the SCA System, the

be employed in any command driven software, its user maycente the SCA n d t (h

effectiveness and implementation depends on the in Section 3.1) into the Command Window. Below is

command structure of the software. If the software a Sec een fo the anyi dcuse i

has a rather simple command structure, the GUI will above sen.

be of less benefit. The SCA System has a fairly above section.
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-_ SCA Wudus Wis. When the user selects a menu, a pull-down menu
5ysI-m UINy Lil UIlA I)lPclI.y UA Quallty Analysls dadllrlq Qihera

i--- SCA outpu Window: scAUUo,, __ _ is generated. For example suppose a user wishes to

perform a regression analysis, the user would select
.. .... .. .*- F- the "GSA" item on the SCA Windows Menu and

I .An s .32s7.... ........ ... then select the "Regression Analysis..." item.

. -- a1 *f. n3t *-,flnlal -I.3.7

m s oF t tBox-Cox Translurmalion...
,Irace 1u1 12- sloat. i .,,. S t l*-. a Correlation..
s.Ula 31 .3, 2 13./2y ' .010

. ssoa.t t .Cross Tabulation..

I .. i~ .s . u, .s pi , v - . , 1-way OF 2"way Table...

_USS fl.201 I &N.flt ,,7.00 J2 sample I test..

- SCA C--nad Widow: SCA11118Y.CMD A way ANOVA..
P~ ne is a~v ~, -wayAAJOVA-..

11 .1 - 19 U NwayANOVA..

AR INO or DATA ANOVA Dcsign Matrix...
I LCILSS Distribution Simulation...

Non-parametric Statistics...

The above display contains three windows. They are By selecting this item, a dialog box is displayed to
the SCA Windows Menu, the SCA Output Window, assist the user to create a command. In the SCAWIN
and the SCA Command Window, program, this dialog box is referred to as the Com-

(A) Command Window mand Builder. Below we describe the use of the
Command Builder.

The composite user interface described in this paper
requires that a user be able to access a command (D) Command Builder Window
program in its native language. The SCA Command The Command Builder Window is designed to
Window allows the user to communicate with the facilitate the construction and entry of any SCA
SCA System in this manner. Thle Command Window paragraphs. As an illustration, we show the short
also maintains a complete history of all SCA corn- Command Builder Window for the REGRESS
mands issued during an SCA session. The commands paragraph:
in this window can be edited and then executed.

SCA Command Builder: IIIEGIIESS(B) Output W~indow¥
Output and innut vaui hlrs:

The Output Window contains all the output from an Constantterm In model?: D rfault is YES

SCA session. All information (i.e. text) in the Hold resurIss in:

Output Window can be reviewed at any time. Other__,________]

(C) SCA Windows Menu [-"K C--e lp

One of the most important features in the SCAWIN
program is the ability to access the command lan- To create an SCA command, the user first enters
guage using graphical objects. To accomplish this, information into one or more of the controls. (In
we have implemented pull-down menus to allow this instance, a control refers to one of the text input
users to access all SCA paragraphs. The SCA Win- boxes in the above dialog box.) Even though many
dows Menu, shown below, allows the user to createSCA ommndsthrogh ialg boes nd lso controls may be displayed, the user does not need to
dspay commaindsmtroughi lo g bx pa a aso enter information for all controls. Information only
display help information for SCA paragraphs, needs to be provided for those controls that corre-

< "ond to required SCA sentences (required sentences
....... .... % -. _,-.s.,._' ........... were discussed in Section 3.1 and are signified by

having the prompt underlined and in red color).
When the user has completed entering the informa-

Ten menu items are displayed on the SCA menu. tion, fie may select the "OK" button or presses the
Enter key. The command will then be created and
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sent to the SCA System. The SCA command created have also stressed the need of the co-existence of
is also displayed in the Command Window. command and graphical user interfaces. By using an

The Command Builder does not include instruc- interface with a dual feature, we have demonstrated
tions for every sentence when it creates an SCA an approach that will have benefits to different
command. Several k-ywords have been employed to levels of users.
indicate those sentences that need not be processed. The approach presented in this paper not only
These keywords are "None", "All", "Default", and provides benefits to users, but also to software
"e.g.". If an argument appearing in the control developers. Software developers do not need to
begins with one of these keywords, then the Corn- rework their existing programs, but instead can
mand Builder will use the SCA System's default concentrate on the GUI front-end. By retaining the
argument for that sentence. The keywords defined native command language and minimizing the
above have been employed to provide the user with changes to the existing code, costs for documentation
the default options or serve as sample information, and future software maintenance are reduced

Another feature that has been implemented is the (Boehm and Papaccio 1988). The composite user
ability for the user to control the amount of options interface has demonstrated to be a cost effective
presented in the Command Builder Window. If the means for both users and software developers for
user requests a full Command Builder, then more migrating from character-oriented to graphical
optional sentences will be provided for the environments.
REGRESS paragraph as shown below:

REFERENCES
SCA Command uilder IGIIE.S Boehm, B.W. and P.N. Papaccio (1988). "Under-
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4. Summary and Conclusion Scientific Computing Associates, P.O. Box 625,

DeKalb, IL 60115.
In this paper we have outlined a composite user

interface for creating a GUI for an existing com-
mand program, without having to modify the ex-
isting command program. The same front-end GUI
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A Bivariate, Nonstationary Time-Series Model

for Global Fossil Fuel Production
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Mankind is returning fossil fuel generated CO2 to and r is a parameter measuring the rate at which w(t", r)
Earth's atmosphere at an exponential rate, causing con- tapers to zero for decreasing values of the time lag.
cern about a greenhouse warming. Jones, et.al. (1986) One way to specify w(t", r) is to assume a functional
derived the record of yearly average temperature changes form in which r becomes the fourth fitting parameter.
plotted in Fig. 1. The least squares straight line has We tried the following: the boxcar function,
slope 0.38 ± 0.04 (OC)(century)- 1 , but the average slope 1
since 1970 has been much greater and is thought by some w(t", r) = - , -r < t" < 0
to indicate the onset of the greenhouse. r

In Fig. 2 the circles represent annual global totals of the triangle function,
fossil fuel production for 1870-1986 [Boden (1988)]. The 2 (2 ,"
dashed curve is a nonlinear least squares fit of the model w(t", r) = - + tt -r< <0 ,

d= P , P(O) = Po P(t) = Poexp(at) and the half-Gaussian,

The fitting parameters together with the sum of squared w(t", r) 77 exp 0( < o t" <0
residuals (SSR) are given in the first row of the table on L
the next page. We calculated the convolution integrals numerically, us-

Rust and Kirk (1982) showed that for 1870-1974, the ing for T(t) a cubic interpolating spline representation
exponential growth of fossil fuel production was mod- of the temperature data (shown as the curve connect-
ulated inversely by Northern Hemisphere temperature ing the points in Fig. 1). The fitted parameter values
variations. If P(t) is fossil fuel production at year t and are given in rows 3, 4 and 5 of the table, and the corre-
T(t) is temperature, then their model is written sponding memory function estimates are plotted in Fig.

dP 1 dT\ 3. The half-Gaussian window gave the best fit, with an- -=a/3L P , P(0) = P0, estimated P(t) very similar to the solid curve in Fig. 2.
7t t Another way to specify w(t"; r) is to estimate it from

where/3 is an additional fitting parameter. Using an ear- the data. We did this by assuming that w(t"; r) = 0 for
lier, cruder temperature record, they obtained the values all lags with magnitude greater than r = n + 1, where n
given in the second row of the table. is a prespecified integer, and approximating the convo-

A more realistic model, allowing for time lags between lution integral by numerical quadrature, i.e.,
production, can be written dP d--

dP = ad - vt ,r)T(l')t' P where dtIdI
T= } )dt' I I where the wj are quadrature coefficients, and u'j

where I" -V - t is the time lag, w(I", r) is a memory w(-j, r) are discrete values of the memory function to
be estimated. The solution of this ODE can be written

function satisfying

<t< __ tr~i P(t) = Po exp tat - ['J T(t - j,) - T-)w(t", r) > 0 ,-oo < t" < 0 , 0w(t", r)dt" = I l)=Fepa ~jI~ )-T-)
-- '1-0-0 c j=O
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Model Po [megatons] a [yr - '] /3 [(0C)-1 ] r [yr] SSR
Simple Exponential 157 0.0313 64.2 x 10 5
Rust and Kirk (1982) 181 0.0320 1.20
Boxcar Window 182 0.0332 1.13 10.1 8.52 x 105

Triangle Window 176 0.0334 1.22 16.3 7.82 x 105
Half-Gaussian Window 175 0.0335 1.23 9.95 7.53 x 10 5
Transfer Function 178 0.0334 1.18 14 7.39 x 105

where/3, -/3wjwj. This is a nonlinear transfer function the Gaia hypothesis, a warming caused by fossil fuel
model with n + 3 fitting parameters Po, a,/30,/31,..., 3n. consumption should produce a feedback curtailing that
The unit integral restriction on the memory function im- consumption. The inverse modulation identified in the
plies that /3 = - /3j, so, having calculated that value, present study may represent just such a feedback.
the discrete memory function estimates can be obtained Fossil fuel production is an indicator of economic
from the transfer coefficients by vigor. It is not yet possible to predict future temper-

/3i ature variations, so the model described here can only
= , j = 0, 1,2,..., n . make provisional predictions of future production by as-

suming various temperature scenarios. Three such sce-
Our strategy for determining r was to make n as large narios are shown in Fig. 5, where circles represent mea-
as possible with /3 > 0,j = 1,2, ... , n. The result was surements (1971-1988), and triangles, squares, and di-
n = 13 (r = 14). The estimated memory function is amonds represent 20 years of increasing, stable, or de-
plotted as connected circles in Fig. 3, and the other creasing temperatures, respectively. The corresponding
parameters are given in the last row of the table. The provisional predictions are shown in Fig. 6 where circles
estimated P(t), shown as a solid line in Figs. 2 and 6, represent measurements (1971-1986), the solid line rep-
tracks the measured data remarkably well. resents model predictions for those years, and the trian-

Critics have claimed that 16 adjustable parameters gles, squares, and diamonds are model predictions for the
should give a good fit using any time-series for T(t). 3 future scenarios. The initial prediction in all cases is
Therefore, we generated 300 artificial T(t) records, us- for 4 or 5 years of declining or static production. There-
ing the least squares fit in Fig. 1 as a baseline and adding after, the cooling scenario predicts spectacular recovery,
normally distributed random deviates with mean 0 and the stable temperatures predict 4 or 5 additional years
variance equal to that of the real temperatures about of static production followed by recovery, and the con-
that baseline. Repeating the fit for each of those records, tinued warming scenario predicts 4 or 5 years of further
we obtained, in every case, one or more /3j < 0. We also declines followed by an almost static production . The
obtained the SSR distribution shown in Fig. 4 where production totals since 1986 are not yet available, but
vertical lines mark the mean, -la, -2a and -3a" points, the current economic situation does not contradict the
and the black square marks the SSR for the real temper- initial predictions.
atures. Clearly, the probability of obtaining, by chance,
such a low value of SSR, with all /3j > 0, is negligible. In
fact, using measured data which averaged both the land
and marine temperatures gave 4 negative /3j valuse and
doubled the SSR. A good fit is obtained only with mea- [1] Boden, T.A. (1988) Numeric data packageNDP001.REV, ORNL/CDIC-1T, Carbon Dioxide
sured temperatures for the Northern Hemisphere land Information Analysis Center, Oak Ridge, TN.
surface where most fossil fuel is consumed.

Lovelock (1979) propounded the Gaia hypothesis [2] Jones, P.D., Raper, S.C.B., Bradley, R.S., Diaz,
which postulates that life regulates and maintains the H.F., Kelly, P.M., and Wigley, T.M.L. (1986) Jour.
conditions needed to assure its survival. lie noted that of Climate and Appl. Meteor. 25, pp. 16 1-17 9 .
Earth's surface temperature has been nearly constant
for the 3 x 10 year history of life, even though the [3] Lovelock, J.E. (1979) Gaa: A New Look at Life on
Sun's luminosity has increased tenfold in that time. Sur- Earth, Oxford University Press, Oxford.
face temperature depends critically on the concentration [4] Rust, B.W. and Kirk, B.L. (1982) Enviroment In-
of greenhouse gases in the atmosphere. According to ternational 7, pp. 419-422.
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in Spline Smoothing
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Abstract One chooses the smoothing parameter A in (1.1) to
balance the competing aims of smoothness and close fit

We address the problem of influence in estimating the to the data. Small values of A produce rougher curves
smoothing parameter when fitting a univariate smooth- that follow the data more closely while large values of A
ing spline. Using the local-influence methods of Cook give smoother curves. A popular data-driven method for
(1986), a diagnostic is derived to identify observed re- selecting X is generalized cross-validation (GCV), intro-
sponses that locally influence the choice of smoothing duced by Craven and Wahba (1979). The GCV choice
parameter by generalized cross-validation. The diagnos- minimizes over \ > 0
tic motivates a discussion of an apparent sensitivity of
generalized cross-validation. G(A) = 11(n - Hx)Y 2 - eTe2

(n- trHx)2  (n - trH\)2  (1.2)

1 Introduction where I is the n x n identity matrix and e), = (I - H\)y
is the vector of residuals. For discussions of GCV in

Consider scalar responses yj generated according to the related smoothing problems, see Li (1985), Hall and Tit-
model yj = p(tj) + cj, where p is a "smooth" regression terington (1987), and Hardle, Hall, and Marron (1988).
function, a < tj < ... < t,, < b, and the errors cj Analogues of familiar linear-regression diagnostics,
are uncorrelated, with zero mean and constant variance, based on case deletion, have been proposed for smooth-
We assume that y is smooth enough to belong to the ing splines; see Wendelberger (1981), Eubank (1984,
set W2'[a, b] of functions g that, for some fixed m, have 1985), Silverman (1985), Eubank and Gunst (1986).
m - 1 continuous derivatives and square-integrable mth However, no diagnostics for GCV have appeared in the
derivative g(m) in [a, b]. The smoothing spline estimator literature. Although case-deletion diagnostics for the
of p satisfies a penalized least squares criterion: it is the GCV choice A are an obvious approach, they are com-
minimizer over g E W~m of putationally infeasible for large datasets. Further, as

1 nb )2 will be discussed in Section 3, the estimate A is appar-
- E yj - g(tj)}2 + 1 {g(m)() dt, A > 0. ently sensitive to groups of observations acting together

j=l a rather than single outlying points. Hence case-deletion

(1.1) diagnostics may not be very relevant.
Here, the integral is a penalty for roughness in the spline.
For a fixed value of A > 0, the smoothing spline is a linear
smoother, i.e., there is a "hat" matrix H,\, depending 2 A diagnostic for influential re-
only on the design points {ti } and A, that transforms the sponses
data vector y into the vector of smoothing spline fitted
values: H.y = pA. Discussions of smoothing splines in To develop a diagnostic when influential groups of cases
statistics may be found in Wegman and Wright (1983), are a possibility, a natural approach is to perturb all
Silverman (1985), Eubank (1988), and Wahba (1990). observations simultaneously, rather than modifying or

'Research supported in part by the National Institutes of deleting single cases. To do this, we add a vector w of
Health (GM39015-O1A1) small perturbations to produce y,, - y + w. Through
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their local influence (Cook, 1986), we can identify groups For periodic cubic splines (m = 2), we assume
of responses that play a large role in the determination the model (1.1) and in addition that: (i) t1,... ,t,, are
of the GCV estimator A. equally spaced in [0, 1], (ii) 1 is smoothly periodic in the

For each w, GCV applied to the perturbed data y, sense that /(0) = p(l) and p(')(0) = p(l)(1), and, for
selects A(w). This defines a map w -, A(w) as w ranges simplicity, (iii) n is odd. Write the Fourier transform of
in an open set about w = 0, where A(0) = A from the un- y as f(y) = Xy/n, where X is the n x n matrix with

perturbed data. We approximate the surface A(w) with rows

its tangent plane at w = 0 and find the direction of max- T

imum slope tmax on this plane. It can be shown that Xr = (1,exp(2-ir/n),...,exp{2iri(n -

tmat dee aw)/ vT, evaluated at w = 0. For the pertur- in the order r = -(n - 1)/2,. .. , (n - 1)/2, and where
bation defined above, it is straightforward to calculate i2 = -1. The Fourier coefficient of y for the frequency

tmax cx (cI - H)(I - H) 2y, (2.1) r/n is the rth component of f(y),

where c = tr {H(I - H)}/tr (I- H) and H = H . 1 n

The essential idea is that a direction of large lo- fr(Y) = A Z Yk exp{27ri(k- 1)r/n},
cal change in the A(w) surface at A(0) = A corre- k=1

sponds to perturbation of influential responses, the vec-
tor tmax approximates this direction, and therefore large s that the fr for large pI correspond to high frequencies.
components of t

max flag locally influential observations. Then .f 7(y)12 is the power of the signal y at frequency
The diagnostic is a plot of tmax against case number, T/n. t
where cases with relatively large absolute components
are jointly influential. The sign of a component indicates A > 0 is, to a high order of approximation, /AA -

the direction in which to alter the response to produce XHWXy/n = XHWf(y), where XH is the hermitian, or

a large (local) change in A. conjugate transpose, of X, and W = W(A) is a diagonal
matrix with diagonal elements w,(A) = (1 + Ar 4)- 1, for
r = -(n - 1)/2,..., (n - 1)/2. Since the weights wr(A)

3 Sensitivity of GCV decrease with increasing frequency Ir/nI, W acts as a
low-pass filter in the frequency domain which smooths

To illustrate the diagnostic, we consider the data the data by damping high-frequency components of y.
shown in Figure 1, generated by adding independent The amount of damping depends on A: small values pro-
Uniform[-3, 3] errors to the sinusoidal mean function duce less damping, large values more.
indicated by the dotted curve. The solid curve is the To examine influence on GCV, we rewrite tm. in
periodic cubic smoothing spline (defined below) fitted to (2.1) as a function of the Fourier coefficients of the data
the simulated data, using GCV to select A = 7.6 x 10- 5  f(y):
5{(n- 1)/2}-'. An index plot of tmax (not shown) iden- tma. OC XH(cI - W)(I - W)2f(y),

tifies five jointly influential cases, marked with filled cir-
cles: moving the responses for cases 17, 19, and 31 in one where c is defined below (2.1). The filter (cI - W)(I -

direction, and cases 4 and 18 in the opposite direction W)2 is increasing in nl for all values of A and so acts
will produce a large local change in A. Note that the as a high-pass filter, increasing the output power at high

locally-influential responses are not "outlying" points, frequencies. Thus, tm, has large absolute components

Some experience with the diagnostic suggests that corresponding to groups of responses which make large

when A is large, it is not particularly sensitive to small contributions to the high-frequency components of the

subsets of observations. However, when A is very small, data y.

it seems to be sensitive to groups of observations which Finally, the GCV criterion (1.2) can be expressed

make it appear that the regression function has impor- in terms of the power Ifr(y)l2 at various frequencies as

tant high-frequency components. This can be made pre-
cise by examining what happens to the high-frequency G(A) nO,(A)Jf,(Y)2'
components of y in GCV and the diagnostic. For sim- frl_(n-1)/2

plicity, we consider the special case of periodic smooth-
ing splines (Eubank, 1988, sec 6.3.1) where the mapping
from the "time domain" (y) to the frequency domain is X ( 2_ j4 2

particularly transparent. However, the ideas extend in Or(A) = T _
principle to the general case. 1+ lAr4 \ j1 :5 (E 1)/2 1
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Note that, in contrast to the weights wr(A) for the peri- Li, K.C. (1985), "From Stein's Unbiased Risk Estimates
odic spline, the GCV weights 0r(A) are strictly increas- to the Method of Generalized Cross-Validation,"
ing with jr/ni, so that high-frequency components of The Annals of Statistics, 13, 1352-77.
the data may have a larger role in determining A. The Silverman, B.W. (1985), "Some Aspects of the Spline
amount by which high frequencies outweigh low frequen- Smoothing Approach to Non-Parametric Regression
cies depends critically on the value of A. Figure 2 shows Curve Fitting (with discussion)," Journal of the
several sequences of GCV weights Or(A) with n = 51, for Royal Statistical Society, Ser. B, 47, 1-52.
A equal to Ao = {(n - 1)/2) - 4, 10\0, 10'Ao, and 104AG. Wabba, G. (1990), Spline Models in Statistics. Philadel-
When A is near {(n - 1)/2)- 4 , high frequencies receive phia: SIAM.
substantially greater weight. Thus, when GCV is mini-
mized at a very small A, it may be driven by small groups Wegman, E.J. and Wright, I.W. (1983), "Splines in

of cases which contribute to the power of y at high fre- Statistics," Journal of the American Statistical As-

quencies. When GCV is minimized at a large A, it is sociation, 78,351-365.

relatively insensitive, since higher and lower frequences Wendelberger, J.G. (1981), "The Computation of Lapla-
have nearly equal weight., cian Smoothing Splines with Examples," Technical

Report 648, Department of Statistics, University of
Wisconsin-Madison.Acknowledgement
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Figure 1. Simulated data based on a periodic regression function (dotted curve) with a cubic spline fit
(solid curve). Data is plotted against case number rather than t.
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1 Introduction key of the success here seems to be in the formulation of

Let (X, Y) be a bivariate random vector with minimization criterion

EIYI < oo. The nonparametric regression problem is * minimize a simple expression which penalizes both
to estimate the regression function for the lack of fit and for the lack of smoothness.

r(x) = E(YJX = x) (1) In Section 2 we propose our criterion for the adaptive

based on a random sample (Xi, Y), i=1,. .,n from choice of the smoothing parameter for kernel type es-

(X, Y). timators in case of random X. As in spline theory, we

The Nadaraya-Watson (NW), the Nearest Neighbor penalize both for lack of fit and for lack of smoothness.

(NN), and the Optimal Quantile (OQ) kernel type es-
timators of r(x) defined in (2)-(4) depend on smooth- 2 Fit the Short Curve Principle
ing parameters h, k and p, respectively. The asymp- We restrict our consideration to the following three ker-
totic optimal form of these smoothing parameters is
known, see Collomb (1977) and Mack (1981). This nel type estimators of the regression function

information, however, is not sufficient in practical ap- En Yi K(z - X)

plications and data driven (DD) methods for choosing Eh(z) = (2)
smoothing parameters have been developed, see Hall i2 =I K (:') (')

(1984), Rice (1984), Hirdle and Marron (1985), Mar- E= Y K __
ron and Hirdle (1986), Bhattacharya and Mack (1987), J() = (3)
Hirdle, Hall and Marron (1988) and Kozek and Schuster F- =X)K = E(nX. (

(1990). One popular DD method of choosing smoothing i=1 (di,(z)

parameters, the so called leave-out-one-at-a-time cross- En Y K Z)

validation principle (CVP) , chooses the smoothing pa- -zqp(=)/
rameter, say v, to minimize CV(v) of equation (6). The En ) X,
CVP measures fit of the estimator to the data on the K(qpz))
set {X 1 , -, Xn}. This criterion imposes no condition where K is a nonnegative kernel and h, dk(x), and q,(x)
on the behavior of the curve between the points Xi. It is are window bandwidths corresponding to the Nadaraya-
not surprising then that we frequently observe excellent Watson (Nadaraya (1964), Watson (1964)) , k-th nearest
fit, but simultaneously nonregular behavior elsewhere, neighbor (Cover(1968), Collomb (1980)) and p-th opti-
It is well-known (and has been our experience) that the mal quantile (Kozek and Schuster (1990)) estimators, re-
CVP tends to choose an estimator which overfits the spectively. Here dk(x) is the distance from x to its k-th
data. This lack of smoothness is often visible in small nearest neighbor in the sample X1, -, X. and q,,(x) is
or moderate sample sizes, say 10-50. In fact, for sam- the p-th quantile corresponding to Qsl(.), a continuous
pie sizes this small, the CV function is often degenerate the th ersiondin to e . a distibuon
in the sense that it is not defined for small values of linearly smoothed version of the empirical distribution
the smoothing parameter and it increases on the inter- fin b
val where it is well defined (see Figure 1. given by

What we desire in practice is a uniform behavior of the 0 if t < di (x)
regression estimator and its derivatives. In this context, i f t-,) t G Ik
many interesting ideas have appeared in spline estima- Qn(0 = - + I- n - I

tion for the case of nonrandom X and special experimen- 1 if t > d,,
tal designs, see Wahba (1990) and Eubank (1990). The where di(x) d () are ordered quantities

'A. S. Kozek is from the Institute of Computer Science, Ix - X1 1, , x - X, , and 4(x) = [dk(X),dk+,(X)).
U. of Wroclaw, Poland, and is visiting thru academic year Whenever any of the estimators (2)-(4) is not well de-
1990-1991 at U.T. El Paso. fined, i.e. its denominator equals zero, we assign a large
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constant for its value, say 1010. Such a convention is use- approximation to the length of f,,(z) (and r(z)) on an
ful from a numerical point of view and has been implied interval [A,BJ:
in the Fit Short (FS)' package. The simulations via FS
have been made for a variety of long and short tailed ker- L(v) = ZAX, 1 + (r'(X)) (7)
nels including the Gaussian kernel and the continuously
differentiable (compact support) quartic kernel where AX = X(1 ) - X(i_.), X = (X(-I) + X(})/2,

{ 1 -X2) 2  for x E 1-1, 1] f, (z) is an approximation to the derivative of the esti-
K( f) 16 ([) mator ,(x) at x and the sum , is over order statistics

=~x)0 otherwise. (5) X(,) in an interval [A, B]. Most of our simulations were
run with A and B corresponding to symmetric trimming

The estimators fh(X), Fk(x) and fp(x) depend on the of 0-10% of the data pairs corresponding to the smallest
smoothing (window width) parameters h, k, and p. Let and largest X(i)'s. The FS package simplifies computa-
P,,(x) stand for the estimator corresponding to a param- tions of the derivatives of the NN and OQ estimators,
eter v E {h, k,p}. by treating dk(x) and q,,(x) as constants.

To penalize for lack of fit we use the CV(v) function Our Fit the Short Curve Principle (FSCP) can
now be described as follows:

l1 (y - 9-,(Xi))2  (6) e find the smoothing parameter Vo minimizing theCV(V) = n i cross validation term CV(v) in (6),
* choose the smoothing parameter v which minimizes

where -')(z) is given by one of (2)-(4), but is based on CV(v) L(v)
all data pairs except for leaving out (Xi, Y). Let L(v) FSC(v) - + (8)
be a function to penalize for roughness. Since overfit- V(VO) L(vo)"
ting the data would tend to produce estimators r(x) We prefer (8) to any gauge function of CY(v) and L(v)
whose derivatives were large in magnitude midway be- e pre t o any g e tond estiad the
tween adjacent observations on the independent variable, we have tried. CV(vo) will tend to underestimate the
we looked for natural functionals L(v) which penalize mean square error of the regression estimator and L(vlt)
for large values of Ir' (x)I at the midpoints of the order will tend to overestimate length. Thus the FSC functionof (8) will tend to weigh the fit criterion more heavily andstatistics, i.e. at points (X(1 .i) + X~)/2. should be near 2 when properly gauged. We did iterate

Penalty functionals L(v) we considered were the this procedure. However, there was little improvement
length, the total variation, and the curvature of the es- in the estimators produced in the second iteration.
timator f.(x). A natural criterion to impose on a penal- In the next section we shall see that one can use any
izing procedure is that it produces a smoothing param- DD criterion including FSCP to select the bandwidth pa-
eter which is invariant uni - linear transformations on rameter in some specified envelope and retain the strong
the dependent variable Y. The total variation (the inte- consistency of f(x). Computer simulations using FSCP,
gral of the absolute va~ue of the first derivative) and the examples, and conclusions are discussed in Section 4.
global measure of curvature (the integral of the square
of the second derivative) possess this invariance prop- The consistency
erty. The length (the integral of the square root of 1 strong
plus the square of the first derivative) does not. The In this section we show that if some asymptotic restric-
curvature functional possesses desirable theoretical and tions on the bandwidth parameter sequence are imposed
computational properties as a penalty function in cubic and some mild regularity conditions are satisfied, then
spline estimation which are not present in the present any data driven choice of the bandwidth leads to a point-
problem. When the derivative is large, the length and wise strongly consistent sequence of estimators. Hence
variation functions produce essentially the same values, we can conclude that estimators (2)-(4), with window
Moreover, the length criterion is more easily understood width parameter selected from an envelope by the FSCP,
by practitioners and seemed to work somewhat better converge pointwise with probability 1 to the true regres-
than the variation functional in our experimentation. sion function. In this direction let
For these reasons, we have chosen to present our pe-
nalizing criterion for the length functional. Our general C(n) \ 1 as n - o, (9)
approach applies to any of the DD criterions discussed h(n) Dn- 1 5 ,  (10)
in Hrdle et al. (1988) and any penalizing functional. h(n) = h(n)/(n), (1)
For the sake of simplicity, however, we restrict our at-
tention to the CVP and we penalize for estimators with h2(n) = C(n)h(n), (12)
excessive length. We use the following Riemann sum c1H(]x)l) :_ K(x) _ c2IH(x]) 0 < C1 < C7, (l)

'FS was developed in 1991 at U.T. El Paso with the as- K(x) > c> 0 if Izi< r some c, > 0, (11)
sistance of Krzysztof Kozek. K(Az) is nonincreasing inA, A > 0, (15)
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where K is a Borel kernel and H is a nonnegative, Poor results were obtained for kernels which can as-
decreasing, bounded, Lebesgue integrable function on sume negative values. Kernels of this type possess op-
z > 0. From Theorem 1 in Kozek and Schuster (1991) timal properties in the fixed design case of nonrandom
we infer the convergence of general DD kernel-type esti- X which do not seem to be present for the ratio type
mators. kernel estimators (2)-(4) in the bivariate case of ran-

Theorem 3.1 Let (X, Y), (XI, Y1), ... , (Xn, Yn) be in- dom X. The quartic kernel in (5) is a computationally

dependent, identically distributed bivarate random vari- simple, symmetric, unimodal, and continuously differen-

ables such that the probability distribution ju of X has no tiable type kernel desired in the FSCP. Overall it worked

singular component and well for NW estimators with little difference between the
CVP and the FSCP criterion in cases where there were

ElY (tog(1 + IYI}} 1  < oo for some 6 > 0.(16) no large spacings among the X,'s. NW estimators us-

Let the kernel K and the bandwidth h, and h2 sat- ing the CVP with Guassian or Student's t kernels were

isfy (9)... (15). If hi < h < h 2 and h occasionly quite rough. The FSCP based estimator fre-

h(n, x, X 1 , Y, I ... ,Xn, Yn), then the NW estimator (2) quently showed substantial improvement in these cases.

with the bandwidth h is for p-a.e. z, convergent with Our experience leads us to believe that there are inher-
probability one to r(x). ent limitations with kernel estimators of the NW type of

Corollary 3.2 If the minimization of FSC in (8) is (2) which utilize a constant window width. Estimators

over v = h E IDn-"f/C(n), Dn- 5 C(n)], then the NW NN and OQ of (3)-(4) allow for varying window width

estimator (2) with the bandwidth h chosen by the FSCP and adapt to the local density of the X variable. The

is for p-a.e. z, convergent with probability one to r(x). NN estimator is quite rough, particularly for small sam-
ples, and is computationally awkward and time consum-

From Theorem 3.1 it follows that the strong consis- ing to analyze using CVP or FSCP type criteria. The
tency does not impose any severe restrictions upon the OQ estimator is a smoothed version of the NN estimator
choice of the sequence C(n) in (9). It allows adjustments studied by Kozek and Schuster (1990) which moderates
suitable to local predilections. these difficulties and seemed to perform reasonably well

From Theorems 2 and 3 of Kozek and Schuster (1991) over a variety of regression models. It seems much less
it follows that if X has an almost everywhere continuous sensitive to both the choice of kernel and the presence
Lebesgue density, then: of large spacings in the Xi's. In cases where the CVP

Corollary 3.3 If the minimization of FSC in (8) is worked well there was often no significant difference be-

over v = k E [Dn4 /5/C(n), Dn4/5 C(n)J, then the NN tween the CVP and the FSCP OQ estimates.
estimator (3) with the bandwidth parameter k chosen by When properly normalized, the denominators of the
the FSCP is for p-a.e. z, convergent with probability one regression estimators (2)-(4) estima'te the density of X
to r(z). in the absolutely continuous case. The FS package in-

Corollary 3.4 If the minimization of FSC in (8) is cludes an option to compare these density estimates with

over v = p E tDn-//C(n), Dn-/C(n)], then the OQ the true density in simulations. Our experience indicates

estimator (4) with the bandwidth parameter p chosen by strong links between values of smoothing parameters cor-

the FSCP is for 1L-a.e. z, convergent with probability one responding to good regression estimators and good esti-

to r(x). mates of the density of the random variable X.

To illustrate points raised in our discussions we have
4 Conclusions and Examples used the FS package to take a random sample of 20

pairs from the regression model Y = X ' , where X
We summarize our simulation experience with the esti- is standard normal and c is independent of X and nor-
mators (2)-(4) using FSCP as implemented in the sta- mally distributed with mean 0 and standard deviation
tistical package FS running on IBM XT, AT, PS/2 or 0.1. Figure 1 contains the graphs of the CV and FSC
on IBM compatible personal computers. Frequently, for functions using the Gaussian kernel. Figure 2 contains
samples of sizes 10-100, the CV function is strictly in- the data pairs, the true regression function, the NW esti-
creasing on the interval where it is well defined. Since the mator with smoothing param,..,er selected by both C\7V
length functional decreases rapidly as window width in- and FSCP, and the OQ estimator selected by FSCI'. Ten
creases one can heuristically argue that the FSCP has percent trimming was used in (7) for these examples.
the desired effect we observed in all simulations, i.e.
FSCP chooses a larger window than that given by the
CVP alone. As a result the estimators obtained by the References
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Abstract develop efficient numerical al-orithms to supplement ex-
isting asymptotic results for the categorical case. These
algorithms serve both the data analyst concerned about

We present an efficient network algorithm for generating the validity of the inference in small, sparse, or imbal-
exact permutational distributions for linear rank tests anced data sets, and the theoretical statistician develop-
defined on stratified 2 x c contingency tables. The al- ing new asymptotic methods and wishing to confirm that
gorithm can evaluate exact one and two sided p-values, the theory is accurate.
and compute exact confidence intervals for trend param-
eters arising from certain loglinear and logistic models This paper develops a very fast algorithm for generating
embedded in these contingency tables. It is especially exact permutation distributions for linear rank tests de-
efficient for highly imbalanced categorical data, a situ- fined on stratified 2 x c contingency tables. The permuta-
ation where the asymptotic theory is unreliable. Part tional problem is formulated very precisely in Section 2.
of the algorithm can be adapted to evaluating the con- A network algorithm for solving the problem is presented
ditional maximum likelihood and its derivatives for the in Section 3. A major strength of the algorithm is that its
logistic regression model, with grouped data. We illus- limits of computational feasibility increase with the de-
trate the techniques with an analysis of two data sets; the gree of imbalance between the groups being compared.
leukemia data on the Hiroshima atomic bomb survivors, This is precisely where it is needed most, since the re-
and data from a clinical trial of bone marrow transplant. liability of asymptotic results decrease as the imbalance

increases. In another paper we analyze some case-control
data in which the total sample size is 99,960. Yet, be-
cause of the severe imbalance between cases and controls,
the asymptotic results differ from the exact, ones. The

1 Introduction algorithm developed here performs exact permutational
inference on the data set with no difficulty whatsoever,

Linear rank tests play a major role in nonparametric in- despite its enormous sample size.

ference. The Chernoff-Savage theorem (1958) ensures The inference techniques discussed in this paper are con-
the asymptotic normality of these tests, and indeed, for ditional. This is true both for the exact as well as the
continuous data the asymptotic results work very well. asymptotic inference. Exact methods for parameter es-
By the time the sample size is around 30, there is very timation naturally require strong numerical algorithms.
little difference between the asymptotic distribution of But it is not generally recognized that conditional infer-
a linear rank test statistic and its exact permutational ence places a heavy computational burden on the maxi-
distribution. lowever this is not the case for categorical mum likelihood estimation as well. A by-product of the
data. Here the rate of convergence to asymptotic normal- algorithmic development in Section 3 is its applicability
ity depends on more than just sample size. The number to the problem of estimating model parameters by max-
of ties in each category, the group imbalance, and the imizing a conditional likelihood function and evaluating
choice of rank scores, all affect the shape of the permuta- its first two derivatives. Without our algorithm, evaluat-
tion distribution in complicated ways, making it difficult ing the conditional likelihood, even though it, only yields
to predict a priori whether the asymptotic results for a asymptotic estimates, would be almost as difficult as the
given data set are reliable. It is important therefore to
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exact inference. populations. Each observation falls into one of c or-
dinal response categories. Thus Xjk is the number of
stratum k observations, out of a total of ink, falling

2 Statistical Formulation into ordered category j for population 1, and X'k is
the number of stratum k observations, out of a total
of mn, falling into ordered category j for popula-

In this section we formulate a general permutation prob- tion 2. The stratum invariant scores, w 1 , w 2, .... W,
lem whose solution will make exact statistical inference are numerical values assigned to the c ordered multi-
possible for a rich class of linear rank tests, defined on or- nomial response categories.
dered categorical or binary data. The computational dif- Several Binomial Populations The c columns of
ficulties encountered with the permutation problem areof an stratum k represent c independent binomial popu-
discussed, setting the stage for the development oflations with row representing successes and row 2efficient numerical algorithm, in Section 3. representing failures. For population j and stra-

tum k there are Xjk successes and z k failures in njk
2.1 Tabular Representation of the Data independent Bernoulli trials. The stratum invari-

ant scores, w 1 , w2, . . . we typically represent doses,
or levels of exposure, affecting the success rates of

The data can be represented as a collection of s 2 x c the c binomial populations.
contingency table consisting of 2 rows, c columns, and
s strata. A specific collection, or three way table, of this
type, denoted by x = (x1,x 2,.... .x), is displayed below: 2.2 Exact Conditional Inference

Stratum 1 Define the reference set for the kth stratum, rk, as all
Rows Xo X21  ... Xci ml possible 2 x c contingency tables whose row and column
Row_.2 al 1 ... xl m 1...... !. . margins are fixed at the corresponding values of the ob-
Col-Total nii n2i ... nci N1  served 2 x c table, xk:
Col-Score w1 w 2  .. wU

Stratum 2 rk = {yk: yk is 2 x c; yik + yjk = njk,Vj;
Rows Col-1 Col.2 ... Col-c Row-Total
Row.1 X12 X22 Xc2 M2 c

X2 = F I IRow_2 X-2X2 .. X, Myjk = mk, E 'k = M'k}
Col-Total ni2 n22 ... nc2 N 2  j=1 j=l

Col-Score W W2 We. - Define the full reference set as the cartesian product of

the reference sets across all s strata:

Stratum a
Rows Colal CoL-2 ... Colc Row-TotalX , R ow - l X18 x2s . ... M s, E) = 171 X 172 X ... X f, X : y k E F L.,k = 1, 2 .... s } .
Row2 X' X' ... II I

Col-Total h n ... ncs N,
Col-Score l 2 ... W2 N The test statistic, T, is defined as a sum of linear rank

statistics over the s strata:

The above tabuiar representation accommodates both T=Ti+T2 +...+T 3

the comparison of two multinomial populations and the where each Tk can only take on the values t k of the form
comparison of k binomial populations. In either case we
may adjust for possible covariate effects by stratification.

Unstratified data may be regarded as a special case with t k = yV2 Yk
s= 1. j=1

for some Yk E Fk, and a fixed set of scores, u1 , w 2, ... iv.
Two Multinomial Populations The two rows of By a suitable choice of scores one can obtain a very rich

stratum k represent two independent multinomial class of linear rank tests. The distribution of the test,
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statistic, T, is derived by limiting the sample space to for k = 1,2,. .. s. If the c columns of each stratum repre-
yEO. . sent data from c binomial populations, the above proba-

bilities must satisfy the constraints

Under the null hypothesis of no row and column interac-

tion the conditional probability distribution of Tk given 7rjk + 7r = 1k
Yk E rk is

forj = 1,2,.. .c, and k = 1, 2,.. s. In either case we
( nj assume that there is no three-factor interaction so that

ZO YAkE r,l [, i } j 21 the c- I odds ratios
fk(tk) = ,NN , (2.1)

where j = 2,3,... c, do not depend on k. Next we model these

odds ratios as a function of the scores. If the data have
rk,t, = {Yk E rk: wjyjk = t*} . been generated from two stratified multinomial popula-

j=1 tions, it is natural to derive the odds ratios from a log-
linear model with a linear by linear row times column

Then by convolution, the conditional probability distri- association (Agresti, 1990, page 275, equation (8.11)).
bution of T, given y E E, is In the present context the linear by linear model speci-

fies the following expected cell counts on the logarithmic

~iX~e1~p ~ n( lk scale:
fA) = /Yik (2.2) log(mk7rk) = ak + flwj

Nk for row 1, and
log(m'Or k) = a'k

where for row 2.

Ot = {y E 0: wjYjk = t} . If the data have been generated from c stratified binomial
k=1 j=1 populations it is natural to derive the odds ratios from a

Notice that (2.2) is a sum of generalized hypergeometric logistic regression model (Cox, 1970):

probabilities and is free of all unknown parameters. This log 5

enables us to compute exact p-values for all the linear log k at + 13w.
rank tests listed above. We can also compute the first two
moments of T and thereby perform asymptotic inference Both models yield the relationship
by appealing to the Chernoff-Savage theorem.

log'I', =/3(w, - w1 ) , (2.3)

where # is an unknown parameter to be estimated from
2.3 Parameter Estimation the data. It can be shown that T is a sufficient statistic

for P under both the linear by linear association model
For data arising from two multinomial distributions or c and the logistic regression model. Moreover, the con-
binomial distributions, we can specify loglinear and logis- ditional distribution of T, given (Y1,Y2,.. Y y,) E 0, de-
tic models, respectively, for the data generating process. pends only on 3, other (nuisance) parameters being elim-
Let 7rjk be the probability that a subject from stratum k inated by the conditioning. This conditional distribution
is classified as falling into row 1 and column j. Let 7rk is given by
be the probability that a subject from stratum k is clas- f(t) exp(Ot)
sified as falling into row 2 and column j. If the two f(11 3) - . f(u)exp(#u) (2.4)
rows of each stratum represent data from two multino-
mial populations, the above probabilities must satisfy the where the denominator of equation (2.4) is simply the
constraints normalizing constant obtained by summing over all pos-

7r = E -' 1 sible values of T. When # = 0 we obtain the null distri-
i=1 j=1 bution (2.2).
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The conditional maximum likelihood estimate (cmle) of If there were s strata, the size of the corresponding ref-
/3 is obtained by finding the value of / that maximizes erence set would be raised to the sth power. It is clear
the conditional probability (2.4) at the observed value that even in the very powerful computing environment
T = a0 . To obtain the variance of the cmle we need the available today, explicit enumeration of all the tables in
second derivative of the log likelihood, evaluated at the the reference set e rapidly becomes computationally in-
cmle. Both the cmle and its variance may be rapidly feasible. However much recent research, for example,
evaluated by repeated backward induction on a network, Mehtaet. al. (1984) (1985) (1988), Pagano and Tritchler
as discussed in detail in Section 3. We can then use (1983), Tritchler (1984), Streitberg and Rohmel (1986),
these estimates to perform asymptotic hypothesis tests and Hollander and Pena (1988), has focused on implicit
or compute asymptotic confidence intervals for/3. enumeration of the tables in 0, thereby considerably ex-

tending the size of problem for which exact inference is
To obtain an exact confidence interval for /3 we need possible.
the coefficients f(t) for all values of T in the tails its
distribution. A network algorithm for this computation Mehta, Patel and Tsiatis (1984), and Mehta, Patel and
is described in Section 3. Once these coefficients have Wei (1988), developed a network algorithm for implicit
been computed, the conditional tail probabilities, T > enumeration of all the 2 x c contingency tables in the ref-
a0 , or T < ao, for any value of fl, may be derived from erence set r, defined for a single stratum (s = 1). Mehta,
equation (2.4). Exact confidence bounds for / are then PaLel and Gray (1985) developed a network algorithm for
obtained by inverting corresponding UMP unbiased tests implicit enumeration of s 2 x 2 contingency tables (where
for fl, as shown in Cox (1970). For example, a 100(1 - s > 1). The present paper generalizes the earlier work
a)% lower confidence bound for /, say /3(ao), would be to s independent 2 x c contingency tables, a considerably
obtained as the solution to more difficult problem. An alternative method would be

to treat the s 2 x c problem as a special case of condi-

f(tl/(ao)) = a. (2.5) tional logistic regression and directly use the exact algo-
L..d rithm of Hirji, Mehta and Patel (1988). However that

would not exploit the special structure of the problem

The solution to equation (2.5) may be rapidly evaluated in the way that the present algorithm does. We conjec-
by a simple binary search because, as shown in (2.4), f(t) ture that the algorithm presented here is the fastest one
and # are separable in the expression for f(t 13). currently available for categorical data, with unequally

spaced wi scores. In another paper we perform exact in-
ference on some rather large data sets, to illustrate how

2.4 Computational Issues powerful the algorithm is, and to set up a benchmark
against which competing algorithms may be evaluated.

From the above discussion it is clear that a broad class A second contribution of this paper is to provide an effi-
of exact linear rank tests and parameter estimates can cient numerical algorithm for computing the cmle for 0
be obtained if we are able to compute truncated distri- (equation 2.3) and its standard error. A previous algo-
butions of the form rithm for this problem, in the more general conditional

{(t, f (t)): t > a0} .(2.6) logistic regression setting, was developed by Gail, Lu-
- > bin, and RHibenstein (1981). Our algorithm is equiva-

Exhaustive enumeration of all the tables in () for gen- lent to theirs for data with no ties, but is considerably

erating 12 would be computationally explosive. Con- more efficient for categorical data. In another paper, we

sider the simple case of a single stratum, no ties, and show that the Gail et. al., algorithm, as implemented

m = M' = N/2. The number of tables in the reference in the EGRET (1988) software package, is unable to

set E for various values of N is compute conditional maximum likelihood estimates for
a large heavily tied data set, whereas our algorithm, ob-

______________ _______________________ tains the required estimates very rapidly.
Sample Size (N) Tables in Reference Set (r)

20 1.8 x I0'
30 1.5 x 108
40 1.4 x 1011
50 1.3 x 1014

100 1.0 x 1029
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3 Numerical Algorithms Network Representation of rk
The network representation of the reference set, rk, is
constructed in c+ 1 stages labelled 0, 1,... c, where stageWe provide numerical algorithms for two problems; gen- jcrepnst h t ouno yia al

erating the truncated permutation distribution 11, de- j corresponds to the jth column of a typical 2 x c table
in rk. At stage j there exist a set of nodes of the formfined by (2.6), and computing the cmle for fl, say fl, (j,mjk), where each Mik = "1yk corresponds to one

along with its standard error, &. Both problems are distinct partial sum of the first j columns of the tables
solved within one unified framework wherein the refer-enc st ( i rereened s newok.We will see that y E F . Arcs emanate from each node (j, rm2 k) and
ence set E is represented as a network. connect it to successor nodes of the form (j + 1, mj+l,k).
processing the network in the forward direction yields These successor nodes may be specified explicitly as the
Q2, while processing the same network in the backward Set
direction yields f and its standard error.

R(j, mjk) = {(j+ 1,mj+l,k): max(mjk,mt - nik)

3.1 Generating an Overall Truncated h=3 +2

Permutation Distribution <mj+l,k _ min(Mrjk + nj+l,k, mk)} - (3.7)

Our goal is to generate the truncated permutation dis- Starting at stage 0 with initial node (0,0), and apply-

tribution l foraT, the sum of linear rank statistics across ing (3.7) successively to the nodes at stages 1,2,... c- i,triutin fo Tthesumoflinar anksttisicsacrsswe automatically end up with the unique terminal node

all the strata. Our strategy will be to generate s inde- we in).Intis cnstuct h th , osque nce of

pendent stratum specific truncated permutation distri- (cM) In this construction each path, or sequence of

butions of the form connected arcs of the form

Qk = {(tk, fk(tk)) : tk > ak} (0,0) -- (1,m1k) ..... (c, mk) (3.8)

at the cut-off points corresponds to one and only one table Yk E Fk, with
yjk = mjk - Mj-lk, for j = 1,2,...c. Thus the tables

ak = ao - Zti,max in Fk are in one-to-one correspondence with the paths
ikk through the network.

for, k = 1,2,... s. Here tk,max is the maximum value of To complete the network representation we assign to

the random variable Tk, and is easily evaluated as part each arc

of the backward induction step discussed below. We will (j - 1 ,k) - (j, mjk)

perform pairwise convolutions on these stratum specific a rank length
distributions until the overall distribution is obtained.
Thus there are two steps to be performed repeatedly; rjk - wj(mjk - mjlk)

a distribution generation step, and a convolution step.
These steps are described next in separate subsections. and a probability length

Pj= n= exp(/Orjk). (3.9)
3.1.1 Generating Stratum Specific Truncated = mjk -mj-l,k

Permutation Distributions The rank length of a complete path of the form (3.8) con-

necting the initial node to the terminal node is defined
Suppose we wish to generate the truncated permutation as the sum of rank lengths of the individual arcs consti-
distribution Qk, for the kth stratum. In principle this tuting that path. Its probability length is the product
involves enumerating all the 2 x c contingency tables of probability lengths of the individual arcs constituting
Yk E Fk, computing the value of tk = J" = Wjyjk for that path. The distribution of T is then the same as the
each one, and summing the hypergeometric probabili- distribution of rank lengths of all the paths in rk.

ties of all the tables yk E rk,t,, as shown in (2.2). We
do this enumeration implicitly rather than explicitly, by Backward Induction on Fk
representing the reference set rk as a network of nodes We can obtain much useful information about the dis-
and arcs, and then processing the network in a recursive tribution of Tk very quickly, by a single backward pass
stage-wise fashion. through the network rk. At any node (j, mjA) define
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the sub-network, rF(j, mik), to be the set of all possi- in Tk(j,mjk) by r. The rank length of r is
ble paths from (j, mj,) to the terminal node (c, Mk). In
other words rk(j, mjk) consists of all possible values of r(r) rtk

the entries in columns (j + 1, j +2,.. ., c) of the 2 x c con-
tingency tables in rk whose first j columns sum to mjk. 1=l

Now define the length of the longest path in rlk(j, mik) and its probability length is
by

LP(j, mik) = max .{ r} (3.10)

the length of the shortest path in Fk(j, mjk) by There will typically be several paths, r E Tk(j, mik),

c each having the same rank length, r(r) = u. Let c(u) be
SP(j, mj)= min{ ruk} , (3.11) the sum of probability lengths of all these paths. That

ik=j+l is,

and the sum of probability lengths of all the paths in c(u) =p()

rk(j, mjL) by {TrE (i,m,): r()=u)

SPWe now provide a recursive procedure for processing
11 (312 the network in the forward direction. Suppose we have

rk(j,mjk) t+ reached stage j of the network in such a way that at each

of its nodes, (j, mjk), we are carrying a set of records
The values of LP, SP, and TP can be rapidly ob-
tained by backward induction. We illustrate how this A(j, mik) = {(u, c(u)): u = r(r), u + LP(j, mj,t) ak,
is done for LP. Set LP(c,mt) = 0. Now suppose that
LP(j+ 1,mj+,t) is known for every node at stage j+ 1. r E Tk(j, mik)}.

Move backwards to stage j, select a node (j, mj,k), and The following five-step algorithm is used to update these
compute sets and thereby move forward to stage j + 1.

LP(j, mik) = max f{rj+l,k + LP(j + 1, Mj+l,k)) .j(,mk) 33) Step 1: Select a record (u, c(u)) E A(j, mjk).

(3.13)

Repeat this process for every node at stage j and then Step 2: Transmit a copy of this record to each succes-
move back one more stage. Proceeding in this manner sor node (j + 1, mj+l,), where the successors are
we reach stage (0, 0) having evaluated the LP values for identified by (3.7).
all the nodes of the network. The other nodal quantities Step 3: At each successor node, (j + 1, mj+lk), trans-
may be obtained similarly. form the transmitted record to (u* , c*), where u =

Processing Fk in the Forward Direction u + rj+l,, and c* = c(u)pj+lk.

Starting with the initial node (0,0), we process the net- Step 4: Insert (u*, c*) into A(j + 1, mj+1,k) as follows:
work in the forward direction, stage by stage, in such a
way that by the time we reach the terminal node, (c, Mk), 1. If u* + LP(j + 1, mj+lk) < ak, drop this record
we will have generated the desired truncated distribu- from further consideration, and go to Step 5.
tion £2 k. First we introduce some notation. At any node Otherwise continue with the insertion as de-
(j, mjk) define the sub-network, Tk(j, mjk), to be the scribed below. (The value of LP is available
set of all possible paths from the starting node (0,0) to from the backward induction on rk.)

(j, mik). In other words, T(j, mik) consists of all pos- 2. If there already exists a record (u, c(u)) E
sible values of the entries in columns (1,2,.. .j) of the A(j + 1,mj+L,) such that u = u*, then merge
2 x c contingency tables in rk whose first j columns sum the two records by replacing (u, c(u)) with
to mik. (Notice that this set differs from rk(j,Mjk), (u,c(u)+ c) E A(j + l,m,+lk).
which specifies the last c- i + 1 columns of these tables.) 3. If no record currently in A(j + lm+,) has
Denote a generic path, 3 fn eodcretyi ~ ,jlt a

u = u*, then augment A(j + 1,m+ .t) by
(0, 0) - (1,mt M . ... (U, mjk) adding (u,c(u)) to it, as a new record.
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The technique of hashing (Sedgewick 1983, page Step 3: Set i = i + 1, and return to Step 1.
201) is used to search for matches and either merge
or augment records in A(j+ 1, mj+1,k). This ensures There are many ways to perform the convolution at
an optimum trade-off between efficient use of avail- Step 2, if the inequality (3.14) holds. We use hashing
able memory and fast search. to club records having the same value of ii + t2. The

Step 5: Return to Step 1. details are similar to Step 4.2 of the 5-step algorithm for
forward processing of Fk- A considerable officiency gain

The above 5-step algorithm continues until every recor is achieved because we need not consider records from

in A(j, ?flik) has been processed. Then another node at Q2 located at positions j or below. The inequality (3.14)
ensures that they can never contribute to the final set

stage j is selected, and all its records are processed in ofsres ih s the maxiu to the cold

accordance with the above 5 steps. When all nodes at be aeted isile tha a is i l the
stag j avebee exaused, epet SepsI trouh 5be augmented is less than a. This is analogous to the

stage j have been exhausted, repeat Steps 1 through 5 record elimination achieved at Step 4.1 of the 5-step al-
for stage j+ I. Starting with A(0,0) = {(0, 1)} and mov-

ing through stages 0, 1,... c - 1 by repeatedly carrying gorithm for forward processing of Fk.

out Steps 1 through 5, we process the entire Uk network,
ending up at its terminal node with the set of records 3.2 Evaluatin and its Variance
A(c, nk). These records are really the same as the de- g ar
sired truncated probability distribution Qk, except that
the probability lengths, c(u), have to be normalized by To obtain , the cmle for 3, we must maximize the loga-
dividing by their sum. That is, rithm of the likelihood (2.4). Then the second derivative

of the log likelihood, evaluated at j3, yields the desired

fdtk) = c(tk) variance. But direct evaluation of the log likelihood is
t) c(u) not an easy task, given the complicated expression for

the denominator of (2.4). In fact if one attempted to
evaluate this denominator directly, it would require the

3.1.2 Pairwise Convolution of the Stratum Spe- enumeration of all the s 2 x c tables in O. This would
cific Truncated Distributions make the asymptotic inference as computationally com-

plex as the exact inference. Fortunately there is an easier
We restrict our discussion to the convolution of Q, with approach that works well up to extremely large sample
Q2 . The resultant distribution may be convolved with sizes. Notice that the denominator of (2.4) is the same as
9 3 in exactly the same manner. We can go on with this TP(0,0), summed over all the strata. We can easily set
pairwise convolution until we obtain Q. up recursions like (3.13) for TP, its first derivative, TP',

First sort the records of 0 1 in ascending order of tj, and and its second derivative, TP", and rapidly evaluate all

the records of 0l2 in descending order of t2. Set i'= 1, three quantities during the backward induction

j = 1. Now proceed with the following 3-step algorithm: of rk. For example,

Step 1: Select record i from Q1. Denote it by TP'(j,mik) = p+,k [TP(j+ 1,m+lk)+

(t',f,(t')). Select record j from Q 2.Denote it by R(j,rn,k)

S 2: f2(t- 
TP'(j + 1, mJ+lik)]Step 2: If

. tj It is easy to show by successive differentiation of the log-
tl + t2 + tac > a0 , arithm of (2.4) that the second derivative of the contri-

k=3 bution to the log likelihood of the kth stratum is
set, j = j ± I, and return to Step 1. But ift j[TP(O, 0)]-2 [TP'(0, 0)]2 - [TP(0, 0)]-'[TP"(0, 0)]

ej+i (3.15)

+ + E'tk,max < ao (314) Evaluating (3.15) at the cmle of /3, summing across
k=3 strata, and equating the resultant, second derivative to

convolve record i from 0 1 with each of the first j - I zero, yields the desired asymptotic variance.
records from 0 2.
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4 Concluding Remarks calculations for matched case-control studies and sur-
vival studies with tied death times. Biometrika 68:703-
707.

The following technical features of the network algorithm Gail M, Mantel N (1977). Counting the number

were responsible for its extraordinary success: of r x c contingency tables with fixed margins. JASA

72:859-862.
" The network representation takes advantage of the Hirji KF, Mehta CR, Patel NR (1988). Exact inference

categorical nature of the data by requiring only as for matched case-control studies. Biometrics 44:803-814.
many stages as there are discrete categories. Hollander M, Pena D (1988). Nonparametric tests

under restricted treatment assignment rules. JASA
* The number of nodes in the rk network is deter- 83(404):1144-1151.

mined min(mk, m'k). Thus the greater the imbalance Landis R, Heyman ER, Koch GG (1978). Average
between the two row sums, the smaller the network, partial association in three-way contingency tables: a re-
and the easier the processing. view and discussion of alternative tests. Int. Stat. Rev.
*The preliminary backward induction pass through46275.n 46:237-254.
the network provides valuable information about Mehta CR, Patel NR, Tsiatis AA (1984). Exact sig-the 'futurewfor provdea saefe iforwarn proe- nificance testing to establish treatment equivalence forthe 'future' for each stage of the forw ard process- o d r d c t g r c l d t . B o e r c 0 8 9 8 5
ing. This enables us to generate a truncated per- oeed cate l daa B ric 0:19 -825.
mutation distribution directly at the forward pass, Meht cR, iate ray r (8. com puti
rather than generating the full permutation distri- an exact confidence interval for the common odds ratio
bution and then truncating it as needed. In effect, in several 2 x 2 contingency tables. JASA 80(392):969-
substantially fewer records are carried along at each 973.stage of the forward pass, as records not satisfying Mehta CR, Patel NR, Wei LJ (1988). Computing ex-
the LP criterion get eliminated, act significance tests with restricted randomization rules.Biometrika 75(2):295-302.

" The network representation enables us to generate Pagano M, Tritchler D (1983). On obtaining permuta-
the distribution of each Tk recursively in a stage- tion distributions in polynomial time. JASA 78:435-441.
wise forward pass through the network. During this Sedgewick R (1983). Algorithms. Addison-Wesley,
forward pass paths having the same rank length up Reading, MA.
to some node are 'clubbed' together. We thus deal StatXact (1991). A Statistical Package for Exact Non-
only with paths having distinct rank lengths up to parametric Inference: Version 2. Cytel Software Corpo-
each node, rather than all the paths up to that par- ration, Cambridge, MA.
ticular node. Streitberg B, Rohmel R (1986). Exact distributions

for permutation and rank tests. Statistical Software
" The backward induction step enables us to rapidly Newsletter 12:10-17.

evaluate the denominator of (2.4), and its first and Tritchler D (1984). An algorithm for exact logistic
second derivatives. This greatly facilitates the con- regression. JASA 79:709-711.
ditional maximum likelihood inference.
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Abstract Davison (1988) discussed saddlepoint expansions for ap-
proximate conditional inference in logistic regression.

We review the use of exact methods for checking logistic Exact conditional methods can also be used to check
regression models. We focus on global model checks, out- the logistic model. The distribution of the data given
lier detection, and goodness-of-link checks. We discuss the observed value of the sufficient statistic for the logis-
approximations to exact conditional methods whenever tic model serves as the reference distribution for model
available. We also contrast exact conditional methods checks. Once the reference distribution is generated, spe-
and standard unconditional methods based on asymp- cific features can be assessed by an appropriate choice of
totic approximations. The techniques are applied to two a test statistic. For example, the global fit of the model
examples. can be based on a conditional assessment of the deviance

or Pearson statistic.

1 Introduction There are compelling reasons for basing model assess-
ments on the distribution of the data given the observed

The generalized linear model (McCullagh and Nelder, value of the sufficient statistic. First, for any test of

1989) provides a unified framework for analyzing bino- model adequacy the conditional distribution is function-

mial response data. An attractive feature of this ap- ally independent of the model parameters. In addition,

proach is that a common collection of data analytic and the conditional approach uses the exact discrete distribu-
inferential techniques can be used for logistic, probit, tion of the data in contrast to methods that assume con-infeental echiqus cn b usd fr lgisicproit, tinuous approximations to this distribution. For small
complementary log-log, and other possible link func- tinuous arximatst this dsrbtion Forml
tions. Maximum likelihood is usually used to fit gen- samples or sparse data sets this exactness can be rit-
eralized linear models (GLIMs). For binomial response ical. McCullagh (1985, 1986) provided further support
models fit within the GLIM paradigm, inferences and for this position.
model assessments are based on large sample approxi- Bedrick and Hill (1990) developed an algorithm to

mations. For example, chi-squared approximations to enumerate the reference distribution for checking logis-

the deviance and Pearson statistics are used to assess tic models. The enumeration can be computationally
the global fit of the model, while normal approximations intensive, but is feasible for modestly sized data sets.

to the deviance and Pearson residuals are used to check This paper reviews the use of exact methods for check-

for outliers. ing logistic models. We focus on global model checks,
The logistic regression model has a special place within outlier detection, and goodness-of-link checks. We dis-

the class of binomial response models because it is a lin- cuss approximations to exact methods when they are
ear exponential family model. Hence, exact conditional available. We also discuss the corresponding uncondi-

methods for inference are available in contrast to uncon- tional methods. The rest of this paper is organized as
ditional methods based on maximum likelihood, follows. Section 2 introduces notation and develops our

The use of conditional distributions for exact inference approach to model checking. Section 3 discusses exact

on logistic parameters dates to Cox (1958, 1970). lHirji, methods for the three areas of interest. Examples are
Mehta and Patel (1987) gave an efficient algorithm for given in Section 4. Section 5 suggests directions for fu-
computing exact tests of logistic regression parameters. ture research and offers concluding remarks.
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2 Background Yob = {Y* = (Y, .... , y)', y* an integer

2.1 Notation 0 < yi. <_ mi and Z'y* = Sobs}.

Assume that Y = (Y 1, ... ,Y,)' is a vector of inde- Note that Yobs is the set of response vectors that give

pendent binomial random variables with sample sizes the same value of the sufficient statistic as the observed

(m,...,mn)' and probability vector r = (ir1 , ... ,S fa)'. data.
The mean vector and covariance matrix of Y are given by Specific features of interest are assessed by the ap-P = (p', ... ,Pn)' and V = diag(v1 , ... , vn), respectively, propriate choice of a test statistic, say t(Y). Assuming
where P, = m7ri and v, = mdiri(1-r 1 ), i - 1, ., n. The for the moment that large values of t(Y) call into ques-logistic eregrssion model can be expressed as tion the adequacy of the model, the significance levelassociated with the observed value of the test statistic,

logit(ri) = log{iri/(1 - iri)} = 20 t obs = t(Yob,), is given by

i = 1, ... , n, where z is a known 1 x p vector of covariates, p(tob.) = pr{t(Y) > robs I S = Sobs ).

and fl is a px 1 vector of unknown regression parameters.
Using matrix notation, The choice of a test statistic need not imply that a

particular alternative model is of interest. Indeed, al-
logit(7r) = Z# (1) though the statistic created to assess a feature of the

model might be motivated by consideration of a partic-
where Z is an n x p full rank design matrix with i-th row ular alternative model, the conclusions drawn from such
z . Under model (1), S = Z'Y is sufficient for 3. Let # a test are provisional and do not require acceptance of
be the maximum likelihood estimator (MLE) of/3 under that alternative. In this regard, the evaluation of p(tobs)

model (1). Similar notation is used for other MLEs under is a pure significance test. We are not testing formal
model (1); for example A is the MLE of the mean vector, hypotheses. The computational aspects are, however,
Finally, set hi = i z(Z'VZ) - 1 zi, i = 1, ... , n. identical to those used for exact conditional tests.

The Pearson and deviance statistics on n-p degrees of Although the reference distribution (2) looks seduc-
freedom are given by X 2  x ? x and D = d?, where tively simple, the elements of Yobs usually must be enu-
X= (yi - ,)

2 /i and merated to check the model. Depending on the number
of samples n and the configuration of covariates, this

d,= 2[Yilog(y,/i)+(mi-Yi)log{ (ini-Yi)/(mi-f i)}]. enumeration can be computationally intensive (Bedrick

and Hill, 1990). Once Yobs is generated, however, imple-

2.2 General comments on model mentation of many model checks is routine.

checking

The distribution of the data pr(Y;fl), indexed by 3, can 3 Conditional Methods for
be factored into the marginal distribution of the suffi- Model Checking
cient statistic S, and the conditional distribution of the
data given the sufficient statistic: 3.1 Global model checks

pr(Y;,3) = pr(Y IS) pr(S; 0). A global evaluation of the model can be based on the
conditional probability of the data, q(y) = pr(Y = y I

Taking a Fisherian approach (Fisher, 1950), inferences S = Sobs). The p-value for q(y) is the sum of the condi-
about IS are based on pr(S; 3), while model checks use tional probabilities for y-vectors that are at least as rare
pr(Y I s). Letting Sobs = Z'Yobs be the observed value of as the observed vector Yobs, that is, P(qob,) = prfq(Y) <
the sufficient statistic for the logistic model, the reference q(Yb,) S = Sobs 1. Alternative tests are based on condi-
distribution for model checking is tional assessments of the deviance and Pearson statistics.

n P-values for these statistics are p(Dob,) and p(X' ); for
pr(Y = I S = Sobs) = Cob m (2) example, p(Dob,) = pr(D > Dob, I S = sobs). Each

i=1 (Yi vector in Yobs has the same fitted values for the logistic

where model (1). Thus, once Yobs is stored, these three p-values
n( )i are easily calculated.

ob' j* b. f i ), McCullagh (1985, 1986) developed Edgeworth approx-
=(yj'E Y imations to the conditional significance levels for D and
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X 2 . He derived both a normal approximation and a values of R suggest an increasing trend. This test is for-
second-order skewness correction to p(Dob,) and p(X' bS). mally equivalent to an upper one-sided exact test of zero
The approximations are relatively easy to program. We slope in the model logit(ri) = a + wi-y, i = 1 .... n. One
refer the interested reader to McCullagh's papers for would likely not accept this as an alternative model if the
the corresponding formulae. The Edgeworth approxi- data suggested that the null model of equal probabilities
mations assume that the number of samples n is large, was implausible.
but they do not require that the sample sizes mi are Davison (1988) derived double saddlepoint approxi-
large. These approximations are ideal for studies involv- mations to the tail probabilities pu(rb,) and PL(robs).

ing many small binomial samples because exact evalua- For simplicity, we will consider the upper tail approx-
tions are often infeasible and the standard unconditional imation. Let Z,. = [Z, w] be the full model (3) design
chi-squared approximations to D and X2 assume that matrix, and define 7, D., and 1V to be, respectively, the
each sample size is large. MLE of -, the deviance, and the estimated covariance

McCullagh (1985) conducted a small empirical study matrix of Y under this model. The double saddlepoint
of the approximations to p(X2bs) for sparse data prob- approximation of pu(robs) is
lems. He concluded that the normal approximation was
inadequate and that the skewness correction gave better pu(robs) 4 1 - t(x*) + (x*)(/C* - I/x*), (4)
results. To the best of our knowledge, there have been no where x* = sign(l)(D - D) and c* = {1 - exp(-l)}
studies of the accuracy of the Edgeworth approximations {det(Z,' /VZ,)/det(Z'l/Z)}5. Here *(.) and 0(.) are
to p(Dob), the standard normal distribution function and density

For non-replicated binary data (i.e. rin = 1 for all function, respectively. The lead term in (4) is the normal
i) the deviance is identical for each observation in Yobs approximation to the signed square root of the drop in
(McCullagh, 1986). Moreover, each observation in this deviance. This is often used for a large sample test of
set has the same probability. Consequently, there is little devanc. Tis isotenused for a slage samplttestto
information in non-replicated binary data concerning the correctio n
global fit of the model. The diagnostic power of global Bedrick and Hill (1991) evaluated the accuracy of
tests is also likely to be limited when all the sample sizes double saddlepoint approximations to the tail probabi-
are very small. In these situations, specific model checks ities pu(rob) and p(robi) for several well-known con-

need to be formulated. ditional tests. The saddlepoint approximations were

extremely accurate, except when the data were sparse
3.2 Single degree of freedom checks or the design matrix was highly unbalanced. Moreover,

these approximations were superior to Edgeworth ap-
Many model checks can be formulated as an exact test on proximations. In our experience, the saddlepoint ap-
a single logistic regression parameter. To develop these proximations are sufficient for most assessments.
model checks, we consider testing y = 0 in the model

logit(7r) = Z13+ uy, (3) 3.3 Local deviations: Outlier detection

where iv is a known n x 1 vector. The sufficient statis- Pregibon (1981, 1982) developed unconditional methods

tics under model (3) are R = w'Y and S = Z'Y. to detect outliers in logistic regression data, assuming a

One-sided significance levels for alternatives y > 0 and mean slippage model. This outlier model allows a sep-
arate mean for a potentially outlying observation. For

S< 0 are given by Pu(robs) = pr(R > robs S -- obs the moment, we consider methods to detect a single out-
and PL(robs) = pr(R < rob, I S = Sobs), respec- lier at a designated observation, say j. Letting ej be the
tively. A two-sided significance level is often defined to e a a digated observati j. let e be the
be 2min{pt.(rob),pu(rob)} (Cox, 1970). Hirji et al.'s n x 1 indicator variable with th element equal to one
(1987) algorithm can be used to evaluate these tail prob- and all other elements equal to zero, the outlier model is
abilities. Iogit(r) = ZO + ej. (5)

To emphasize our earlier comments on significance
testing versus hypothesis testing, consider the problem A test that the jth observation is an outlier is found by
of testing for an increasing trend in the probabilities testing t = 0.
7ri, i = 1 ... , n. The usual small sample test (Gart et To test 7 = 0, Pregibon suggested the score statistic
al., 1986; p. 85) uses the conditional distribution of t? = x?/( - hj) and the drop in deviance A, = D -
R = Fj wj Y given S = j 3 , where w, < ... < u),, are Dj, where Dj is the deviance from the outlier model
a somewhat arbitrarily preassigned set of scores. Large (5). lie found a one-step approximation to Aj that does
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not require estimated probabilities for the outlier model, distribution (2). In addition, they suggested using a plot
&,j = d./(1 -hj). Note that t? and A, are, respectively, of the ordered p-values versus their conditional expected
standardized squared Pearson and deviance residuals. values together with upper and lower bounds. The p-

The usual X2 approximations for these statistics are value plot is a natural analog to standard Q-Q plots.
questionable for small sample sizes. The inappropriate- They also discussed the problem of detecting multiple
ness of the X2 approximation for binary data is clear outliers.
because the residuals have two point distributions (Jen-
nings, 1986). 3.4 Goodness-of-link tests

Bedrick and Hill (1990) discussed several exact con-
ditional tests for a single outlier. Following the de- The appropriateness of the logistic link function can be
velopment in section (3.2), the statistics Yj and S are assessed in several ways. For simplicity, suppose that we
sufficient under the outlier model (5). Thus, signif- are interested in checking whether a specific alternative
icance levels for one-sided alternatives are given by link function, say the probit, provides a better fit to the
PU(Yj,ob,) = pr(Y > Yjob, I S = Sob.) and PL(Yj,ob,) data. Assume that the same covariates are used with
= pr(Yj _< yiob, I S = sob,), while a two-sided signifi- both links. Let iA and DA be the estimated mean vec-
cance level is 2min{pL(Yjob5 ),PU(Yjob)}. tor and the deviance under the alternative link. The dis-

Another test is based on small values of the conditional crepency between the two fitted models can be measured
probability qj(yj) = pr(Y = yj I S = Sob,). The cor- by the difference in deviances: AA = D- DA. This test
responding p-value is p(qj,ob,) = pr(qj(Yj) < qj(yj,ob,) I statistic is minus twice the (unconditional) log-likelihood
S = sob,). Alternatively, we can use conditional assess- ratio statistic for comparing non-nested models. Large
ments of t?, Aj, or Aj. positive values of AA suggest a departure from the lo-

All of the test statistics considered here depend on Y gistic model in the direction of the alternative link. A
only through Yj and S. Thus, the reference distribution conditional assessment of AA requires that ijA be com-
for each of the tests is puted for each vector in Yob,.

The comparison of non-nested models was initially
pr(Y = yj I S = Sob,), (6) studied by Cox (1961), who developed large sample un-

conditional tests based on the likelihood ratio. Wahren-
which can be derived from the reference distribution (2). dorf, Becher, and Brown (1987) proposed the difference

Conflicting inferences from the different statistics are in deviances for comparing non-nested generalized linear
possible because the statistics measure extremeness in models. They assessed the significance of the difference
Yj differently. This makes the choice of test statistic an in deviances unconditionally, using nonparametric boot-
important issue which Bedrick and Hill (1990) addressed strap samples.
in detail. For example, they recommended recentering An alternative approach is to imbed the logistic model
the statistics and &j at the conditional mean of Yj within a parametric family of link functions. Davison
when the reference distribution (6) is multimodal or ex- (1988) showed how the saddlepoint approximation could
tremely skewed. In such cases, the recentered statistics, be used to assess the adequacy of the logistic link within
which approximate tests based on the conditional likeli- this framework. We refer the interested reader to his
hood for y, behave like the test based on the conditional paper for details.
probability qj.

We view the outlier test as a check on whether Yjobs
is inconsistent with the model, without reference to an 4 Examples
alternative. Consequently, we prefer the probability test
statistic qj to the other statistics. The first example examines the accuracy of approxima-

The saddlepoint approximation (4) based on fitting tions to exact conditional methods. The second example
the outlier model (5) gives estimates of Pu(Yj) and illustrates a goodness-of-link check. We used Bedrick
PL(yj) for all yj. These estimates can be used to ap- and Hill's (1990) algorithm to generate Yob, for these
proximate the reference distibution (6), and the exact examples.
distribution of each of the test statistics.

When the location of the outlier is unknown Bed- 4.1 Nodal involvement data
rick and Hill (1990) recommended that the minimum
p-value (for a given statistic) be used to indicate which Brown (1980) discussed an experiment where 53 prostate
case might be an outlier. Evaluating the p-value of this cancer patients underwent surgery to examine their
extreme p-value statistic requires the entire conditional lymph nodes for evidence of cancer. The data were used
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to develop a model for predicting nodal involvement (1 p-values for Dob, and X2h, lead to the same conclu-
= evidence of cancer, 0 = no evidence) from 5 preop- sions. The first-order normal approximations to p(Dob,)
erative binary prognostic variables. The data are given and p(X 2 ) are 0.937 and 0.912, while the iecond-order
in Table 1; see Bedrick and Hill (1990) for a description skewness adjusted approximations are 0.846 and 0.828.
of the covariates. All of the 23 samples are small, so The second-order approximations are rcasonably accu-
asymptotic theory does not apply to residuals or outlier rate.
tests. Table I gives the score statistic f?, and its exact con-

ditional p-value p(t?), for each observation. Summaries
for A are also provided. We note that p(t?) = p(qj) for

Table 1: Nodal involvement data with designated case each observation. None of the observations appear to
test statistics and conditional p-values. The covariates be unusual. Note the consistency in the p-valucs across
zj 1 , ... , zj5 are given as a binary string of length 5. statistics, even when the magnitudes of tand Aj are

j yj/,fnj Zjk t p(t ) A, J,(A,) very different. R :entpring t? and Aj at the conditional

1 5/6 01111 1.54 0.39 1.11 1.00 expectation of )'/ had little effect on the conditional p-

2 1/6 00001 0.08 1.00 0.08 1.00 values.

3 0/4 11100 2.81 0.39 4.86 0.21 The saddlepoint approximation to the marginal con-

4 2/4 11001 0.22 1.00 0.22 1.00 ditional distributions pr(), = yj I S = Sob,) were very

5 0/4 00000 0.22 1.00 0.43 1.00 accurate. The relative error in the continuity corrected

6 2/3 01101 0.03 1.00 0.03 1.00 estimates averaged 3% across the samples. Moreover,
7 1/3 11000 1.73 0.35 1.24 0.35 the approximations to the significance levels for 12, A,
8 0/3 10001 0.75 1.00 1.37 0.61 and qj were always within 0.01 of the exact values given

9 0/3 10000 0.11 1.00 0.22 1.00 in Table 1.

10 0/2 10010 0.58 1.00 1.06 1.00 The exact conditional and approximate conditional as-

11 1/2 01001 0.00 1.00 0.00 1.00 sessments indicate that the logistic model provides an

12 1/2 00100 4.44 0.18 2.54 0.18 adequate global and local fit. to the data.

13 1/1 11111 0.10 1.00 0.20 1.00
14 1/1 11011 0.27 1.00 0.48 1.00 4.2 A dose-response experiment
15 1/1 10111 0.53 1.00 0.90 1.00 Table 2 gives data from an experiment designed to ex-
16 1/1 10011 1.15 1.00 1.61 1.00 amine the toxicity of a pesticide to a species of Chrysan-
17 0/1 10100 0.09 1.00 0.17 1.00 themum aphis (Finney, 1947; p. 69). We initially con-
18 1/1 01110 0.47 1.00 0.80 1.0019 0/1 01100 0.52 1.00 0.86 1.00 sidered a logistic model with log-dose as the predictor.29 0/1 01100 1.3 1.00 1.94 1.00 The deviance and Pearson statistics are Dob, = 5.96 and21 1/1 00101 2.14 0.35 2.51 0.35 ob, = 5.88 on 4 degrees of freedom. The asymptotic
22 0/1 00011 1.83 0.41 2.24 0.41 p-values for these statistics based on a X 2 approximation22 01 0011 183 .41 .24 .41 are both about 0.20.4

23 0/1 00010 0.34 1.00 0.60 1.00

Brown propose(] a main effects model for the log-odds Table 2: Dose-response data (Finney, 1947; p. 69) with

ona iooem : expected counts for logistic (ji) and compkmentary log-
of nodal involvement: log (fi) links.
1ogit(7=) =10 + OlZil + 'Zi2 + 033i3 + /34Zi 4 + Z,5, j ?j Yj Log-dose i$i jA

1 47 7 0.40 7.18 8.64

1,...,23. A FORTRAN version of our algorithm 2 46 22 0.71 18.47 17.36
generated the 6034 response vectors belonging to Yobs in 3 46 27 1.00 32.02 29.85
13 seconds on a SUN SPA RC station IPC computer. 4 18 38 1.18 39.88 39.33

The deviance and Pearson statistics for this model are 5 46 43 1.31 41.17 41.99
I)ob., = 18.07 an( X2b, = 15.46 on 17 degrees of freedom. 6 50 48 1.40 46.29 47.80
The exact conditional p-values for q(yoh.,), Dob.,, and
Ao,., are 0.758, 0.803, and 0.792, respectively, suggest-
ing that the model provides an adequate global fit to the The expected cell counts under the logistic model are
data. The Edgeworth approximations to the conditional given in Trable 2. Although the observed count at, the
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third dose level appears to be inconsistent with the fitted regression lack-of-fit tests. Regardless of how the data
model, the discrepency is not significant. are grouped, this is a fruitful approach because the de-

Morgan (1985) suggested several alternative models viance provides no information about the global fit of
for these data. We fit several models, of which the corn- the model to non-replicated binary data. Fowlkes's di-
plemetary log-log link provided the best fit. The de- agnostics are based on smoothing the binary responses
viance and Pearson statistics for this model are 3.66 and to examine the underlying structure. In theory, all of the
3.69 with asymptotic p-values 0.455 and 0.449, respec- variations of the local mean deviance plot and Fowlkes's
tively. The expected cell counts under this model are "smoothed-X 2'' components can be calibrated condi-
given in Table 2. None of the observations is poorly tionally. Unfortunately, the size of the problem for which
fit. In comparison, the complementary log-log provides their methods are most effective are beyond the capabil-
a better fit than the logistic at large doses, but a some- ity of our current algorithms.
what poorer fit at the low doses. The present infeasiblity of enumerating Yob, for large

Although the sample sizes are large, an exact analysis data sets is not the only limiting factor with exact meth-
of the logistic model is feasible. Our FORTRAN routine ods. We generated Yobs for a study with 29 samples of
generated the 1496 response vectors belonging to Yob, in size two and four binary covariates, only to find that Yob,
39 seconds on the IPC. The exact p-values for D~b, X2 contained over 285 million response vectors. Given the
and q(Ybs) are 0.383, 0.343, and 0.447, respectively. The size of Yob,, certain exact evaluations were infeasible so
exact p-values for Dob3 and Xob, are approximately twice we based our assessments on a sample of responses from
their unconditional p-values. A conditional assessment Yobs.
indicates that each observation is adequately fit by the The implementation of conditional methods for model
model. checking would be greatly enhanced by the development

To illustrate the goodness-of-link check, we evaluated of an efficient algorithm to sin.ulate from the reference
the exact distribution of AA using the complementary distribution (2). In the problem discussed just above,
log-log as the alternative link function. The difference we had to generate Yob, prior to sampling. Several algo-
between the observed logistic and complementary log- rithms are available for randomly sampling 2 x n contin-
log deviances was 2.30, which corresponds to the 9 1 .6th gency tables with fixed margins, without first generating
percentile of this distribution. Thus, the data provide the population of tables. Note that the set of 2 x n con-
some indication of a departure from the logistic model tingency tables with fixed margins is equivalent to the
in the direction of the complementary log-log. As noted, reference set for checking a logistic model with an in-
the two models give different fits at the extreme doses. tercept term only. The introduction of covariates to the
Such differences are an important consideration in model model imposes additional constraints on the tables. This
selection when the extreme percentiles of a tolerance dis- added structure makes it difficult to project whether re-
tribution are the primary interest. The data suggest that sponses from Yobs can be randomly generated without
this issue should be explored more completely before se- first enumerating this set. The problem merits serious
lecting the logistic model for inference, consideration.

To close, we believe that exact methods should play
an important role in future analyses of logistic regression

5 Discussion: Potential for models. We optimistically project that advances in this
extending cmethods area will continue due to an increased interest in compu-

current tationally intensive methods coupled with the continual
development of more powerful computing algorithms and

The model checks we described in this paper are but a environments.
small subqet of the methods for which exact analyses are
theoretically possible. For example, specific methods are
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Abstract example. Suppose our interest is on inferences about the
array of cell probabilities 0 = {0ii } of a 2 x 2 contingency

This paper discusses a method suggested by Epstein and table and suppose also that given 0, the observed counts
Fienberg (1991) for the Bayesian analysis of multidimen- x = {xij } follow a multinomial distribution M(N,O).
sional contingency tables in connection with the Gibbs We label the two factors by 1 and 2.
sampler to calculate posterior densities. When the data follow a multinomial distribution to

The method consists of a two-stage hierarchical prior, model prior beliefs it is common to use the conjugate
The first stage is a Dirichlet distribution with a loglin- Dirichlet prior D(K, 7)) with density
ear reparametrization for its means. The second stage is
a multivariate normal distribution on the loglinear pa- [BiK,?] -
rameters. However, other distributions can be used if
the Dirichlet-normal combination is not flexible enough where/3 = r(K)/I-Ii, F(Kr/ij), and 7= {ij)}.
to accomodate one's prior beliefs. Before the observation of x we might believe with some

These prior distributions are useful when one believes, uncertainty that the two factors are independent. That
with uncertainty, in a given loglinear structure for the is, we might believe that 0 satisfies 0ij = Oi+O+j,i
cell probabilities. 1,2,j = 1,2, with some degree of uncertainty.

The condition 0,, = a+e+.i is equivalent to
Key words: Contingency tables; Bayesian estimation;

Dirichlet prior distribution; Gibbs sampler; Loglinear logOij - u + Ul(ij) + u2(ij). (1)
model; Maximum likelihood estimation of Dirichlet dis-
tributions. with the restriction that the term u in this equation is

u = - log(> exp(ul(ij) + u2(ij)), (2)

1 Introduction "j

so that Eij Oij = 1. This normalization leads to an
A new Bayesian method for the analysis of multidimen- equivalent parametrization that uses the multivariate
sional contingency tables was recently proposed by Ep- logits, i.e., if
stein and Fienberg (1988) and Epstein (1990). As with el.]

many other Bayesian methods, ours uses the posterior 0 r- - - '
means of the cell probabilities to estimate these parame- th
ters. The focus on posterior means is in part due to the en the -ic are the multivariate logits (see Leonard and
importance of point estimation and in part due to com- Novick, 1976). The parametrization (1) and the normal-imiztang codfio poin esiato and eqinln tor due to com-i

putational difficulties in drawing further inferences from izing condition on u are equivalent to reparametrizing
the posterior. The purpose of this article is to illustrate {-ij } using

with an example how to use the Gibbs sampler to com- 7ij = UI(ij) + U 2 (ij).

pute estimates of the posterior densities that, arise from Unless neccessary, the remainder of this paper omits
our method. These density estimates are readily inte- explicit reference to the normalizing role of u. Thus,
grable to compute posterior probabilities and moments. we will simply speak of the loglinear parametrization

We introduce the esentials of the method via a simple log 0,j = u + UI (,j) + u2(,3)
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To see that the parametrization (1) is equivalent to (see Albert and Gupta, 1982). However, the loglinear
independence, substitute the value of u back in equation parametrization on the Dirichlet means allowed Epstein
(1) to get and Fienberg (1991) and Epstein (1990) to extend the

method to multidimensional tables.
eu('2) eU("3) If we feel we cannot specify a value for rhi} and 12

}

S= ZX eU'(") X i~ eU2(.i) "or, equivalently, for ul(ij) and U2(ij), then the Dirichlet

Hence distribution cannot adequately represent our prior be-
liefs. However, as Albert and Gupta (1982) point out,

eu'0u) and Oj+ eu (bj) the Dirichlet distribution may still be used as the first
andi eu0,) eUVu") stage of a two-stage prior. With a loglinear parametriza-

tion for the Dirichlet means there are two equivalent al-
To incorporate in the prior our uncertain belief in in- ternative ways to complete the two-stage prior. One may

dependence, Epstein (1990) and Epstein and Fienberg use distributions on the u-terms or one may prefer to
(1991) proposed using a loglinear parametrization on the specify distributions on i{)} and i{2} directly.
Dirichlet means. That is, to reflect the plausibility that The loglinear parametrization will be more useful
the cell probabilities satisfy (1) they suggest using when analyzing tables of higher dimensions where one

log 1ii = u + ui(j) + u2(jj), (3) may consider more complex loglinear structures. As the

next section explains, with loglinear parametrizations for
with u = - log(Z,, exp(uI(,j) + u2(,i)), n-way tables one can also specify the second-stage in two

The index "1" in ul(ij) indicates that this u-term de- alternative ways, but to use the second one must deter-

pends only on the index i. It is more common to omit mine the generating class of the loglinear parametriza-

the indices on which the u-terms do not depend. Thus tion and use the margins of r given by the generator as

often we write ul(i) and u2(j) instead of ul(ij) and U2(ij), parameters of the Dirichlet distribution.

but the fact that {u1(0)} and {U2(ij)} are arrays of the The parameter K governs the concentration of the

same dimensions as { /ij } simplifies many formulas. prior distribution about the independence surface

To establish the connection with the multidimen- s = =

sional case, we note that parametrization (3) maps 1 'J

an array {-yj} belonging to the linear subspace 0 <00! < 1,0< 0{1 < 1,
M = {{-i} : = Uli + U2(;)) into the array 0 " - 1 0{21 + 0121
{exp(-yi)/ ,ij exp(yij)}" 01])+ 1 ,2 21 22 1

The parametrization (3) implies that, In the limit, as K - oc, the prior, and therefore the

eu,0,) eU2() posterior, concentrate all of their mass on ,.
Ih + =and E+j = ej, and 1 (4) When we use a two-stage prior we obtain the posterior

means

Thus, {ui(,j)} and {u 2(ij)1 parametrize the marginal ar- N + " :}j) (5)
rays {r/i+} and 177+j}, respectively. e(0,iz) = N + K N 1 ( 7i .

We follow the notation of Andersen (1974) to repre-
sent marginal tables, and the definition will be recalled which we use to estimate 0. The expectation

in section 2 more formally. This notation represents the E(7 is with respect to the distribution induced
marginal array with entries rij+ by t9' - {i }, where on qfl) and 1{2) through equations (4).

Y = {1}. The set of factor labels Y indicates that rqy In most practical situations, when K - 0 the poste-
depends only on the index corresponding to factor 1, rior means c(0,jz) converge to the observed proportions
namely i, and that 17 was collapsed over the indices cor- xj/N. When K -- oo not only the posterior distribu-
responding to the factors not in Y, namely j. We will tion concentrates the all of its mass on S, but the pos-
also use products of arrays. Thus, for example, the prod- terior mean c(0z) itself belongs to S. This property
uct of 71{'1 and 11121, denoted by iq{lqf{

2 ), is the array translates into
whose ~ ~ ~ 11 (ij nryi 21 iwhose (ij) entry is i7j' }7ij , or, in the usual notation, lim C(0,,Iz) = lim C(&17} lz) x lim'7i+ 27+j.- K-0 K-0 1) K-0 "

The parametrization log '7, = U + Ut(i) + U2 (ij) is It shows that the estimates corresponding to increasing
equvalnt o ~ij= 7);7~lwith 0 < 19 I

equivalent to r/,i =  ) (1 w < < 1, values of K reflect, an increasingly strong prior belief in
0 < < I, ) + " = 1, and 11i21 + 12} 1 the plausibility of independence of the two factors by

0i !5 Ii j I72 I 1 s2 l I



Bayesian Inference for Condngency Tables 217

compromising between estimates obtained under a sat- set of levels of factor i. The set I = r x ... x r, is
urated model and estimates obtained under an indepen- usually refered to as the index set or the set of cells.
dence model. Epstein (1990) showed that this property A selection of levels t = (il, i2, ....- in), a generic el-
holds for general loglinear parametrizations. emrnt in I, is often referred to as the (il, i2 -. .i)-

With this introductory example it is now easy to see cell. One obtains a r, x ... x r, contingency table
how our approach extends to tables of higher dimension. x {x,, t E I) when N individuals are examined and
If we believe, with uncertainty, in a given loglinear struc- cross-classified according to the levels of each of the fac-
ture for the cell probabilities, we use a two-stage prior. tors.
In the first stage use a Dirichlet distribution with means We shall assume that x = {x,, t E I} has a multino-
having the same loglinear structure. In the second stage mial M(N, {0,}) distribution, where 0, is the probability
use distributions, Gaussian for example, on the u-terms of an individual being classified in cell t. However, the
of the loglinear parametrization, method easily adapts to other sampling distributions,

In the introductory example we speak of independence such as Poisson and product multinomial (Bishop, Fien-
being a plausible structure for the cell probabilities to berg, and Holland, 1975).
indicate that we believe in independence only to a certain In the first stage use a Dirichlet D(K, 71) distribution
degree. In general, we will speak of a plausible loglinear with density
structure to indicate that we believe in that structure
only to a certain degree. [O1K,rq] =/ 77'J'"-l, (6)

In the multidimensional case, as K - o, the prior t
and therefore the posterior concentrate all their mass
in the subset of arrays 71 defined by the loglinear indexed by q = {1,t E I), and where f = -i7.hT)
parametrization. Epstein (1990) studied properties of The parameter K > 0 is prespecified. Thus, -(0, JK, -q)
the posterior means as estimators when the loglinear 7, for t E I.
parametrization on 17 is hierarchical. Let w C fi, i.e., w is a set of factor labels. We shall

The next section reviews the extension of the method denote uu the interaction parameter among the factors
for multidimensional tables and the basic elements of in w. More specifically, the interaction u. is the r, x
loglinear parametrizations. ... x rn array

Section 3 presents our implementation of the Gibbs
sampler. The implementation requires finding maximum u = u-(i, ,
likelihood estimates for Dirichlet means under a loglinear
parametrization. Subsection 3.1 describes the use of the where the entries Uw(il, .,) of uw depend only upon the
projection gradient method to compute these maximum indices ii with j E w. Often the interactions are taken
likelihood estimates. Additionally, section 3 discusses to satisfy the usual ANOVA constraints, i.e., the sum
a rejection-acceptance scheme to draw deviates from a of the entries uw(i,.. i,) over the levels of any factor
posterior distribution that does not require the marginal j V w is zero. These constraints achieve identifiabil-
( predictive ) distribution. Section 4 illustrates the im- ity of the parametrization. The Bayesian approach does
plementation of the Gibbs sampler and the method of not require identifiable parametrizations and therefore
Epstein and Fienberg (1991) with simple sociological ex- we need not use constraints. Their use, however, is not
ample concerning student politics and family structure. precluded. One should use them whenever they facilitate

producing a prior distribution reflecting one's beliefs.
Loglinear parametrizations are usually used for the

2 A Bayesian Method for Multi- multinomial parameters. The model defined by

dimensional Tables log6 = Eu,, (7)

In this section we review the method proposed by Ep- ,Cn

stein (1990) and Epstein and Fienberg (1991) for mul- is the saturated or unrestricted model. Whenever a vec-
tidimensional tables. We refer the reader to Epstein tor, x say, appears as the argument of a real function of
(1990) for proofs and a detailed discussion of this sec- one variable, f say, then f(z) shall stand for the vector
tion's results. (f(x) ... , f(x))t.

Following the notation of Andersen (1974), consider The entries of the array u. , where 0 is the empty set,
it factors or treatments labeled 1,2 .. n, with factor i are all the same. The term u is usually referred to as
having ri levels. l)efine ri = { I. } and call it the the constant term.
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In the general case we can use the multivariate logits As a consequence of using the parametrization (9) one
7, by writing: can specify a value for Il by specifying values for some

- -el, margins of 71. For example, if logqij = u+ujj)+u2(o),

YEE Iel, then lij = Oi+y+j" In this fashion we specify the rc

The parametrization (7) is equivalent to values 7rj by specifying values for Oi+ and r/+j, a total
of only r + c values.

-Y = u. This result extends to the general case. When the log-

wCt~,W 0 linear parametrization (9) is hierarchical then 11 is to-
tally specified by the value of the margins iYl, ... ,1

We obtain submodels by including only some interac- where {Y,-. , YT} is the generating class of the loglinear
tions in the formula above. To specify which interactions parametrization. Therefore, we can implement the sec-
we include in a submodel, we use a class of subsets of h ond stage either by using distributions on the u-terms or
which we call A. For example, we write by using distributions on the margins 7YJ, I ... , 71 r . For

Y C n the Y-margin qy is defined as being the array
logo = un,. whose entries are

wEA V

to specify a parametrization which only includes the in- h, . = Z 1h1  - Z r "
teractions among factors in tv, with w E A. i,E,, jEf%\"

We are concerned with making inferences when we feel
it is plausible that 3 Implementation of the Gibbs

logo = U,, (8) Sampler
wEA

This section describes the specifics of the implementa-where A, is a strict subset of n. To incorporate this tinothGbssapefrcluaigtepseir

belief into the prior we suggest that instead of using the densities of the cell probabilities.

loglinear parametrization on 0 we use it. on the Dirichlet d e s ti t e of the Gibb sampleriand
ineas, hat isWe start. with a brief review of the Gibbs sampler and

means, that is, refer the reader to Gelfand et at. (1990) and Gelfand
log 7= Z iU7. (9) and Smith (1990) for a detailed description of the use of

wEA Gibbs sampling in Bayesian inference.

This restricts log 7 to lie in a linear subspace M of Suppose that one wishes to estimate the density [X]
R1. To ensure that the parametrization is such that of the random variable X assuming it is possible to draw
- ,El II, = 1, it is necessary to assume that M contains deviates from the conditional densities [XIYI and [YIX],

the array 1 whose entries are all 1. In the introductory where Y is another random variable.
example the class A is {{1}, {2}} and therefore equation The algorithm consists of iteratively repeating a two-
(9) becomes step cycle. Before starting one draws a deviate X (° )

from an arbitrary density [X]0. Step one of the cy-
log ij u + uI(ij) + Ut2(ij) cle is to draw a deviate I' (" from [YIX(°)]. Step

In the parametrization (9) the term u0 = {u} must two is to draw X(' ) from [XlYOi]J. Then one first

satisfy replaces Xt0 l by X(') and proceeds with the second
cycle. A succession of cycles produces a sequence

u=- log(E exp( E uU(,))), (X( 1 ), Y()), (X( 2 ), Y( 2)),.. ., (X('), Y( ' )),.. The se-

tl wEA,w 0 quence V ) converges in distribution to X - [X] and
y(') converges in distribution to Y - [Y].

so that 1:,E = 1. The term u0 in (8) must satisfy Gelfand and Smith (1990) suggest building an esti-
this restriction as well. The restriction on Ito will remain mate of the density [X] as follows. Using the Gibbs
implicit whenever we refer to parametrizations such as sampler, obtain m independent replicates ( Yr(i))
those in (8) and (9). -.. , (X ), ). With these deviates obtain the density

In summary, we suggest a two-stage hierarchical prior, estimate

The first stage consists of setting 0 - D(K, q) where 7) 
,,a

is parametrized using (9). The second stage consists of -] 1 , -I[ t ,]. (10)
setting distributions on the u-termis in (9). j=1
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We use Gibbs sampling to estimate the posterior dis- deviates q from [71J, which are easy to generate, to obtain
tribution [81z]. For the two-stage prior 0 --, [0i] and deviates from [7116(0)] = [0(0)71] [17]/[0(°)]-
rl-, [q]. We identify X with 0 and Y with 7 and use
the following Gibbs scheme to draw deviates from the accept ( falseposterior [O1z]: do while ( not( accept ) )

generate a deviate r from [17]
do j = 1,m generate a deviate v from U[0, B]

Set O(°) if ( v < [0(0)17] ) then accept - true
do i = 1,t end do

Step 1: draw ni from [71 9] Above, B is such that B > [(0)I1] for all 7 in its
0S0) 2r 0 1) domain. It is simple to show that an accepted 71 is
e oa deviate from [10(°)]. An important feature of this

end do advaefo 71().A motn etr fti
(0) approach is that it does not require the calculation of
() -- 17 [01')], or an estimate of it, as is sometimes necessary

jt -in some implementations of the Gibbs sampler ( see for
end do example Gelfand and Smith, 1990).

On exit, this process has generated in independent de- A geneneralized rejection method that uses an en-
(i) veloping function B(i1 ) for 17 -- [710] may increase theviates -). [7 (t)],j = 1,... , and m independent speed of this algorithm. At present, however, we will

deviates O t) - [0(],j - 1=., m. content ourselves with a boxed envelop, the main advan-
With these deviates, the density estimate in equation tage being the ease of programming. Obtaining a good

(10) is a finite mixture of Dirichlet densities, value for B is crucial for a good performance of the re-

m jection method. The ideal choice is to find il such that
[0j] = m- 1 Z[O71)t) I] [80 )lil = max{[10 °)17] : log u= u ,

j=1
wEA

It is particularly simple to evaluate the marginal den-
sity estimate of a cell probability. For example, in the anid then take B = [8t°)il]. Observe that 7 - [0(0)1,q],
situation of the introductory example, is the Dirichlet likelihood function given the data (0t° .

[ [The next subsection introduces a maximization proce-
- 0 , ], ( dure to find B. The procedure appears to be fast enough

to use it in combination with the Gibbs sampler.
Observe that under the loglinear parametrization -y

where [01iI q, x] is the beta(Ki*71*, K*(1 - i?71 )) density logj 1= wCA u11, I = log il is the maximum likelihood
with K* = N + K, 771*1 = ai711 + (1 - a)xll/N, and estimate of -y
a = K/(N + K).

Automatically monitoring convergence is still an open 3.1 Maximizing the Dirichlet Likelihood
issue; at present the best one can do is to prespecify the
total number of iterations t, say. In this section we briefly describe the "gradient projec-

The distribution [0li7, x], which is used in step two tion method" and apply it to maximize the Dirichlet
of a Gibbs sampler cycle, is Dirichlet with concentra- loglikelihood. In addition to being easy to implement,
tion parameter K* = (N + K) and cell means 17, = various features of the Dirichlet likelihood and loglinear
K/(N + K)rh + I/(N + K)x,. Drawing deviates from parametrizations make the gradient projection method
the distribution [0I71, x] is straightforward. We chose preferable to other methods. We discuss the advantages
to generate these deviates by independently generating of the gradient projection method after introducing ad-
-, Gamma(p,, 1) ,t E I with, p, = K*>, and then ditional definitions.

setting 0, = t',/ -y ,'. The joint distribution of {0, } Recall that a loglinear parametrization for il restricts
is Dirichlet D(K*, {q,) with q, = p,/K*. logil to lie in a linear subspace Al. The usual form

lowever, drawing deviates from the distribution of writing a loglinear parametrization with u-terms ex-
[,19(0)] = [0(0)171] [7]/[0°, used in step one of a cy- presses y E Al in terms of a basis matrix of il, i.e., a
cle, is not straightforward. matrix B whose columns form a basis for M. Vhen ex-

We suggest the following adaptation of the rejection pressing a vector Y E Al in terms of the unique u such
method to sample from [i1190)]. This adaptation uses that -y = Bu, the coordinates of u are the u-terms.
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To avoid technical complications that the restriction which is a constrained maximization problem. A point

EIE ij, = 1 introduces, we redefine some functions of il -Y E M is refered to as a "feasible point". The gradient
as functions of rh, t i4 (rl,..., r,,) only. To this effect, projection method projects the gradient of the objective
for -q given we define fl as q, = q,, t E I with I = function onto M to increase the value of G(-Y) and to
S- {(r,... , r,,)} as the index set for the vectors ij. maintain feasibility at the same time.

Maximizing the Dirichlet likelihood I(JO8) is equiva- The following is a summary of the gradient projection
lent to maximizing to solve the above maximization problem:

E(q) = K < r, A > -E logP( )' Step 1 Initialization: Choose Yo E M
Let v0 = G(-y0 )tE Step 2 Compute do = JG(-yo)

where A = logG and qj is given by r = q,,t E 1 and Step 3 Compute 6 0 = PMdo
, ,. Except for an additive constant, Step 4 Unidimensional maximization:

E =rt) i lor i0 . Find 6 > 0 such that
E() is log I(?)jO). G(-y0 + &6o)) = maxa>o G(' o + ao))

The Dirichlet rreans corresponding to the multivari- Set -y, = -yo + &b0
ate logits -y are given by i) = H(-y) with q, =
exp(7t)/Y ,' I exp(-y,,), 1 E i. To use the parametriza- Step 5 Convergence test:
tion with the multivariate logits it is convenient to define Let vi = G(-t)If (v1 - vo)/vo < then stop

G(-) = E(H(yI)). (12) else fto -- fl
V0 - V1

Observe that if we use the parametrization with the u- go to Step 2.

terms, then we may find u, the mre. of u , by maxi- On exit, -t is such that vi = G(-l) is an estimate
mizing U(u) = G(Bu). of the maximum value of G. Therefore l(H(tl)O) is an

Roughly speaking, there are three classes of alter- estimate of the maximum value of 1(710).
native methods to maximize U. One possibilty is to In Step 2, JG(-yo) stands for the array of partial
solve the equation JU(u) = 0, where JU stands for derivatives {8G('yo)/07,,t E I}. It follows from (12)
the array of partial derivatives of U. Typically, itera- that, for t = (ii,.. , in) E I and c = (r . .. rn),

tive procedures to solve this equation require updating aG
an estimate of the Hessian of U after some iterations. (-Y)
On the one hand, it is difficult to obtain formulas for 9,

the second derivatives of U and on the other, comput- Krj,[(A, - k: - {b(K,) - 0(Ki7,)})(1 - rh)
ing second derivatives numerically is in general expen- + Z(A,, - A, - {P(Kr7,, )- (I%)D),,],
sive and roundoff errors are difficult to control. Since El

U(u) = G(Bu), this approach poses the additional dif-
ficulty of explicitly requiring a basis matrix for M. and,

An alternative is to use a steepest ascent method 9G
where at each step there is a unidiuensional search along (-)
the direction JU(u). This alternative also requires a Iq[- (,- - {¢(lil,)-
basis matrix. In fact, any method that uses u as the
variable of the objective function, will require a basis ,'l
matrix, where ;b is the digamma function and A, = log 0,, 1 E I.

The gradient projection method is preferable to these The formulas to compute the projection Phi do in Step
alternatives because it does not require estimating Hes- 3 are derived in a similar fashion to the formulas to
sians or a basis matrix of Al. Moreover, the gradient compute fitted values of the cell means in ANOVA.
projection method allows us to take advantage of the However, these formulas are not the same because the
ANOVA-type parametrization for -1 to perform certain parametrization for -y does not involve the constant term
computations more efficiently. of ANOVA parametrizations.

To use the gradient projection method we view the The existence of i in Step 4 is guaranteed by the con-
problem of maximizing the Dirichlet likelihood as the cavity of the Dirichlet likelihood. We used routine e04abf
problem of finding 1 E M such that from the NAg library for the unidimensional maximiza-

tions. Although it would take more programming, per-
G(b) = max{G(-y),-y E M), haps an algorithm that uses the derivativeof G(o+a6o)
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with respect to a would be more efficient for the unidi- imprecise belief about the u-terms. Second, one specifies
mensional maximizations. a value for the parameter K.

It is possible to use other convergence tests in Step 5. Albert and Gupta (1982) and Epstein and Fienberg
Since our interest here is not on the maximizer -j, but (1991) computed the posterior means (5) for this table
on the maximum value G(Q), it is appropriate to use but they used different distributions to reflect uncertain
the test in Step 5 to ensure that on exit -y1 provides a prior beliefs about independence. In both articles the
function value v, sufficiently close to G(-y). posterior expectation of the 7's were estimated using a

Monte Carlo method.
Table 2 reports the computed values for the poste-

4 Illustrative Example rior means of each of the cell probabilities for several

values of K (the column headed by K = cc actually cor-
In this section we reanalyze the 2 x 2 table given in To. responds to a very large, but finite, value of K). The
ble 1 which classifies college students with respect to estimates corresponding to finite values of K reflect the
their political affiliation and their family structure (from uncertain prior belief in independence by conipronmising

Braungart 1971, and analyzed in Bishop, Fienberg and between estimates obtained upenr a saturated model and

Holland, 1975, pp 379-380), and by Albert and Gupta estimates obtained under an independence model.

(1984). We use this data to estimate the cell proba- Figure 1 reports reports estimates of the marginal pos-

bilities using the prior belief that the two variables un- tenior densities for each of the cell probabilities. These

der study are plausibly independent. This is the situa- e sites oreach of forul prob These
estimates were obtained using formula (11) for the pos-tion described in the introduction. For illustrative pur- terior density of 011 and with the obvious modifications

poses we use normal distributions on the u-terms in the for the other cell probabilies. We used m = 20 indepen-
parametrization dent replicates and each of the replicates was generated

log1 7ij = u + u (i) + u-(j). (13) with t = 20 cycles of the Gibbs sampler. In addition we
computed these density estimates using different values

More precisely, we use of rn and t. On a plot the resulting estimates appeared
to be fairly similar for values of t and in as low as 10.Stage I: 61K, 1 "-, d(K, q1), with 'b., reparametrized ac-

cording to equations (13). Table 2: Computed values of posterior means for differ-

Stage H: The uli() are independent, i = 1,2. The ent values of K
U,2() are independent, j = 1,2, and also indepen-
dent of the Ul(s),i = 1,2. The distribution of K 0 100 200 400 600 1000 2000 cc
Ul(Z) is N(pi(),o U(,)) ard the distribution of uO() 0ii .107 .115 .119 .125 .130 .126 .135 .133

is N(p 2 aj), a2()), i,j 1,2. 0 12 .122 .115 .110 .105 .102 .098 .100 .093
N 2 21 .483 .474 .471 .469 .468 .463 .453 .459Io use this prior density one first specifies the param- 022 .288 .296 .300 .302 .299 .313 .312 .316

eter vectors 1 = (0l(I),J0I(2)), and ou, =

reflecting the user's prior knowledge about the propor-
tion of students in the two political affiliations and,
112 = (112(l),/12(2)), and 'r 2  = (02(i),02(2)), reflecting
the user's prior knowledge about the proportion of stu- 5 Discussion
dents in the two family structures.In this example we set e, = (.5;.5),r= (2.O;2.0) This article reports on an implementation of the Gibbsand l2 = (.5; .5), a, = (2.0;2.0), reflecting a rather sampler to estimate the full posterior density of the arrayof cell probabilities of n-way contingency tables using

the method proposed by Epstein (1990) and Epstein and
Fienberg (1991). One easily obtains estimates of the
posterior distributions of the individual cell probabilities

tion. Source: Braungart(1971). as a finite mixture of beta densities.
Political Affiliation Gelfand and Smith (1990) proposed the Gibbs sampler

as an easy to implement algorithm to generate deviates
Parental Authoritarian 29 33 from posterior distributions. An expeditious implemen-
Decision tation requires that all necessary distributions be avail-
Making Democratic 131 78 able for sampling. This was not the case in this article
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and we expended some efforts to generate deviates from gency Tables. Bayesian Inference in Statistics and
[Mel0]. Econometrics: Proceedings of the Jndo-US Work-

To sample from [i10] we used a scheme that does not shop, 1988. Lecture Notes in Statistics, Springer-
requires the marginal density [0], which is often the main Verlag New York. (To appear.)
obstacle to compute [v7I0]. The scheme uses the facts
that [l] is available for sampling, that [017] as a func- [7] GELFAND, A. E., HILLS, S. E., RACINE-POON,

tion of 7 can be viewed as a concave likelihood function A., & SMITH, A. F. M. (1990), Illustration of
with a unique maximum. This maximum provides the Bayesian Inference in Normal Data Models Using

height of a box for a rejection sampling method. The Gibbs Sampling. J. Am. Statist. Assoc., 85,No.

gradient projection method proved to be fast and very 412, 972-985.
easy to program. We are currently investigating its use [8] GELFAND, A. E. & SMITH, A. F. M. (1990), Sam-
in maximum likelihood estimation for generalized linear pling Based Approaches to Calculating Marginal
models and will report on this work elsewhere. Densities. J. Am. Statist. Assoc., 85 , 398-409.

Our scheme to sample from [1710] can be used to im-
plement the Gibbs sampler for a variety of other prob- [9] LEONARD, T. & NOVICK, M. R. (1986), Bayesian
lems involving two-stage priors where the first stage is Full Rank Marginalization for Two-Way Contin-
the conjugate prior for the sampling distribution and the gency Tables. J. Ed. Statist., 11 , No. 1, 33-56.
second stage distribution is available for sampling.

Furthermore, we feel that the simplicity of the Gibbs
sampler warrants exploring new algorithms to generate
deviates from distributions that thus far have not been
available for sampling. For clarity we used a simple 2 x 2
example to illustrate our implementation.

In higher dimensional tables, it makes special sense to
utilize the structure of fl in terms of its marginals as part
of the algorithm and to set up a cycle involving steps for
the conditional densities for each of the marginals of n
instead of a single step for [nJO]. We hope to report on
the details of such an algorithm at a future date.
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Abstract then recorded a frame-at-a-time on NTSC videotape; by
high quality, we mean anti-aliased perspective images in-

Scientific video, combining animated images with sound, cluding texture maps, lighting models, mild reflectivity,
is a powerful tool for understanding transient two- and transparency. Once an animated sequence has been
dimensional or static three-dimensional data. Anima- generated on videotape, we then construct a synchronized
tion of colored perspective plots often reveals subtle data "sound track".
characteristics not seen in a series of static images. Us-
ing the multidimensional data fitting technique loess, it We have presented some of our basic image tools else-
is possible to construct dashed plots that visually rep- where [5]. Our most important tool is the equi-spaced
resent the smoothed approximation and its local error. color-level plot with either orthographic or perspective
Sound can be used to add scalar parameters like time projections. Here, we will describe a dashed surface
"tick marks" or the amplitude of an associated quantity; plot that can simultaneously convey the shape of a two-
we describe means of processing such scalar data using dimensional function and its local error.
variation-diminishing splines and specifics of sound gen-
eration including loudness equilibration. We also explain We also presented our basic sound tools in [5]. We
the limitations of our techniques and suggest some exten- have used sound in several forms. Sound has been most
sions. useful to underscore the passage of time in the form of

beats. We have also found it useful to vary the pitch,
volume, and tempo in order to represent other scalar

1 Introduction quantities. Here, we will describe means based largely
on variation-diminishing splines for stretching, smooth-

Our long-term research interests have been in simulation ing, or compressing data to fit into a prescribed video
techniques and data fitting. Measured or simulated data segment. In addition, we explain how "loudness equili-
often occur as values sampled at scattered locations in bration" can help make listener perception more uniform.
time and two or three spatial variables. Moreover, there
are often one or more scalar parameters associated with Our view is that both the monolithic system and the
such data sets, representing time, a global error value, subroutine model of software communication are inappro-
an integral, and so forth. Such complex data fields are priate for this application. It is often the case that data
difficult to comprehend, but we have found that scientific must be transmitted between machines or highly special-
video, combining animated images with sound, is of great ized programs. Hence, it is attractive to employ standard-
help. We will describe some of the techniques we use ized, self-descriptive, ASCII file formats and use files or
to generate images and sound, trying to emphasize those UNIX pipes to transmit data between disjoint processes.
that have not yet become common. All of our tools use a uniform interface for exchanging

Although graphics hardware has become increasingly data [4], based on the AWK paradigm [1]. We employ the
powerful, renderings of complex scenes with proper shad- RenderMan Interface Bytestream [12] (RIB) to decouple
ing and lighting are still difficult to generate in real time the modeling and rendering tasks while preserving rea-
for moderate cost. As a result, we employ interactive sonable generality in possible graphical techniques.
techniques where they are essential for data analysis, such
as scatterplot brushing [2] and selecting a viewing per- The next section (§ 2) presents our schemes for gener-
spective or position of a light source. Our model has ating images. In § 3, our techniques for generating and
been to generate high-quality rendered images that are manipulating sounds are discussed.
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2 Colored and transparent sur- This approach results in a plot that "breaks up" where

faces for fields the smoothed representation is not good; it is the nati-
ral generalization of a one-dimensional plot that becomes

The basic tool for understanding two-dimensional images broken up into smaller and small dashes as the error in-
This is the natural generaliza- creases. We reserve the use of error bars projected up

is the color-level plot, s asate toraldeneraster from the surface for displaying actual residuals. See Fig-
tion of line-based contour plots adapted to modern raster

ure 1.
graphics hardware that supports texture mapping. Or-

thographic projection results in a color-level plots that
are close to traditional contour plots (using gray-scale in- 3 Sound for scalar parameters
stead of color brings one even closer). The eye does not
respond uniformly in wavelength to light. Hence, it is im- The use of sound is still rather speculative. In fact, many
portant to choose colors that appear to be equi-spaced. visually oriented people may question why it should be
This process can be reduced to a nonlinear least squares preferred over a more complex image. We would like to
in an appropriate psychophysical metric [5]. argue the case for sound to represent scalar parameters

A flat orthographic color-level plot is not the most in- associated with an animated sequence of data fields. Ex-
tuitive representation for a two-dimensional data field, amples of such scalar parameters are time, global error
though in trained hands it is often the most informa- values, and functions computed from the data fields.
tive. We have found that a perspective projection helps The simplest and most effective application of sound is
a great deal, particularly when the surface is given spec- to denote the passage of time in a simulation. Drumbeats
ular highlights. The choice of perspective is often best are the natural sound to associate with a discrete moment
made with an interactive tool; we have described a "heli- in time and are analogous to the tick marks found on a
copter" model elsewhere [5]. Shading provides cues about scatterplot. (The same software that we use in our graph-
inflections and other subtle phenomena. ics software to pick "round" numbers for tick marks was

Often a sequence of two-dimensional data fields is pro- immediately applicable to generating such time beats.)
vided. The successive images may represent data at dif- We found earlier that beats attached to a particular sim-
ferent times or as a function of another parameter. We ulation hesitated at points where time steps had to be
employ frame-at-a-time animation to generate a video repeated. We had overlooked the repetitions of time
segment representing the data, where each frame is typi- in a laserprinter plot of the time progression; the beats
cally a color-level plot. stretched out the time points making it possible to hear

Our target medium is vHs videotape since, for now, things we had not seen earlier.
that is the only universally presentable format. We have We have also considered the use of pitch, volume, and
attended many meetings where the speaker complained tempo to represent more complicated scalar functions or
that some critical feature was impossible to see in the a combination of functions [5]. In one example, we had
displayed video but was quite clear in his lab. So we try a scalar function of another scalar parameter. We varied
to use all available techniques (such as anti-aliasing, color the pitch to represent the "independent" scalar while in-
desaturation, and motion) to make legible at least the creasing the volume and repetition rate in proportion to
most important features. Forcing ourselves to stay with the "dependent" variable.
NTSC resolutions has also helped us avoid the tendency to Our experience with auditory representations of niore
add distracting dials and other dynamic icons to already complex scalars is that they cannot replace line draw-
complicated images. ings. We have seen a number of animations where time

Loess is a general mechanism for computing a smoothed (or another scalar) is represented by an analog clock or a
approximation to scattered data, which produces local number displayed on the periphery of the basic data field
standard error estimates [3]. One new approach to view- display, such as our color-level plots. (Variable length
ing a loess surface and the local errors is the dashed snr- bars are a more workable alternative if there are only one
face. In two dimensions, the dashed surface is constructed or two bars.) Introducing extraneous visual information
by dividing the domain into squares and then trimming is often distracting - the eye must glance from the main
the color-level plot in each square in proportion to the display to the indicator and important information may
error. That is, look at the a local square patch of the sur- be missed. If you examine a line drawing of the scalar pa-
face. The colored region of the square is retracted from rameters carefully, then the sound representation gives a
the edges as the error increases. This trimming of the qualitative impression of the scalar value without the an-
plot in the square must be done so that the patch area noying distraction. The other problem with adding scalar
(not the perimeter) is inversely proportional to the error. values as clocks or bars in the image is the limitations of
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II

Figure 1: Qualitative display of standard errors by using a dashed surface.

NTSC resolution; we have found that the basic images voice: We use this term to mean instrument. It is
are usually complex enough without trying to add other possible to distinguish and follow the notes generated
small auxiliary features. (Obviously, this latter comment by several instruments. We sometimes supplement
doesn't apply to high resolution displays but the distrac- this using stereo and reverberation to emphasize the
tion comment does.) separation of voices.

Sound suffers from some of the same limitations ascolor: it has limited resolution, is not as familiar as *melody: WVe have considered transitional notes and
conventional line drawings, and has some hard lyscho- chording patterns to denote changes in scalar values,convntinal inedrawngs andhassomehar pysho- but have not, bee-n completely satisfied with the re-
physical problems. In addition, sound is only applicable but at en c e aiscid wt telre-
to animated sequences since it's inherently transient. Fi- suits at present. See [10] for a discussion of melody
nally, human beings can assimilate much more informa- versus chord.
tion visually than via hearing so sound must be employed This variety of knobs would in principle allow the simulta-
in limited ways. neous presentation of many scalar variables. Ve have had

Let us consider some of the parameters governing au- better luck b3 -tead presenting only one or two variables
ditory perceptions and how we use them: and using them to control several musical parameters; the

redundancy overcomes some of the psychophysical diffi-
* pitch: If we constrain ourselves to the Western scale, culties.

we can take half-steps over three to five octaves. Al- We have built a number of tools to generate sounds
though the use of major scales is more pleasing to based on our tensor/scatter file format [4]. The tools
the ear, it severely reduces the number of available can generate percussion to denote time, percussion to act
notes and, hence, the resolution. Many (synthesized) as a counter of discrete events (heard in the associated
instruments are incapable of generating notes over a
wide frequency domain. We have considered trills #- virepresent error bars but, so far have found the tech- a variety of more complex sounds with variable pitch,

volume, and tempo. All of the tools generate standard
nique to be of limited value.

MID1 [8] files to drive our synthesizer equipment [9]; MIDI

" tempo: By this, we mean the duration and frequency allows the specification of events in time that, start (or

of striking notes. Humans are surprisingly sensitive stop) a note with a particular velocity (roughly volume).
to variations in tempo. We have found that. our generic approximatiol tools

also play a role in sound generation. Often we will have a
" volume: It, is possible to vary the volume over a num- fixed sequence of scalar values that are uniformly spaced.

her of relatively fine steps but perceptions are coarse. Such a sequence may have to be translated into inore
This problem is made worse by the fact. that a partic- t han one similar sound sequence lasting different lengths
ular fixed amplitude will be heard to have a different, of real time. Variation-diminishing splines can he used
"loudness" as the pitch is varied, to expand, compress, or resample the sequence in a than-
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60 phon equl-loudness with variable pitch and so forth to track two or three
scalars. Using more voices for more parameters seems

100 • ineffective.
There is a growing literature on the subjects discussed

here. For example, other related papers in the proceed-
ings that contain [5] are [6] and [7].
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Abstract Messerschmitt-B61kow-Blohm (Germany) and the Insti-
tute of Automation (Germany).

StatLog is a European Community (ESPRIT) funded Most of the algorithms in this project are applicable
project which began in October 1990. There are about to problems in classification, and the main task is to
10 academic and industrial partners involved in the run a large experiment involving a balanced design to
project. Its aim is to complete an evaluation of the measure the performance for algorithm x data set. In
performance of Machine Learning and Statistical Algo- classification and forecasting problems it is fairly clear
rithms on large-scale, complex commercial and industrial how to measure performance whereas in control and un-
problems. The objectives of the project are threefold: supervised learning these issues are still to be finalised.

1. to provide critical performance measurements, and In this article we give some examples of the classification

criteria for measurement on available Learning Al- algorithms to be used in this project.

gorithms which improve confidence in full exploita- In addition there are a number of algorithms which
tion; deal with "unsupervised learning", i.e. methods which

look for structure in the data. For example ITRULE
2. to indicate the nature and scope of next-stage devel- [19], L-Induction [3] and some standard statistical meth-

opment which particular algorithms require to meet ods such as principal components and projection pursuit.
commercial performance expectations; We mention this area of work in the section on different

3. to indicate the most promising avenues of develop- types of data. Finally, we discuss the procedure to ob-

ment for the commercially immature approaches. tain objective performance measures, and give the work
schedule of the project.

This paper describes the project and the progress com-
pleted to date.

2 Classification Algorithms
1 Introduction

Due to time and resource constraints, the project will

In common with other ESPRIT projects, a consortium use, wherever possible, "off the shelf" packages. The
of academic and industrial partners work together, with methods to be considered can be grouped under a num-
different r6les, towards a common goal. The main goal ber of headings:
of this project is in comparative testing of statistical
and logical learning algorithms on large-scale applica-
tions in classification, forecasting, control and unsuper-

vised learning. Other members of the consortium in- Back-propagation is designed to overcome the limita-
dude the Universities of Strathclyde (U.K.), Granada tions of the perceptron [18]. The architecture is corn-
(Spain), Porto (Portugal), and Liibeck (Germany), and posed of an input layer, an output layer and a set
industrial partners Daimler-Benz (Germany), Turing In- of internal "hidden units". We also consider a faster
stitute (U.K.), Brainware (Germany), ISoft (France), and more efficient variant known as Quadratic back-

*ESPRIT project number 5170. propagation.
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Counter-propagation reduces the training time for which acts as a "blackboard" or short-term memory; in-
back-propagation by making use of Kohonen's [11] self- put and output interfaces with an environment. Learn-
organising algorithm and Grossberg's Outstar [6] algo- ing can take place by competition between classifiers,
rithm. discovery of new classifiers and a "Bucket-Brigade Algo-

rithm" [8]

2.2 "Classical Statistics"

These are all standard methods: 2.6 Machine Learning: Traditional and

Discriminant analysis Relational

Logistic regression AlphaGolem [13] is a first-order induction algorithm
Multivariate analysis of variance based on relative least general generalisation. This gen-
for which we will use routines from SAS, Splus and SPSS. erates rules from given examples, which are then used to

classify new examples.

2.3 "Modern Statistics" C4.5 [14] induces classification rules in the form of deci-
sion trees from a given set of examples which may contain

ALLOC80 [7] is a package which implements kernel unknown or noisy entries.
density estimation methods using real, integer or nomi- Cn2 [4] is an interactive induction algorithm which gen-
nal data. erates either rule sets (unordered rules), or rule lists (or-
Polytree algorithm. [16] Belief networks are directed dered rules) from examples, where each example is a
acyclic graphs in which the nodes represent propositions set of attribute-value pairs. It can also determine the
or variables, the arcs signify direct dependencies between accuracy of a set of rules by applying it to a set of pre-
the linked propositions and the strengths of these depen- classified examples.
dencies are quantified by conditional probabilities. The First Order Inductive Logic (Foil) [15] is a relational
polytree algorithm is used to recover the graph represent- machine learning algorithm which uses entropy as an
ing a probability distribution from a set of examples. heuristic.
SMART [5] is a collection of fortran subroutines which Ca5 [21] constructs decision trees in real-valued do-
perform Projection Pursuit classification and Projection mains. This uses an automatic analog-to-digital trans-
Pursuit regression. formation. The definition of interval (corresponding to

discretisation of the attributes) depends on the classifi-

2.4 Bayesian Statistics cation problem at hand and on the context, i.e. on the
place of the test attribute within the tree, and must also

A naive Bayes classifier which takes an encoded data be learned. Instead of using an entropy measure, interval
set and builds a Bayesian Classifier. Real valued at- formation is governed by statistical criteria.
tributes are either given a normal model or a cut-point AC2 includes an object oriented knowledge representa-
model. tion language. It is an extension of the decision tree
Helen uses Bayes theorem without assuming indepen- algorithm ID3 to cope with relational data. It has a
dence of the attributes. A development of a method used graphical user interface and outputs decision trees and
for Galactic images [12]. rules. [10)
IND[2]. A suite of C software which includes a CART CRS learns relational structures based on graph theo-
[1] style decision tree system. Options allow CART retic measures [20].
style cost-complexity pruning by test set or by cross-
validation, and a wide variety of splitting rules such as
Bayesian, information gain and GINI (index of diver- 3 Data Sets
sity) methods and a Wallace-style MML approach to cut
points. In this setting, many statistical experiments would use a

variety of simulated data with known properties whereas
2.5 Genetic Algorithms we are using real data, some of which has already been

tried in machine learning problems. One of the crite-
A Classifier system invented by Riolo [17] and imple- ria is that the data must be of commercial or industrial
mented by Holland [9]. This set of algorithms allows strength, so "toy" or "game" data sets have been delib-
learning to take place in parallel, rule-based, message- erately excluded. Many of the data sets contain missing
processing systems. Such a system contains: a classi- data and have other "warts" associated with real prob-
fier list containing condition-action rules; a message list, lems. We can group the data sets under a number of
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headings according to the application, and we give one consumption, pointing accuracy and positioning - one of
or two examples of each. the difficulties in the control task is the high disturbance

during orbit correction manceuvres. The model uses dif-
3.1 Classification problems ferential equations to generate a time dependent output;

typically the thruster exhibits non-linear characteristics
These constitute the main part of the effort, partly be- with time delays so overshoots need to be kept to a min-
cause it is clearer how they should be evaluated and imum. A further difficulty is caused by fuel sloshing.
partly because we can be more confident of achieving The control system needs to be stable, fuel efficient and
our stated aims. Examples include: have good response times. It will be some combination
Protein folding. The database consists of examples of these factors that will be used in measuring the perfor-
of protein primary and secondary structure. The aim is mance of the system. The question arises as to whether
to predict secondary structure from primary structure. (and how) machine learning algorithms can be used in
There are about 10,000 examples, each consisting of 221 this process.
attributes followed by the decision class which represents
alpha-helics, beta-strands and coil/turns.
Heart diseases. Several databases concerning heart 3.4 Structure problems
disease diagnosis collected from various locations. There
are up to 76 attributes including the angiographic disease These are generally "unsupervised learning" in that the
status. This data has been used in previous studies so true class is not given in the training data. In induc-
will provide external comparisons. tive protein structure analysis the problem is to describe
Hand-written digits. A 16 x 16 array of pixels with the protein super-secondary structure by clustering the
one of 256 grey-levels at each pixel. There are 10 classes examples. Each record consists of 30 floating point num-
(the digits 0, 1,... 9) and 2000 examples for each class. bers which are normalised values of attributes describing

a pair of secondary structures and the relationship be-

3.2 Forecasting or Prediction problems tween them. Each record is a potential example of a
super-secondary structure. The performance measures

These are typically short multivariate time series for for these problems will again be different to the super-
which some Box-Jenkins methods have been tried, but vised learning case.
there is interest in examining the performance of ma-
chine learning methods. The way in which performance
measures are obtained will be similar to that given be- 4 Performance measures
low, but since the outcome is real-valued, the proportion
misclassified will be replaced by some other measure of
discrepancy, such as mean squared error. The allocation of algorithm/data pairs will be done by
Car registration. Predicting the number of registra- the University of Strathclyde, who are directing techni-
tions for the whole car market and the heavy truck mar- cal aspects of the project. Each algorithm will be tested
ket. There are 56 examples constituting 11 predictive by an "expert user" and a "naive user". Objective mea-
attributes, for example the industrial production index, sures of performance will include processing time (for
selling prices in the retail trade, and the two values to the training data and the test data), storage costs for
be predicted. So far, standard Box-Jenkins methods and the processing of the data and the consequent rule, and
regression analysis have been used, and there is interest, an error rate - probably measured by cross-validation
now in trying machine learning and neural net methods, and/or the bootstrap. Subjective measures will include
Currency exchange. The goal is to predict the US$- ease of use, particularly as seen by the "na'ive user", and
Sterling exchange rate three months ahead using current robustness to required parameter input.
(and previous) financial indicators; for example retail The procedure is that the data format will be revealed
sales volume, output per head, unemployment. In all to the holder of the algorithm so that it can be modi-
there are 114 attributes and 141 examples. The decision fled to read the given format. The algorithm will then
"class" here is real-valued. be deposited, together with clear instructions for usage,

and the real data will be released. After the algorithm
3.3 Control problems has been run the results will be validated and checked

using the deposited algorithm. In the event that the re-
A dynamic model has been used to describe the control suits are radically different a third party will be asked
of a TV satellite. There are high requirements for fuel to adjudicate.
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5 Timetable Grefenstette, J.J. (Ed.) Carenegie-Mellon Univer-
sity, Pittsburg.

There will be some iterations within the testing process
as algorithms are weeded out and refined in the early [9] Holland, J.H. (1986) Escaping brittleness: the pos-

stages. At present the data sets and algorithms to be sibilities of general-purpose learning algorithms ap-
used are being finalised. From August 1991 those algo- plied to general rule-based systems, in Machine

rithms which are performing badly will receive an early Learning: an artificial intelligence approach, volume

warning and may be modified or excluded from the main 2 Michalski, R.S., Carbonell, J.G. Mitchell, T.M.

trials. The full comparative trials are expected to com- (eds.) Morgan Kaufmann Publishers Inc, Los Altos,
mence in April, 1992 with all results summarised and CA.

analysed by January, 1993. The final three months will [10] KATE: The Knowledge Acquisition Toolbox for Ex-
consider ways in which the best algorithms can be ex- pert Systems. ISoft, Orsay, France.
ploited and the results will be made known.

In tandem with the experimental findings there will be [11] Kohonen, T. (1989) Self-organisation and associa-
an effort to explain the results in a theoretical context. tive memory. Springer-Verlag, 3rd edition.
Amonst other things, this will determine whether the [12] Molina, R. & Ripley, B.D. (1989) Using spatial
methods, or merely the implementation of the algorithm, models as priors in astronomical image analysis. J.
has led to the results. A survey of previous comparisons Applied Statistics, 16, 193-206.
(theoretical or experimental) will also be undertaken.

[13] Muggleton, S., Feng, C. (1990) Efficient induction of
logic programs, in Proceedings ALT'90: First inter-
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The results of the simulation study are described in section
ABSTRACT 4. Finally, we conclude with a brief discussion.

The performance of six discriminant methods is compared 2 SIMULATION DESIGN
on simulated data consisting of mixtures of continuous, Most of the studies in which discrimination
binary, ordinal and nominal variables. These methods are: methods have been compared for mixed data deal with the
Fisher's linear discrimination, logistic discrimination, simulation of multinormal distribution for all variables and
quadratic discrimination, a kernel model, an independence with discretization of some of the components. This method
model and the K-nearest neighbor method. In this paper, the unfortunatly has major drawbacks (Habbema et al. [19801).
simulation design was carrefully conceived. The In particular, the discretization of the continuous variables
independence model with an association parameter performs is such that it is hard to make a link between the
well and is very robust multinormal distribution of the continuous data and the

discrete distribution of the data obtained after discretization.
1 INTRODUCTION The simulation of a mixture of continuous and discrete

In practice, the application of discriminant analysis variables is still a difficult problem due mainly to the lack
is difficult because the underlying parameters which define of a mixed distribution such as the multivariate normal
the population are unknown. The choice between different distribution for continuous random variables or the
discriminant analysis methods is hard specifically when the multinomial model in the discret case. Here we will use the
variables are mixtures of continuous and discrete variables, location model to simulate a mixture of continuous and
Most of the previous studies showed that the performance of discrete variables (Knoke [19821, Schmitz et al. [1985] and
the models are closely related to the underlying distribution. Krzanowski [1986]).
In recent years, several studies on the performance of This study is concerned with the discrimination
discriminant methods have been published (Titterington et between two populations and four types of variables: X1
al. [1981], Knoke [1982] and Schmitz et al. [1985]). The binary, X2 nominal, X3 ordinal and X4 continuous are
performance of each discrimination methods is also considered. Two sets of sample sizes are used:
dependent on the design simulation. The usefulness of a (n1=50,n2=50) and (nl=25,n2=25). In each simulation, two
simulation depends highly on the quality of its design. sets of data are generated. The first set is the training set and
When the objective is to choose between methods, is used to construct the discrimination rules. The second is
modeling any multivariate interaction structure between a the test set (or validation set) and is used to evaluate the
mixture of continuous and discrete variables is difficult. If performance of the different discrimination rules.
the interaction design is too " sophisticated", it is hard to This simulation design deals with six parameters.
validate the model. In practical situations (for example, in Parameters A, B and D describe the distance between the
supervised pattern recognition), we can only observe the tarameters C, E and F describe the

two groups, while parameters C, E and F describe the
interaction structure between two variables (in this paper we association structure between the variables.
propose a simulation design which takes this into account).
The main contribution here is the explicit parametrization 2.1 Interaction structure between continuous
of the simulation design and the consequent study of the 2.1interan srte bet
effect of these parameters on each of the different variables and discrete variables
discriminant methods. Knoke [19821 suggested the use of the location
The simulation design is given in section 2. Section 3 deals model (Krzanowski 119751) as a model of interaction
with the six methods of discrimination considered in this between the continuous and the binary variables. The
paper together with appropriate measures of performance. distance between the group means of continuous variables
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depends on the binary and the nominal variables. The Under the assumptions of multinormality of the
continuous variables X3 and X4 are simulated as functions of density functions with equal or unequal covariance matrices,
the discrete variables X1,X 2 : the linear or quadratic discriminant analysis are noted by

Pt[A(Xlti), respectively PQDA(XIlti).

l-= y (2.1), If the density function P(X/ni) is estimated by the
(_I)X 1 (X,+I) non-parametric kernel method (KER), we willuse the

- (0.45) 4 + 7 (2.2), density function as given by Habbema et al. [1978,a]. The
smoothing parameters are estimated by the maximization of

gtl-p2= (0.45) (-I)XI+X 2  + y (2.3); the modified likelihood function (according to the leaving-
where g, and g12 are the mean vectors of variables X3 and X4  one-out method).
for group I and group 2 respectively. The parameter F of The logistic model (LOG), proposed by Day and
our simulation design describes this interaction structure: Kerridge [1967] takes the parametric form PLOG and the
F=I corresponds to equation (2.1), F=2,3 corresponds to parameters are estimated by the maximum likelihood
(2.2),(2,3) respectively. The factor y of this model method.
corresponds to the parameter D of our simulation design. The independence model (IND) assumes independence
Three values are given for y. The continuous variable X3 is between the variables and deals only with discrete
then discretized using quartile values to obtain an ordinal variables.The density is estimated by
variable. Parameter E describes the covariance structure of P P (X)+l/Ck
the two populations for variables X3 and X4. PIND(Xt7)t { 'Pi(Xk)={ n[ = {+Ck 1k=l k=1 ni +Ck

2.2 Interaction structure between nominal variables where Ck is the number of categories of variable Xk,
and binary variables ni(Xk) is the number of elements with score Xk on variable

Kemps and Loukas [19781 considered the problem of k, ni is the sample size of group i and I3 denotes an overall
random vector generation using only d-tuples of non- association parameter representing the "proportion of
negative integers and they applying the inversion method. redundant information" between the variables (see Hilden et
For our purpose, two discrete variables X, and X2 are al. [19781). To use this model here, we discretize the
simulated as functions of the groups. The level of continuous variable using the quartiles of its distribution.
dependence is measured using level of significance of the Fix and Hodges [1951] introduced the K-nearest
Chi-square test because the sample sized dependancy of the neighbor method (KNN). The basic idea is to classify an
Chi-square statistic. Parameter A corresponds to the individual into the population whose sample contains the
dependence between X, and the groups, parameter B to the majority of 'nearest neighbors'. The density is estimated by
dependence between X2 and the groups . Finally, C P(X/i)=K

corresponds to the dependence between variables X1 and X2 . P niV
where K is the number of samples in the hypershere F(X)

3THE DISCRIMINANT ANALYSIS METHODS centered at X, and V is the volume of the hypershere '(X).
BeSrMN ANALYSISng the sixdiscEnas and Choi [1986] investigate the sensitivity of this
Before describing the six discriminant methods method to the choice of K. They suggest choosing K as a

considered in this paper, it is convenient to introduce the function of the sample size and of the covariance matrix
notation and terminology of discriminant analysis. structure and propose K = 5.
Individuals in the study are assumed to belong to one of two
populations 7t1 and t2 . The prior probabilities for 3.1 Performance measures
populations 1 and 2 are respectively p(n,) and p(nt2). Three measures of the ability to discriminate will
Information is available on each individual in the form of a be used to evaluate the performance of the six discriminant
feature vector X of length p. Two sets of data are simulated. analysis methods. The performance of classification rules is
On the first set, a discriminant rule is a set up for assigning often measured by estimating the error rates (i.e. the
an individual to one of the two outcome categories given percentage of misclassified cases). Here we used the three
the feature X appropriate to that individual. In general, a measures: the percentage of missclassified, the quadratic
discriminant rule will be a procedure for obtaining the score and the logarithmic score (see Habbema et al.
posterior probabilities of the form [1978,b). We will also compare the posterior probabilities

P(X/7ti) P(i) obtained from the validation set for each discriminant
P~ri/X) - P(X/n 1) P(Xl)+P(X/n 2) P(ir 2) analysis method.

where P(xc) is the prior probability of group j and P(Xhti)
is the probability of observing the feature vector X for 4 RESULTS
group i. Different choices for P(X/ti) lead to different The performances with respect to the simulation
discriminant analysis methods. design parameters are compared for the two sample sizes.
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4.1 Classification between the models 4.3 Reliability of the reported error rates
The rank-order score introduced by Schmitz et al. In this section, we study the reliability of the

[1983] is used for rank-order analysis of the scores on the reported error rates forthe six discriminant analysis
three performance measures : the error rates, the quadratic methods. We compute the bias (also called apparent bias)
score and the logarithmic score. For each situation and each for each method. This bias corresponds to the difference
performance measure, the method with the best score gets between the error rate obtained from the training set and the
rank 1, and the worst gets rank 6. Taking the average over error rate obtained form the testing set. The results on this
all situations, the results are given in Table 4.1. bias are given in Table 4.3. The smallest bias corresponds

The KER method seems to be the best method. When to the most reliable and the largest bias corresponds to the
the sample sizes are reduced, the LDA and LOG models are least reliable. The most reliable error rate is associated with
better than the IND model. Obviously, the parametric the LDA model; the least reliable with the KER method.
models (LGALOG,QDA) seem less affected by the sample
size. 4.5 Summary of the results

These results may be summarized as follows:
4.2 Performances of the methods with respect to 1) Previous studies showed comparable performances of
the simulation parameters the LDA and LOG models (Titterington et al. [1981],

Further analysis of each analysis of variance table Schmitz et al. [19831, Schmitz et al. 19851). We obtain
revealed that the quadratic score is the most representative similar results for these two models.
measure in terms of effect and interaction factors. Therefore, 2) The difference in performance between the training
the quadratic score has been used to illustrate the results. samples of sizes 25 and 50 is very small.

Table 4.2 shows the quadratic score for the 3) The KER model showed the best ability to
remaining five methods and for parameters A,B,C and D. discriminate, but, in terms of reliability of reported error
The performance improves in general with increasing rates, it is the poorest. It is also the most computer
dependence between the discrete variables and the intensive (ten times the computing time of the other
discrimination groups (parameters A and B), except for the methods).
QDA and IND models. This improvement in performance is 4) In agreement with earlier results (Titterington et al.
not linear with the level of dependence. We observe the [19811), the LDA and LOG models have remarkably
converse for the QDA model. reliable reported error rate.

The association parameter between the binary and 5) The IND model with a good association parameter
nominal variables C has an unexpected result on the yields better results than the LDA and QDA models.
performance of the IND model. The performance of this 6) The IND model seems less affected by the
model increases with the level of dependency of these two discretization of the two continuous variables.
variables and the performances of the LDA and LOG
models decrease with this parameter. The QDA model 5 DiscussION
performs worse than the LDA and LOG models when C=2 Surprisingly, the performance of the IND model
and the converse is observed when the dependency is high seems less affected by the association parameters (CE,F)
(C=3). than the other methods. The reliability of the reported error

The performance of all models increases with the rateq for this w ;ril is superior to that of the QDA and
distance parameti D. When the distance is impoitant (-3), KER models although those models are supposed to be less
the LOG and the LDA models are superior to the QDA sensitive to the association parameters.
model. This result follows from the fact that the parameter Based on this study and on the recent literature on
of dispersion E has less impact when the distance parameter this topic, we have the following suggestions. When the
D is important. discrimination is made for exploratory purposes (Schmitz et

The QDA model is the most perturbed by the all 119851), we propose the use of a 'master' computer

parameter of dispersion (E) for the ordinal and continuous

variables. We note among other things that the programme containing all methods. The KER and KNN
classicae. rae neang w the the parametersEmodels are too expensive in computing time, and can be
classification rate changes with the parameters E and F. excluded from this subset when the number of variables on
When the covariance matrices are equal the LDA LOG the sample size is large. In this case, the LDA, LOG and
and KER models have the best performance (E=I). But for QDA models can be used simultaneously and some derived
(E=2), the QDA model has a better performance. The IND methods (such as LDA augmented) can also be applied to

model. improve the first results. On the other hand, when the

The global association model parameter F yields object of the discrimination is to built an automatic
almostthe amerslt asoiato parameter E. Tdeldis classification system (as in clinical trials), we propose the

almost the same results as parameter E. The IND model is IND model because it is the most flexible model for the
less affected by this parameter than the other models, choice of the best subset of variables. The simplicity and

the good performance of this model will make it acceptable
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when the set of predictor variables is not fixed and the Techniques Applied to a Complex Data Se of Head
sample size is large. Injured Patients , Journal of the Royal :tatistical

Society, Series A, 144,145-175.

6 REFERENCES
Table 2.1 Parameter E : Covariance matrix for eachDay,N.E. and Kemrdge,D.F. [1967], A General Maximum plto

Likelihood Discriminant, Biometrics,23,313-323.

Enas,G.G. and Choi,S.C. [19861, Choice of Smoothing Parameter Covaiance matrix Covariance matrix
Parameter and Efficiency of K-Nearest Neighbor of population ic1  of population 2

Classification,Computers and Mathematics, 2A,235-
244. E -- IrI 1.0 0.01 [1.0 0.01

Fix,E. and Hodges,J.L. [1951], Nonparametric [=lL= 0.0 1.0 5-2= 0.0 1.0
Discrimination: Consistency Proprieties. Project No 1.0 0.51.
21-49-004, Report No.11, U.S. Air Force School of E=2 Y1 = [0.5 1.0 -

Aviation Medicine, Randolph Field, TX. [1.0 0.01 [3.0 0.0
Habbema,J.D.F., Hermans,J. and Remme,J. [1978,a], E=3 IY1 0.0 1.0] £2 = 0.0 3.0]

Variable Kernel Density Estimation in Discriminant
Analysis, In : Compstat 1978, Proceedings in
Computational Statistics. Physica Verlag, Wien,178- Table 4.1 Classification score of the methods with re=

185. to sample size
Habbema,J.D.F., Hilden,H. and Bjerregaard,B. [1978,b], KER IND QDA LDA LOG KNN

The Measurement of Performance in Probabilistic (25,25) 2.34 3.44 3.80 3.09 3.38 4.91
Diagnosis I: The Problem, Descriptive Tools and j5050 2.01 3.09 3.60 3.45 3.72 5.10
Measures Based on Classification Matrices, Methods
of Information in Medicine,17,217-226. Table 4.2 Quadratic score (n50,n2=5)

Habbema,J.D.F., Remmej. and HermansJ. [1980], A KER IND QDA LDA LOG KNN
Simulative Comparaison of Linear Quadratic and A=I .226 .227 .217 .226 .249 197
Kernel Discrimination , Journal of Statistical A=2 .216 .210 .209 ..216 .271 .189
Computation and Simulation,l 1,241-250. A=3 .207 .206 .202 .207 .270 .178

Hilden,J., Habbema,J.D.F. and Bjerregaard,B. [19781, The B=I .223 .221 .212 .223 .249 .190
Measure of Performance in Probabilistic Diagnosis III, B=2 .214 .209 .208 .214 .271 .191
Measures based on the Continuous functions of the B3 .212 .213 .209 .212 .270 .186
Diagniostics Probabilities, Methods of Information in C=1 .213 .212 .212 .213 .249 .190
Medicine,17,227-237. C=2 .217 .22 .211 .217 .271 .191

Kemps,C.D. and Loukas,S. [1978], The Computer C=2 .217 .220 .211 .217 .271 .191
Generation of Bivariate Discrete Random Variables, C3 .219 .210 .206 .219 .270 .186
Journal of the Royal Statistical Society,Series A, D=I .228 .220 .219 .228 .249 .197
141,513-519. D=2 .219 .215 .211 .219 .271 .186

Knoke,J.D. [19821, Discriminant Analysis with discrete and D=3 .202 .208 .199 .202 .270 .181

continuous variables, Biometrics,38,191-200. E1 .217 .237 .219 .217 .249 .202
Krzanowski,WJ. [19751, Discrimination and Classification E=2 .215 .187 .217 .215 .271 .175

Using Both Binary and Continuous Variables, Journal E=3 .217 .218 .193 .217 .270 .190
of American Statistical Association,70,782-790. F=I .218 .231 .212 .218 .249 .210

Schmitz,P.M.I., HabbemaJ.D.F. and HermansJ. [1985], A F=2 .208 .197 .206 .208 .271 .174
Simulation Study of the Performance of Five F=3 .223 .215 .210 .222 .270 .183
Discriminant Analysis Methods for Mixtures of
Continuous and Binary Variables, Journal of Statistical
Computation and Simulation,23,69-95.

Schmitz,P.M.I., Habbema,J.D.F., Hermans,J. and Table 4.3 Reliability of the reported error rates
Raatgever,J.W. [1983], Comparative Performance of KER IND QDA LDA LOG KNN
Four Discriminant Analysis Methods for Mixtures of Biais .138 .047 .107 .026 .027 .072
Continuous and Discrete Variables , Communication in
Statistics: Simulation and Computation,12,727-757.

Titterington,D.M., Murray,G.D., Murray,L.S.,
Spiegelhalter,DJ., Skene,A.M., Habbema, J.D.F. and
Gelpke,G.J. [19811, Comparaison of Discrimination



Localized Exploratory Projection Pursuit 237

92-19561 AD-P007 141ill"" 111111illHl tE/I~ 11111 ! 111111111111111111111111111111111111111111111
Localized Exploratory Projection Pursuit

Nathan Intrator*
Center for Neural Science

Brown University
Providence, RI 02912

Abstract Intuitively this means that a useful feature can only be
found based on all of the input patterns. This posses a

Based on CART, we introduce a recursive partitioning disadvantage which is due to the fact that the labels are
method for high dimensional space which partitions the not used through the search for good projections, and
data using low dimensional features. The low dimen- therefore, it is possible to ignore features that may only
sional features are extracted via an exploratory projec- be important for classifying a small portion of the input
tion pursuit (EPP) method, localized to each node in data but are less interesting when considering the data
the tree. In addition, we present an exploratory split- as a whole. This observation is one of the motivations of
ting rule that is potentially less biased to the training recursive partitioning methods, including tree structured
data. This leads to a nonparametric classifier for high algorithms.
dimensional space that has local feature extractors opti- The proposed method is based on the classification
mized to different regions in the input space. and regression tree algorithm of CART (Breiman et al.,

1984). Section 2 discusses CART briefly, and indicates

1 Introduction how the hybrid tree is constructed. A new splitting crite-
rion based on a variation of a back-propagation network

Due to the curse of dimensionality (Bellman, 1961) it is presented in section 3. Finally a short discussion con-

is desirable to extract features from a high dimensional taining the basic highlights of the method is given.

data space before attempting a classification. This may
be done in those cases where the important structure
is assumed to lie in a low dimensional subspace of the 2 The Hybrid CART
original data. The most well know method for extract-
ing features is principal components, however it has been CART addresses high dimensional space problems by
argued that these features may not retain the structure partitioning the space and replacing complex classifiers
needed for classification (Duda and Hart, 1973; Huber, (or regressors) designed for the whole input space, by a
1985). A more general and powerful method for feature set of simpler modules working on smaller subregions of
extraction is Projection Pursuit, and its unsupervised the space. There have been some recent attempts for
version - Exploratory Projection Pursuit (Friedman and recursive partitioning classification [see for example (Ja-
Tukey, 1974; Friedman, 1987). This method has been ex- cobs et al., 1991; Sankar and Mammone, 1991)].
tended in various directions, and is reviewed in (Huber, CART's main contribution to earlier decision trees is
1985). the treatment of the additional bias introduced by the

One of the advantages of EPP is the use of locally over-partitioning of the space. This is done by using a
smooth objective functions in the search for interesting splitting rule that does not try to reduce missclassifi-
features. Such functions are not related to the class cation error and by introducing a bottom up approach
labels, and have the potential of avoiding the curse of to pruning the full grown tree based on cross validatory
dimensionality (Huber, 1985). The method has an un- error estimation. The pruning mechanism is a very pow-
derlying assumption of homogeneity of the input space. erful tool, and may be useful in remote applications of

*This work was supported in part by the National Science CART such as image compression using vector quanti-

Foundation, the Office of Naval Research, and the Army Research zation (Riskin et al., 1990).
Office. CART is not directly applicable to classification prob-
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lems in very high dimensional spaces, such as gray level shown in figure 1. In this figure, a two dimensional struc-

pixel images, since splitting based on a single dimension ture (possibly part of a much higher dimensional space)

(single pixel in this case) is unlikely to increase the ho- can be split in various ways all of which are similar in
mogeneity of sub regions in the space. In this work, the the sense that they yield two pure subnodes. However, if
recursive partitioning is based on features extracted us- the data contains patterns that lie outside the two ovals
ing an EPP method. At each node of the tree, additional it is likely that only split 2 is optimal. In this section we
features are sought before the split is constructed, using
only that portion of the input space that arrives to this
node, and these new features are added to the features 2

extracted so far, to construct an optimal split at that 3.

node. This leads to a combination of feature extraction
and recursive partitioning that has the potential to he
much more powerful than each of the methods by itself.
Moreover, this method is still consistent with the mono-
tonicity requirement of the cost at each split (Breilnan
et al., 1984), and therefore allows the use of the powerful
pruning mechanism of CART.

The construction of the hybrid tree is the same as in Figure 1: Optimal split (2) and nonoptimal ones (1,3). A

the CART method (Breiian et al., 1984) with the ex- method that tries to maximize homogeneity based only
ception that every node can perform additional feature on the class labels will not distinguish between these
extraction based on the high dimensional input patterns splits, however, it is likely that split (2) will have bet-
that arrive at that node, and based on the features ex- ter generalization properties (will be les- biased to the
tracted so far. The construction of a nested sequence training data).
of trees, the pruning based on cost, complexity cross-
validation and the final tree selection can all be done present a splitting rule that is based solely on the input

exactly in the same way as in CART. patterns. This rule can be incorporated into the orig-

The feature extraction part of a node is implemented inal (ART method, and potentially to other recursive
by an EPP method that seeks multiniodality in the pro- partitioning methods.
jected distributions (Intrator, 1990). This method is Consider a split that assigns the value 1 to all the
based on a biologically motivated synaptic modification members of the training set at node f that belong to
equations (Bienenstock et al., 1982), and is computa- t

R, and the value 0 to the members of tL, so that both
tionally practical for high dimensional spaces, making it sets are nonempty. Let F = {If} be a set of continuous
suitable to be used as the feature extractor in the pro- functions that depend on a parameter a, f, maps the
posed hybrid EPP/CART method. input space to 0, 1'. Let -k be a characteristic function

assigning the value I to x C 1. and 0 else. For a given
split s, assume that f, is the best approximator (not

3 Pseudo-Supervised Network necessarily unique) to the chaiacteristic function L,, in
the MSE sense. Now seek the optimal split s- so that

Although the proposed hybrid EPP/CART is able to use E'(fo,. - ' )- is minimized.
any of the CART splitting rules, we would like to con- Finding an optimal split in this way ensures that
sider a new exploratory splitting rule that allows linear within a given set of continuous functions, this split re-
combination splits. Linear combination splitting using suits in a function which is able to assign the data in IL
linear discriminant functions was introduces in (Fried- a value closest to zero (in the MSE sense), and the data
man, 1977) and was later replaced by the algorithm ira- in t

R values that are closest to one. Thus ensuring that
plemented in CART. The argument against linear coin- the patterns that belong to t

R are in some measure close

bination splitting rules was that they were found to be to each other, and far apart from the patterns in I., i.e.,
more biased. This bias comes from the fact that the increased homogeneity of the input space.
split is constructed in order to minimize some measure An example where this splitting rule along with fea-

of nonhomogeneity based on the class labels, but with ture extraction may be useful is given in figure 2. It
no concern to the structure of the space induced by the shows a subregion in space in which two classes are
input patterns. A simple example of a possible bias is strongly mixed. A supervised splitting algorithm will
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split according to hyperplane I whereas the above un- when there are several neurons in the hidden and output
supervised splitting rule will prefer to split according to layer.
hyperplane 2. This is because split I increases the purity The difference between t1, and op, is shown in figure 3.
of each node more than split 2 although split 1 does not This target function approximates a characteristic func-
focus on the confusion region between class A and B. It
is conceivable that if the confused region is transferred
in full to a node, and then an attempt to extract more
informative features only from this region is made, the
new representation will have a better chance to reduce fJ
the confusion between the classes in this subregion. _.._,_ _

Figure 3: The minimization of the pseudo-supervised
AIVSE, is equivalent to minimizing the shaded area in the
picture.

tion, an approximation which will improve when A - oc.

In practice, there is no need to have A be greater than

5. The calculation of the gradient with respect to the
weight u,,, follows in the same way as in (Rumelhart
et al.. 1986), when taking into account the fact that the
target depends on the network output as well. For an

Figure 2: The ability of an unsupervised splitting rule output layer unit j we have
to reduce confusion.

i901 PE 1 p P) n1'

3.1 Splitting Rule Inplementation and it follows that for

In order to use a gradient descent method for finding bF' (t - ) ~ (1 - o,,) - A1p,(l - j).
the optimal split, we need to overcome the discontinuity we get
introduced by the function i.t,. Therefore, a continuous dEt __ 6po,"

approximation to -Xt, is used. We shall follow the nota- 8u'J,
tions presented in (Rumelhart et al., 1986), and present The calculation of the gradient with respect to a hidden
a splitting rule that is based on a variation of error back- unit weight is exactly as in (Rumelhart et al., 1986), and
propagation network. will not be repeated here.

Let op, be the output of the j'th splitting rule func- An intuitive explanation to this target definition is
tion for input pattern p. fj is a sigmoidal activation similar to the reasoning behind hard and soft competi-
function defined by f,(t) = [1 + exp(-I)] - ', so that tion approaches (Hinton and Nowlan, 1990). If a hard

=f3 (nei,), where nei ,, u'a'o Let the tar- target (0 or 1) is imposed, then whenever the output is
get for output j be also defined in terms of the network close to .5 which means that the input is close to the
activity, tp, = f, (netp, ), where j is a sigmoidal function boundary, the error signal would be large. However if

with a gain constant A > 1, f1 (t) = [1 + exp(-A)] - . the input is close to the boundary, it is likely to be on
The network is trained to minimize the empirical MSE the wrong side of the boundary, which will then lead to
Zp(tp -op) 2 . In order to avoid trivial splits it is possible a large wrong correction signal. Using the soft target
to add penalty of the form which takes into account the confidence in the output

solves this problem, since the target is also close to 0.5.

K[1- 
° ) (  (1 - p)). Another explanation is obtained by observing that the

n ntarget is also (lependent on tle synaptic weights, and
therefore the gradient of the s ynaptic weights with re-

for some small constant K, however, simulations show spect to the output should be taken into account as well.
that the trivial split does not usually happen especially This rtquires the use of a soft target.
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The construction of a binary splitting rule based on Friedman, J. H. (1977). A recursive partitioning decision
the above criterion is done by letting the PS network rule for nonparainetric classification. IEEE Trans.
converge (or stop training based on another criterion) Comput., 26:404-408.
and then assign the patterns for which the output of the Friedman, J. H. (1987). Exploratory projection pur-
network is greater than .5 to tR. In the case of a multi- suit. Journal of the AMerican Statistical Associa-
split, assign to set j the patterns for which the output tion. 82:249-266.
of unit j in the network is greater thar. .5.

Friedman, J. H. and Tukey, J. W. (1974)- A projec-
tion pursuit algorithm for exploratory data analysis.

4 Discussion IEEE Trans. Cornput., C(23):881-889.

Hinton, G. E. and Nowlan, S. J. (1990). The bootstrap
A method of recursive partitioning for high dimensional widrow-hoff rule as a cluster-formation algorithm.
input spaces was introduced. This was done by combin- Neural Computation, 2(3):355-362.
ing the benefits from exploratory projection pursuit with
those from the CART method. A new exploratory split- Huber, P. J. (1985). Projection pursuit. (with discus-
ting rule was presented, and argued to have the potential sion). The Annal. of Slat, 13:435-475.
to be less biased to the training data. This splitting rule, Intrator, N. (1990). Feature extraction using an unsuper-
can have a boundary that contains an arbitrary predefind vised neural network. In Touretzky, D. S., Elhnan,
number of hyperplanes by defining the number of hidden J. L., Sejnowski, T. J., and Hinton, G. E., editors,
units in the feedforward network, and is easily extended Proceedings of the 1990 Connectionist Models Sum-
into multiple splits. The implementation of the split- mer School. pages 310-318. Morgan Kaufmann, San

ting rule using a new unsupervised training algorithm to Mateo, CA.

back-propagation is potentially useful to other purposes Jacobs, R. A.. Jordan, M. .. Nowlan. S. J.. and Hinton,
where a soft competition rule is better than a hard one, G. E. (1991). Adaptive mixtures of local experts.
e.g. in adaptive equalization (Lucky, 1966; Hinton and Neural Computation, 3(1):79-87.
Nowlan, 1990). Lucky R. W. (1966). Techniques for adaptive equaliza-

Combining all the above ingredients together, re- tion of digital communications systems. Bell Sys-
suits in a computationally practical method for non- tirnso T ial couna o systes.

parametric classification in very high dimensional spaces,

that is less sensitive to the curse ofdimensionality due to Riskin. E. A., Lookabaugh, I., Chou, P. A., and Gray,
the feature extraction, and is less biased to the training R. M. (1990). Variable rate vector quantization for
data, due to the sophisticated tree construction of the nwdical image compression. IEEE Transactions on

CART method. Medical Imaying, 9(3):290-298.
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Adaptive Probability Density Estimation
in Lower Dimensions using Random Tessellations

Leonard B. Hearne and Edward J. Wegman
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Fairfax, Virginia

Abstract f(x), exists that has the maximum likelihood
This paper presents a class of non-parametric density
estimators on a low dimensional space. The support
of these estimators is defined by the convex hull of observations Y C Sd, 1 < d < oo, and a minimum
the set of observations. A random sample from the
set of observations is used to tessellate the interior of number, A, of observations per tessellating tile.
the convex hull. The attribution of empirical
probability mass to the tiles resulting from the 2. Support
tessellation produces a density estimate. With a set
of appropriate linear constraints on the attribution The support for f(Z) is defined
of mass, the estimator is shown to be a conditional A= XESd:o<fcX)< o We will define the
maximuni likelihood estimator. Repeating this IW w I
procedure, and averaging these iensity estimates support A n for f(x), given a set of observations Y
within tiles, produces a bootstrap estimate of the of size n, as the smallest closed, convex region in S d

density function. The results of this resampling and
density estimation process are presented in graphic that contains Y. Note that if another observation is
form. added to Y then A" c A" + 1.  Another way to

describe A n is to say that A n is the set defined by
1. Introduction the convex combination of the elements of Y. Let

The objective of this paper is to construct a H be the set of Yi E Y that are on the convex hull

class of non-parametric probability density of A n. Then the definition of A" can be formulated

estimators, 1() of f(x), that make few, and as A n = {XESd:x=atH + (1-a)H}, for all a.

comparatively weak assumptions about the support 0 < a < I

and characteristics of f(x) beyond that provided by A" E S2 can be seen in Figure 1 as the region

a set of obervations, Y. Let Y = {Y 1 ,,YJ} be a defined by line segments connecting points in the

set of observations, with Yi E Sd' i = 1, .,n, and point cloud of observations such that A n is convex,

Sd a d-dimensional real product space, and Y is contained in A". Also, H is the set of
(Sd(Sd),), with i the usual d-dimensional Yi E Y that are vertices for the line segments that

Lebesgue measure. A non-empty class of estimators, define gA", the convex hull of A".
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tile as the ratio of the weight of observations on each

tile to the total weight of observations times the area

of the tile. This mrethod is computationally quite

tractable. The problem with this method is that to

get reasonably smooth, non-trivial, estimates where

the data are sparse, the tiles must be relatively large.

But, by making the tiles large, the fine structured

features of the density are obscured where the data

are closely packed.

Figure 1 A third method is proposed. This method is to

tessellate the support A' into tiles of varying sizes,

To derive an estimate of the density of based on the location of the observations. This

observations on A" it is necessary to examine sub- might be called data directed tessellation. In this

regions of A" and compare the weight of way the tiles will be large where data are sparse, and

observations on that region to the total weight of small where the data are closely packed.

observations. Two general methods are currently Furthermore, no assumptions are being made about

well known, the kernel density estimation method support beyond the convex hull of the point cloud

[Rosenblatt., 1956], [Parzen, 1962] and the binning defined by the observations.

method [Scott, 1985], [Carr, 1987].

4. Tessellation of Support

3. Density Estimation Methods Of the many possible ways that the data might

With the kernel method, a smoother with finite direct the tessellation of A" C Sd, there is one that

support, such as an Epanechnikov kernel, or is unique for any inter-point distance measure lP,

smoother with infinite support, such as a Gaussian 1 < p < oo, up to pathological cases [Preparata,

kernel, is convolved with the empirical distribution 1988]. This is the high dimensional analog of the

and a weighted sum of the contributions to the Delaunay tessellation, where d + 1 points define a

density at the center of the kernel is computed from tessellating polytope, and any point in the interior of

the observations. This approach assumes support is a defined polytope is closer to these d + 1 points

continuous beyond the region defined by the set of than to any other d+1 points in the tessellating

observations. But more important, the theoretical point set. The Delaunay tessellation of the support

computational complexity increases with the A" yields a set of convex polytopes {A'} of

dimension. cardinality mn, where 0 = A, n A and

The binning method tessellates the support An = U A' have measure p,(A!)> 0, 1 <i,j<
I x

into fixed size tiles and computes the density on a and have a geometric nearest, neighbor property for
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points in the interior of each polytope. It is the total weight on a tile A? is W(An) = wi + w.

geometric properties of the Delaunay tessellation The assignment of weight to w! by the d + 1

that make it a more computationally tractable observations in aA n can be computed by solving a

procedure for tessellating a d-dimensional product linear system of equations to maximize the

space. likelihood product.

Figure 2 is the Delaunay tessellation of 25

observations in S2. Note that the d + 1 points that 6. Density Estimator

define each triangle, or tessellating polytope, also A class of density estimators can be defined on

define a circumscribed circle, and this circle contains A by W(A) f

no other points in the tessellating set of W(A n).p( A?)
observations, where W(A n ) is the total weight of observations on

the support A", and ju(A?) is the integral measure

of A?. This class of estimators can be shown to

have the maximum likelihood property [Robertson,

1967]. If the additional constraint is added to the

tessellation procedure that at least A observations

are contained in each polytope, where A is a function

of the sample size, then this class of estimators can

be shown to be strongly consistent, given a set of

observations Y [Wegman, 1975].

Figure 2

5. Probability Mass 7. Examples

The empirical probability mass on elements of The first two examples, Figure 3 and Figure 4,

show the density estimate for a data set with 201
the tessellating set {A?} needs to be examined. Let s

iA? be the convex hull of AP. Then observations, and A = 6.

P[X E A n ] = 0 for a random X E Sd. But since A? ,

is defined by elements of Y, there are d + 1 elements

of Y in OA!. Those observations that are in the

interior of A? attribute all of their weight to A?,
0 < i < n. A question arises when the attribution of -

weight for points in OA? is considered. Let w i be

the weight attributable to A? from o!servations in

the interior of AP, and let w be the weight

attributable from observations in aA?. Then the

Figure 3
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Figure 3 is the results of the first iteration. Again the density plot looks ragged, particularly

Each tile contains at least 6 observations. The over relatively small regions at both ends, and with

estimate is rough but it shows that the data is at a relatively smooth region between. This is caused

least bimodal on S 1. by relatively sparse data between regions of

Figure 4 is the average density on all subtiles relatively dense data. Also the density of the data

of the same data set after 15 iterations of the would appear to be bimodal.

resampling procedure. The solid bars on the ends Figure 6 is the distribution computed by

are the result of always having to have at least 6 integrating the density from Figure 5 over the

observations per tile. The plot is still rough, but it support. By applying integration as a natural

accurately reflects the density of the observations, smoother, it is reasonably clear that the data is a

without making continuity assumptions. random sample from a step wise continuous uniform

density function.

Figure 4

Figure 5 is the averaged results from 15 Figure 6

iterations on a data set with 400 observations, and The next figure shows a Delaunay tessellation

A = 6. of 52 by 25 observations.

I- -f A., ~ A A~A .S

Figure 5 Figure 7



Adaptive Probability Density Estimation 245

Figure 8 is the result of resampling for these storage. The computational advantages of adaptive

same 25 observations, with A = 1. After only three density estimation methods over kernel density

iterations the support has been partitioned into estimation methods becomes quite dramatic as the

small subtiles where the data are dense, and dimension of the support increases.

relatively large subtiles where the data are sparse.

The resulting average density estimate on subtiles is Bibliography
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rich area for theoretical statistical study, for

exploratory data analysis, and for extending our

understanding of computational geometry. From a

computing perspective, this procedure is somewhere

between binning methods and kernel density

estimation methods for both compute time used and
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Non-parametric density estimation
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Abstract decreases to zero at the edges of the window. This
leads to a method now called kernel density estimation.

Procedures for estimating the probability density Kernel estimation does not seem to depend too much
curve of the distribution from which a single sample on the type of kernel used, but does vary greatly with
of size n has been taken will often produce curves the length of the window, or "band-width". The
which are quite erratic and require much smoothing. method also cannot properly estimate the density curve
We consider a simple method of density estimation beyond the data set as the density drops suiddenly to
which will produce smooth curve estimates without zero. See also Tapia & Thompson (1980) for more
applying any smoother. We apply the method to both details on these different methods.
symmetric as well as skewed distributions. In our approach we will begin with a suitably

1. Introduction smooth density curve which is then stretched or com-
pressed to fit the spacing of the the data in the sample.

In this paper we consider the estimation of the pro-
bability density curve, f(x), of a continuous distribution
from which a single sample of size n has been taken. 2. Basic method
There are numerous parametric procedures of density Consider the ordered sample xo =-oo <x, <x2 <
estimation in which the sample is assumed to arise ConsIder tho e sam a distibuton <x)
from some family of distributions from which it is then with density function f(x), which is what we wish to
necessary to select the member of this family which wit d et fin fh) whih i t s h
best describes the given data set. For example, the Le u di t c
method of maximum likelihood selects that member of ti = 2 i = 1, 2,3.... n - 1. (1)

the distributional family for which the probability of These t, partition 9? into n sub-intervals, each contain-
having obtained the given sample is maximized. In
Bayes estimation a prior distributional model is combi- ing exactly one observation. Suppose we take a conti-

nuous distribution, G(x), which we shall call the trialned with the information provided by the sample distribution. For now, we will assume that G is
produce a posterior model, location-scale invariant. If we use G to divide 9? into

Non-parametric methods of density estimation typi- n intervals of equal probability it
cally make use of the spacing or clustering of the Ot_ i
points in the data set. For large data s. ts, the fre- Gk -I-=A. (2)
quency histogram and its corresponding frequency curveprovid aisoghm estit cofhesape g f ey ctrv- Then, let us estimate f(x), by requiring that the cumu-
butin Howevr tesmae mtod tse tof be s t lative distribution satisfy (2) and that the curve betweenbution. However these methods tend to be somewhat t ee p i t e c ni u u n m oh e c n t e
arbitrary as to the choice of class interval and method these points be continuous and smooth. We can then
of smoothing. They also are of little use for small estimate f(x), up to a multiplicative constant, by stret-
samples. Chambers, Cleveland, Kleiner & Tukey (1983) ching or compressing g(x), the density curve corre-
suggest a generalization in which the class interval spondig to G(x),
(window) is allowed to move along the entire range of f(s) = ciX (
the data. The fraction of the entire data set in the 0 i 0)' t
window is a measure of the density at the center of the where N and vi are chosen to satisfy (2),
window. They call this the density trace. Since this
method can be quite erratic as points enter or leave the ti-Ai =_
window as the window moves along the real line, a vi W
smoother result is obtained by averaging the number of (4)
data points using a weight function (the kernel) which ti+I -i =-i( .*(4
is a maximum near the center of the window and vi +
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which gives When we used a logistic trial distribution with the
X + t--)ti +I sample of 24 standard normal quantiles, and equations

(3), (5) and (7) , we again obtained a very normal-
(5) shaped curve but with a slightly smaller standard devia-

ti+I-ti tion of only 0.95. This is not surprising as the

)- + I -Xi* logistic distribution tends to have a similar shape to the

The constant c is required since we are changing normal but is slightly narrower and has longer tails.

the scale as we stretch or compress the distribution to For an open-ended distribution with positive proba-
fit the quantiles, and hence we must determine c by bility over the entire real line, 0 =- oo and >, = o- ,
(numerically) integrating the resulting density curve and so there is no solution possible for the first or last
given by (3) and (5). In order to apply this procedure interval. The simple solution is to take A and ari for
we will need to compute the quantiles of the trial distri- the neighboring intervals:
bution, 5hO 'O=ilI IO-ual;An=!Ln+I, an=On+ 1. (8)

k G -kn), i= 1, 2, 3, ... , n -1. (6) A sample of five observations is generated from a

Actually, since the ti's are taken halfway between normal population and the density estimate obtained
the sample values, it would be better to adjust the using a normal trial distribution (solid line) and also
quantiles for this shift and use: using a logistic trial distribution is shown in figure 2.

4 = A=1, Both plots are very similar and both plots depend very
n + ' I 1greatly on the trial distribution since the sample is so

Indeed when we used a sample of 24 small. For a sample n = 2 or n = 3, the estimated
"observations" consisting of the quantiles of a standard density would be identically the trial distribution with
normal and applied the procedure using (3), (5) and (6) the location and scale determined from the sample.
and a normal trial distribution, we obtained an density
estimate which was very "normal" in shape, but with Figure 2: Density estimate for normal sample
mean near zero and standard deviation of only 0.85
(both quantities numerically integrated from the density oil '

curve estimate). On the other hand, when we use (7) - hru- data (as)
in place of (6), we obtained the estimate shown in 2--
figure 1, which has a computed mean of almost exactly -,,

Figure 1: Density estimate of normal quantiles "data"
I I I I II I II I IIIIII I I I

InnQiti Na

.-- ae oe gi

0) 36 Ma

1 -o -o -0 -4 -2 0 2 4 o 9 Is

Data values

a.a 2. Smooth density estimates

- a I a We can apply the procedure to a sample showing
Data vat ,le definite skewness, as shown in figure 3. Here we get

an estimate which has some skewness, but not to the
extent demonstrated by the sample. The problem is

0 and standard deviation 1.01. [Using only a sample of that the resulting estimate is not very smooth (at the
4 quantiles produced even worse results using (6), but boundaries of the intervals). Also, our estimate will
again produced the standard normal when using (7).] always be strictly decreasing and hence cannot
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adequately model multi-modal situations. interval by

Figure 3: Density estimate for skewed sample (ti-"' G-'(i)61i = "

I~ ~ ~ ~~U of~innini*I 11 II 11111I I I (2

a::: Mi..I 
Qi + I,,.,,, , +. 1 (12)

which gives
log 4+ 1 -og )s

.. ,1 + Pi =V) - log(ti - V)

(13)
.~~' =x C4o0 V09o0i + I - P) - 109 )4 + ll1090, - Is)).=log(0 + I - P) - log(ti - )1•

The normal quantile data with Weibull trial distri-
bution taking P = -3 together with the plot for normal

.. 66, .... ....................... and logistic trial distribution are shown in figure 4.

D at a v al u es All three curves have a very similar "normal" shape
differing only slightly in the amount of peakedness.

The data used in figure 3 is the measurements of Figure 4: Smooth estimates for normal quantiles
the ozone level at Stamford, Connecticut for 136 days . , , ,
which is used by Cleveland, Chambers, Kleiner & --.

Tukey (1983) in their example of the density trace. Pea 411-,,-

The density estimates introduced in the last two I "l

sections are only piece-wise smooth, as we are using .. '.

pieces of different members of the family of trial disti- -

butions for each of the intervals. To obtain a smooth ,
estimate, let us extend the estimate for each interval to '"
the entire real line and average the estimates of the ,,-
n- 2 (in this case) intervals together:

R )= 9- (9) Z-i= 2- 4 X /' L ...

where 1xi and ai are given by (5) as before. As long Data values
as g(-) is a proper density function, we will not need
to normalize (9) as it will properly integrate to one.

To further illustrate this procedure, let us consider The value of P, which must be less than the
using the three-parameter Weibull distribution as the smallest observation, can be arbitrarily assigned based
trial on the physical situation (e.g., ,=0 when data must
distribution, be non-negative). This gives a graph which behaves

l--(x-)P/a=G((a x>'O>Op >0,(10) somewhat strangely near zero, with the density estimatee or ' >suddenly shooting up to a large value. This might be

where G(z) = I - e- . The density is then estimated by explained in that, although we are assuming a strictly

n- l continuous and positive distribution for the ozone level,
_(x) -i-:_-__l__ (x- )

P ' (1) the actual distribution may have a positive probability
n - of a zero level. If we instead assume the density

begins at some negative value, then we can estimate the
In this case the value of a must be determined from the probability at zero to be the area under the curve to
data or fixed arbitrarily. The remaining two the left of x =0. (The same argument can be applied
parameters, p and a, can then be determined for each to the normal and logistic estimates.)
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Thus, let us estimate the value of P from the data Cauchy density:
by selecting the value of v which will result in the -67, -48, 6, 8, 14,16, 23, 24, 28, 39, 41, 49, 56, 60, 75.
maximum value for the estimated likelihood function. Again, using normal, logistic and maximum likelihood
By inspection we find that this "maximum likelihood Weibull trial distributions we get density estimates as
estimate" is obtained when = -143, which gives the shown in figure 6. Again, all three estimates are very
curve shown in figure 5. Figure 5 also shows the normal-shaped, except with very noticeable long tails as

is characteristic of the Cauchy distribution. (Note
however, this data does not necessarily arise from a

Figure 5: Smooth density estimates for ozone data Cauchy; it is only often modeled by a Cauchy due to
imu I~ilnllllmnilllll II I ,, 'the apparent "outliers" in the tails.)

Oode dill (o1a)

*oo ,',I-n, -o Another data set, due to Davis (1952), consists of
reliability measurements of an electronic component:

.. Dog 758, 855,905,918,919,920, 929,936,948,950, 972,

1035,1045,1067,1092, 1126, 1156, 1162, 1170, 1196.

..... Again using normal, logistic and maximum
likelihood Weibull trial distributions we obtain very

similar estimates, as shown in figure 7, which again
differ mainly in the amount of peakedness near each of
the local maxima.

det 1#* ISO ... . Figure 7: Smooth density estimates for Davis dataData values

density estimates for normal and logistic trial disti- =l"sls--

butions. Note again that all three estimates are very - /-t.,,.-

similar, the major differences being the peamkedness of

the three local maxima.

Figure 6: Smooth density estimates for Darwin data .
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"l oibulll 0 100 05 III III o00 IlOS I811 I30 1400

Data values

." ,References

Box, G. E. P., & Tiao, G. C. (1973) BayesianZ
0Inference in Statitical Analyi, John Wiley &

-Sons, New York, NY.

SDeCleveland, Chambers, J., Kleiner & Tukey, J. (1983)
DatOa va alu1es Graphical Data Anal/is. Duxbury Press, North

Situate, MA.
Davis, D.J. (1952) "An analysis of some failure

data," JASA, 47: 113-150.
We now consider two more "real data" examples. Tapia, R., & Thompson, J. R. (1980) Non-parametric

The Darwin data of the heights of 15 plants, as given Probabifiy Density Estimation, Johns Hopkins
in Box & Tiao (1973), which is often modeled as a University Press, Baltimore, MD.



92-19564 AD-P007 144Hll I. ti~l El 11 litlll I4IIIIIIIIII 11111l111l1lll t
A COMPARISON OF TWO LARGE SAMPLE CONFIDENCE INTERVALS

FOR A PROPORTION: A MONTE CARLO SIMULATION

Ken Hung
College of Business and Economics

Western Washington University
Bellingham, WA 98225

Abstract nl*- np .___--__(.

Two pairs of confidence intervals for a proportion as JnY- n p(1-p)/n (2.1)

in page 394 of Larson's (1982) are compared. It can be
shown through computer simulation experiments that, is distributed asymptotically as a standard normal
for certain values of p, the confidence interval random variable. Thus, we have
obtained by the approximation is superior.

P(- Za/ : - /n < Z /2)-1--a (2.2)
1. Introduction p(1-p)/n

Computers are to the study of statistics much as test which is equivalent to
tubes to the study of chemistry. Many theoretical
derivations in statistics can be investigated and P ( P - Z) 1 (2.3)
confirmed by brute-force computing experiments. The ,4p(l-p)/n
purpose of this paper is to study empirically two large
sample confidence intervals for a proportion in where Z=Zcl2 .The equation
Larson's (1982) and the issue raised in Alt and
Walker (1981). Alt and Walker (1981) derived (- - p )2 < Z2 p(l-p)/n (2.4)
analytically that, for certain ranges of p, the
approximated (1-a)100% confidence interval for a as a quadratic inequality in p has two real and
proportion is shorter than the unapproximated one. unequal roots. These two roots are the desired
The basis for comparison in their paper is the confidence limits for p. Let Q, and Q2 denote the
expected value of squared confidence interval length, lower and upper confidence limits respectively. Use of
while in this paper the expected value of the the quadratic formula yields
confidence interval length. This should be more direct
to the truth of the nature. Q +Z2/n - (Z/ ,") (1 - )+Z l/n5

Q1= +Z/-(Z{) 1- )Z/ 2 (2..5)

Section 2 discusses the theoretical and analytical 1 + Z2/n

aspects of the comparison of two confidence intervals.
The approach and method used in this study is T + Z2/n + (Z/4-) - (1 - T) + Z 4 /n 2

presented in Section 3. The results are reported in Q2= 1 + Z2 /u
Section 4. Section 5 concludes the paper.

When n is large and for reasonable (1 - a),
2. Theory Z2/n should approach zero. Therefore, the

approximated large sample confidence limits are
Let x, X2 , .. .. . I z,, be a sequence of n independent
Bernoulli random variables with parameter p as the L, = 7 - (Z/-Fi) IT (1 - ) (2.6)
probability of success on each trial. Then, X = Exi =
it 7, for i = I ...... , n, is a Binomial random variable L2 = Z + (Z/{Fi) Y (1 - Y)
where Y = X/n = P . Given E(X) = np and Vat(X)
= np(l-p), it follows from the Central Limit Theorem The above approximated confidence limits can also be
that derived from the asymptotical standard normal
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random variable 3. Method

T -P P- (2.7) A Fortran program is written so as to call IMSL
subroutine GGBN for generating binomial random

numbers and to compute the average lengths for the
Ice (- (-) two pairs of confidence interval in (2.5) and (2.6). The

since E( -(I - 1) -n is Z value is set to be 1.96 so as to give the same 95X
confidence intervals for both pairs. The number of

asymptotically unbiased. See Alt and Walker (1981). trials n in each experiment is increased from 50 to 250
For the confidence interval in (2.5), we can have by 50 at different proportion values in tile inclusive

4nZ- Z (0,1) range. One hundred experiments are performed

(n + Z2 ) (n + e )2 (2.8) generating 100 binomial random numbers ( X for f=
I . ........... , 100 ) for each fixed number of triais ( n =
50, 100, 150, 200, 250 ) at different proportion values

For the confidence interval in (2.6), we can have ( p = .05, .10 ......... 95 ). Specifically, for instance,
9 XI=2, X 2 = 3, X3 =3 ........., X10 0=4 for, say, n = 50

(L, - L1)" = (1- 7) (2.9) at p=.05 The computational scheme is outlined
below:

Let Q=E(Q2 - QI) 2 and L=E(L2 - L1)2 . Solving for
the inequality Q > L gives us the ranges of p values 7. = X./n = b for j= 1,2 ....... ,100 (3.1)
that satisfy the inequality. Since E( 7 ) = p and
E ( 7 2 ) = Vat(7 ) + [E(7 )]2 = p(1-p)/n + p2 , we Qj =Q2j- QOj' E() = Q - /100 (3.2)
can easily show that

[j --Y)l = P (1 1( 1 ) (2.10) Li =L2 1 - L 1 , E(L) = Lj /100 (3.3)

4 ence, two lengths of confidence interval are
E(Q-Q) 2 

- p(1-p)(n-n ) 4nZ2  (+ Z_ =Q (2.11) computed for comparison. Meantime, the lower limits
E( (n+Z 2 ) (n+Z) are checked for negative values as it is meaningless to

and have negative proportion vlaues.

E(L - L p(1-p)(n-1) 4Z - = L (2.12)
4. Results

Simplify

PC l-p)(ii 4nZ- 4_( 1)1 Z2 The results are reported below in tabular forms. All

I- (n +Z 2) 2 ( +Z2 9> (- -4 (2.13) numbers are significantly different from zero at a <
.0000001

to (llnn+ ) >p(-. (2.14)

4(1-1/n)(2n+ ) > (-) (2.14 Table 1 Confidence Lengths for p .05 to .95

\Vhen n is large and Z2 ignored, the left hand term of n = 50 n = 100
(2.14) can be approximated by I Thus, a quadratic p= E(Q)= E(L)= E(Q)= E(L)=
inequality in p 8 .05 .129240 .111604 .086883 .081212

.10 .160865 .153494 .118447 .116699
p - p + A > 0 (2.15) .15 .196048 .196297 .138551 .138611

.20 .216052 .219484 .155206 .156499

ca1 be solved with two roots p = .146 and p = .854 . .25 .228749 .233905 .167382 .169501
This means that for p < .146 and p > .854, the .30 .245147 .252505 .175688 .178338
cx)ected squared length of (2.5) is greater than that .35 .251126 .259244 .182566 .1856,12
of (2.6). .40 .259527 .268688 .187935 .191335
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.45 .262571 .272100 .190823 .194393 Table 2. Confidence Lengths for p=.141 to .150

.50 .264110 .273823 .191229 .194823

.55 .263677 .273339 .190303 .193842 n=50 n=100

.60 .258847 .267923 .187152 .190505 p= E(Q)= E(L)= E(Q)= E(L)=

.65 .252268 .260526 .182632 .185712 .141 .188695 .187642 .134747 .134477

.70 .242492 .249517 .176238 .178923 .142 .185552 .183980 .133452 .133074

.75 .228482 .233639 .164684 .166623 .143 .192676 .192358 .135125 .134881

.80 .213716 .216753 .153372 .154526 .144 .190294 .189785 .137330 .137280

.85 .191278 .190726 .138976 .139064 .145 .190473 .189798 .137713 .137706

.90 .162923 .156850 .119114 .117444 .146 .196234 .196575 .138436 .138469

.95 .127037 .107727 .090024 .094820 .147 .184484 .182840 .136524 .136401
.148 .193216 .193015 .137517 .137468
.149 .191201 .190609 .138854 .138921

n=150 n=200 .150 .197258 .197718 .139562 .139674
p= E( Q)= E( L)= E( Q)= E( L)=

.05 .073089 .070345 .059756 .057695 n=150 n=200

.10 .096291 .095323 .083232 .082603 p= E(Q)= E(L)= E(Q)= E(L)

.15 .113671 .113716 .099044 .099094 .141 .111916 .111867 .097674 .097671

.20 .127443 .128165 .110006 .110455 .142 .110867 .110761 .096849 .096812

.25 .135893 .136994 .118682 .119423 .143 .109992 .109845 .097173 .097148

.30 .144120 .145572 .125345 .126298 .144 .111087 .110995 .096666 .096622

.35 .150863 .152591 .130473 .131584 .145 .110784 .110675 .098194 .098211

.40 .154345 .156211 .133971 .135186 .146 .111497 .111430 .097714 .097709

.45 .156761 .158723 .136266 .137549 .147 .111510 .111437 .096706 .096664

.50 .157607 .159602 .137054 .138360 .148 .112772 .112768 .098053 .098065

.55 .156862 .158828 .136222 .137503 .149 .113501 .113536 .097940 .097947

.60 .154620 .156498 .134362 .135589 .150 .113884 .113940 .098267 .098286

.65 .150248 .151951 .130681 .131798

.70 .144797 .146278 .125889 .126860 n=250

.75 .136504 .137632 .118849 .119596 p= E(Q)= E(L)=

.80 .125992 .126643 .110431 .110897 .141 .086157 .086115

.85 .114032 .114097 .098272 .098292 .142 .086490 .086459

.90 .094655 .093598 .083051 .082419 .143 .086628 .086600

.95 .072323 .069487 .062522 .060699 .144 .086604 .086575
.145 .086900 .086881
.146 .087078 .087064

n=250 .147 .086871 .086852
P= E(Q)= E(L)= .148 .087173 .087163
.05 .053906 .052499 .149 .088275 .088299
.10 .074071 .073608 .150 .088051 .088069
.15 .088089 .088108
.20 .097574 .097872
.25 .107009 .107560 Table 3. Confidence Lengths for p=.848 to .857
.30 .112697 .113392
.35 .117070 .117871 n=50 n=100
.40 .120240 .121117 p= E(Q)= E(L)= E(Q) E(L)
.15 .122119 .123040 .848 .194058 .194033 .138874 .138952
.50 .122779 .123715 .849 .195307 .195373 .137464 .137415
.55 .122190 .123112 .850 .191125 .190103 .139139 .139223
.60 .120358 .121237 .851 .195690 .195666 .135951 .134787
.65 .117629 .118444 .852 .195164 .195387 .136982 .136902
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.853 .193889 .193788 .136169 .136023 5. Conclusion

.854 .191018 .190548 .137492 .137440

.855 .188169 .187087 .134055 .133727 It can be inferred from data presented in results that

.856 .189168 .188288 .136403 .136265 E(L) > E(Q) in general. However, in the ranges of the

.857 .188540 .187527 .136354 .136236 proportion values in Table 5 below, E(Q) is greater
than E(L).

n= 150 n=200
p' E(Q)= E(L)= E(Q)= E(L)= Table 5 Ranges of E(Q) > E(L)
.848 .114195 .114264 .099455 .099521
.849 .113754 .113802 .099357 .099421 n= p < p >
.850 .112745 .112745 .098589 .098622 50 .146 .852
.851 .113870 .113926 .098091 .098104 100 .146 .850
.852 .113628 .113668 .098187 .098204 150 .149 .852
.853 .111333 .111254 .098315 .098336 200 .145 .854
.854 .111889 .111840 .097823 .097828 250 .149 .855
.855 .111643 .111579 .097202 .097178
.856 .110922 .110815 .097405 .097390 This is quite consistent with the conclusion in Alt and
.857 .111827 .111776 .096491 .096441 Walker (1981). The difference between the two papers

is that this paper uses the direct expected length while
n=250 that paper uses the expected squared length.

;, E(Q)= E(L)=
.848 .089044 .089091 The problem of negative lower confidence limit is only
.849 .088881 .088923 with L1 when the proportion value is low and the
.850 .088370 .088397 number of trials n is as small as 50. If the number of
.851 .088361 .088387 trials n is above 250, the problem will disappear
.852 .087940 .087954 entirely. See Table 4.
.853 .088464 .088494
.854 .086444 .096412 References
.855 .087600 .087604
.856 .085962 .085912 Alt, Frank B. and James W. Walker (1981). "A
.857 .085957 .085909 Comparison of two large sample confidence intervals

for a proportion," Proceedings, Tenth Annual
Meeting, Northeast Conference, American Institute for

Table 4 Percentage of L1 < 0 Decision Sciences 118-120.

1)\ n= 50 100 150 200 250 Larson, Harold J. (1982). Introduction to Probability
.05 68 25 3 2 0 Theory and Statistical Inference, 3rd Ed., New Yoark.
.10 30 0 0 0 0 John Wiley and Sons.
.11 26 1 0 0 0
.12 16 0 0 0 0
.13 13 1 0 0 0
.14 3 0 0 0 0
.15 6 0 0 0 0
.16 6 0 0 0 0
.17 0 0 0 0 0
.18 1 0 0 0 0
.19 0 0 0 0 0

.99 0 0 0 0 0
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Reconstruction of Evolutionary Trees from Pairwise
Distributions on Current Species

Joseph T. Chang and John A. Hartigan
Department of Statistics

Yale University

Abstract nal nodes. In particular, we are not interested in
length of time, direction of time, or the root of

Suppose that the evolution of a character pos- the tree.
sessed by a number of current species is modelled
as a Markov random field on an evolutionary tree. Let T denote a finite set of current srecies,
Suppose that for each pair of current species we let C denote a finite set of characters, and for
know the joint probability distribution of the pair each t E T let X, denote the character pos-
of characters possessed by that pair of species. sessed by species t. For example, C might be
We give conditions under which the evolution- the set of four nucleotides, and Xg might identify
ary tree can be reconstructed from knowledge of the nucleotide occupying a particular site in the
these pairwise joint distributions, that is, condi- DNA of a representative of species t. We consider
tions under which there is only one evolutionary {Xt : t E T} to be random variables generated
tree topology consistent with the given pairwise by a Markov random field model on an evolution-
distributions. In this way we establish consis- ary tree. To describe the model, we begin with
tency of a method for reconstructing evolution- the tree T = (S, A), characterized by its set of
ary trees using pairwise distributions estimated nodes (or species) S and its set of arcs A. S may
from observed homologous DNA sequences. be decomposed into the union S = T U N of the

set T of terminal nodes and the set N of non-
terminal nodes; since current species correspond

1 Introduction to terminal nodes, there is no conflict with the
notation T introduced above. Each arc a E A is

Evolutionary relationships among species are undirected and may be represented as a subset
commonly conceptualized in terms of an "evolu- {r, s} containing two distinct nodes r, s E S. For
tionary tree." A tree consists of nodes and arcs. each s E S let X, be a random variable taking
The degree of a node is the number of arcs inci- values in C. We assume that {X, : s E S) is a
dent to the node. Nodes of degree one are ter- Markov random field on T, which means that
minal nodes, and nodes of higher degree are in- for each s E S the conditional distribution of
ternal nodes. In an evolutionary tree, the termi- X, given all of the other values {Xf, : r $ s}
nal nodes are labelled by current species observ- is the same as the conditional distribution of
able today, and the internal nodes correspond to X, given just the values {X : {r,s} E A} at
ancestral species. We assume speciation events the "neighbors" of s. This completes the de-
occur at internal nodes, so that we do not allow scription of the probabilistic model for the evo-
nodes of degree two. The se.entific problem of in- lution of a single character. In general we ob-
terest to us is to infer the evolutionary tree relat- serve n characters for each species. In this case,
ing a given set of current species. This inference we make the standard but undoubtedly unrealis-
is to be based on data, which might typically be tic assumption that distinct characters are inde-
a set of observed DNA sequences, one from each pendent and identically distributed (iid), that is,
of the given current species. For most of the pa- we imagine that X 1, ... , X" are iid, where each
per, we will restrict our attention to the topology X' = {X' : s E S} is a Markov random field on
of the tree together with the labels of the termi- T.
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The following brief rcmarks about methods we write T, -T 2 . Thus, T - 2 means that T,
of evolutionary tree reconstruction are intended and T2 are the same up to a possible relabelling
to provide some context for this work; the ex- of nonterminal nodes.
cellent survey of Felsenstein (1988) should be Next, for a given tree T = (S, A), let A =
consulted for more background and references. {(r, s): {r, s} E A} be the set of directed arcs of
The most popular method is probably the parsi- T. Then for all distinct r, s E S either 1r(r, s) -=
mony method of Camin and Sokal (1965), which {(r, s)} C A or there is a unique n > 1 and a
chooses a tree in which characters can be assigned unique sequence s 1, .... s, of distinct nodes such
to nodes so that the number of, 'ianges of charac- that 7r(r, s) := {(r, si), (sli, s2) .... (sn, s)} C .
ter across arcs of the tree is minimal over all trees. This defines 7r(r, s), the path from r to s. We say
This method has the very considerable virtue of that a function f : S x S -- IR is additive on the
ease of implementation. However, the unfortu- tree T if for all r, s E S we have
nate truth observed by Felsenstein (1978) is that
parsimony is inconsistent; in fact, Felsenstein ex- f(r, s) f (a),
hibited an example in which the probability that aEr(r,s)

parsimony would choose an incorrect tree ap- with the sum being defined to be 0 if r s.
proached one as the humber n of observed char-
acters per species approached infinity. A max- Lemma 1 Let T1 = (S1, A1 ) and T 2 = (S 2, A2)

imum likelihood method for the present model be two evolutionary trees with the same set of
was considered by Barry and Hartigan (1987b). terminal nodes T. Suppose there exist functions
This method overcomes parsimony's defect of in- fj : Si x S1 - IR and f2 : S2 x S2 --+ IR such
consistency, at the cost of a great increase in that
computational difficulty. The distance method
of Barry and Hartigan (1987a), which will be de- 1. fi(r, s) + fi(s, r) t 0 for all {r, s} E A and
scribed more fully below, is intermediate between i = 1, 2
parsimony and maximum likelihood in terms of 2. fi is additive on Ti for i 1, 2
computational difficulty. The question that orig-
inated the present investigations was whether the 3. f, (t, u) = f 2 (t, u) for all t, u E T.
distance method is consistent. This question will
be addressed in section 3. Then T . 2 .

Results appearing in the papers of Dobson
(1974) and Sattath and Tversky (1977) are

2 Identifiability of the Tree clearly closely allied but apparently not the same.
They focus on existence of trees satisfying certain

A principal ingredient in the consistency proof conditions, while we are interested in uniqueness.
is an "identifiability" result that says that under We also find the fact that our additive function
the assumptions of our Markov model and cer- need not be nonnegative to be interesting.
tain other conditions, distributions of pairs of the The key to the identifiability result mentioned
form (Xt, X,,), where t and u are terminal nodes, above is the notion of distance introduced by
determine the evolutionary tree. This result in Barry and Hartigan (1987a), which takes the
turn follows from Lemma 1 below, which says form
that knowing the values of an "additive function" d(r, s) = -(1/4) log[det(P"')]
on pairs of terminal nodes of a tree is enough to for four-valued characters, where pri is the
determine the tree. Markov transition matrix whose (i, j)th entry is

The statement of Lemma 1 require,. some def- P{X, = jlXr = i}. For the Markov model we
initions. Let T1 = (SI, Al) and T2 = (S2 , A2 ) be have assumed, d is an additive function. The
two trees with Si = T U N, and S2 = T U N2, identifiability result is then just the statement ob-
so that the terminal nodes of T and T2 are tained by taking the additive function in Lemma
the same. We say that T, and T2 are equiva- 1 to be Barry and Hartigan's distance. The con-
lent if there is a bijective "relabelling" function ditions required are
p : S -* S2 such that p(t) = t for all t E T and
A 2 {{p(r), p(s)} : {r, s} E A, }. In this case det(Pr') >0 for {r, s} EA (2.1)
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and T. Suppose that T" denotes the estimate given
by a tree reconstruction method when applied to

det(P 8 ) det(P " ) < 1 for {r, s} C A. (2.2) the data X 1 ..... X'. We say that the method is

tpairwise strongly consistent if with probability one there
Under conditions (2.1) and (2.2), the is a finite N such that T" = T for all n > N.

distributions of characters at terminal nodes de-
termine the evolutionary tree. Condition (2.2) Theorem 2 Suppose the true evolutionary tree
corresponds to condition 1 of the lemma. To get T = (S, A) is bifurcating, that is, all internal
an idea of its significance, note that an example nodes have degree 3. Then under conditions (2.1)
of a situation it rules out is P" = pr = I for and (2.2), the method of Barry and Hartigan
two internal nodes r and s joined by an arc. This (1987a) is strongly consistent.

is reasonable, since in such a case we could elim-
inate the arc {r, s} and combine nodes r and s The assumption that the true tree is bifurcat-
into one node without changing any probability ing iules out nodes of degree higher than 3. This
distributions at the terminal nodes of the tree. restriction is necessary for the following reason.
Condition (2.1) ensures that the logarithm in Lemma 1 states that different trees cannot have
Barry and Hartigan's distance is defined. This exactly the same distances between pairs of ter-
would presumably hold in biologically realistic minal nodes. However, if the true tree has nodes
models, for example, models in which characters of degree higher than 3, then there are different
evolve as a Markov chain in continuous time. In trees that may have distances arbitrarily close to
any case, both conditions (2.1) and (2.2) may the true distances. If the true tree is bifurcating
be relaxed by the device of using the distance and the true model satisfies the conditions (2.1)
d*(r, s) = -(1/4)logj det(PrS)I in place of d. and (2.2), then there are no such different trees.
The resulting conditions would be det(Pr,) - 0
and I det(pro) det(P T )l < 1 for {r, s) E A.

4 No Information in Asym-

3 Consistency metry

The method Barry and Hartigan (1987a) propose The distance d is asymmetric in general: d(r, s) 5

for choosing an evolutionary tree from given data d(s, r). Since the symmetrized distance function

applies the least squares idea of Cavalli-Sforza
and Edwards (1967) in the following manner. For d(r, s) = [d(r, s) + d(s, r)1/2

each ordered pair (t, u) of terminal nodes, form is also additive, one could work with d rather
the estimated distances than d, and effectively cut in half the number

d(t, n) = -(1/4) log[det(Pit)], (3.1) of equations and unknowns in each least squares
calculation. However, replacing d by d involves

where P"t is the usual empirical estimate of pt. ignoring some of the information in the data. so
For a candidate tree T = (S, A) under consid- that one might suspect that we would pay for the
eration, for each (r, s) E A introduce a variable gain in computational simplicity by sacrificing ef-
x,,. Define the "departure from additivity" of ficiency. It turns out that as far as the method
the tree T to he the mininmm of the quantity of Barry and Hartigan is concerned, no efficiency

at all is lost by symnnietrizing. The reason is con-

x)tained in the following result.

t~E.T
1  s .Proposition 3 Let a tree TI having terminal

nodes T be given. Suppos( we arc also given
over all possible values of the variables r,,. the estimated diste,',:.s d(t, it) of (3.1) for all
Choose the tree having the smallest departure t. a E T. For additive functions f on T define
from additivity. S(f) and S(f) to be

To state the consistncy result. ]et T denote
the true evolutionary tree, and as usual assune E [f(t. J) - ,(t. u)
that X', X, ... are iid Markov random fields on t, r
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and Proposition 4 Let T = (SI, A 1 ) and T2 =

2 2 (S2, A2 ) be two evolutionary trees with the same
(f(t, u) +f(u, t) _ (t, u) + d(U, t)" set of terminal nodes T. For i=1 and 2, let

2 ' Xi = {Xi(s) : s E Si} be a Markov random field
on T taking on two values. Suppose that con-

respectively. Then we have ditions (2.1) and (2.2) hold with pr', PET , and
A replaced by P', Pir, and Ai, respectively, for

inf S(f) = iff S(f), i=1,2. Suppose also that the joint distributions
of {Xl(t) : t E T} and {X 2 (t) : t E T} are the

where the infima are taken over all functions f same. Then T7- 2, and we have equality of
additive on T. the full joint distributions of {Xl(s) : s E S1}

and {X2(p(s)) : s E Si}, where p is the "rela-

5 Identifiability of the Full belling" function in the definition of the equiva-
lence ~- T2.

Model
We conjecture that a similar result holds for the

Although section 2 showed that pairwise distri- case of more than two characters.

butions over terminal nodes determine a tree,
it is interesting that such pairwise distributions 6 References
do not determine the full model, that is, they
do not determine the Markov transition matri- 1. Barry, D. and Hartigan, J. A. (1987a).
ces P'" for {r, s} E A. This can be seen in the Asynchronous distance between homologous
smallest nontrivial case: a tree having 3 terminal DNA sequences. Biometrics 43 261-276.
nodes T = {a, b, c} and one nonterminal node
N = {m}, say. Begin with an "original" model 2. Barry, D. and Hartigan, J. A. (1987b). Sta-
having marginal probability vector 7rm at node tistical analysis of hominoid molecular evo-
rm and Markov transition matrices pma, pmb, lution. Statistical Science 2 191-210.
and p". These specifications determine the
complete joint distribution of the Markov ran- 3. Camin, J. H. and Sokal, R. R. (1965). A

dom field {X , Xb, X,, X,,,), and in particular the method for deducing branching sequences in

Markov transition matrices Pm, pbm, and pei phylogeny. Evolution 19 311-326.

Let 1 denote a vector of ones and let a prime "(')" 4. Cavalli-Sforza, L. L. and Edwards, A. W.
denote transpose. Then it turns out that if R is (1967). Phylogenetic analysis: models
an invertible matrix satisfying the conditions and estimation procedures. Evolution 32

1. R1 = 1 550-570.

2. (R-1)'rmR- 1 = diag(Frm ) for some proba- 5. Dobson, A. J. (1974). Unrooted trees for nu-
bility vector i. m  merical taxonomy. Journal of Applied Prob-

ability 11 32-42.

3. RP '" i and pi"R- 1 have nonnegative entries

for i= a, b, c, 6. Felsenstein. J. (1978). Cases in which parsi-
mony or compatibility methods will be pos-

then the model having marginal probability vec- itively misleading. Syst. Zool. 27 401-410.
tor inn at node rn and Markov transition ma-
trices pis = RP"' for i = a, b, c has the same 7. Felsenstvin, J. (19SS). Phylogenies from
pairwise distributions over the terminal nodes as molecular sequences: inference and reliabil-
the original model. It is not difficult to find such ity. Annu. Rev. Gcnct. 22 521 -565.
examples; in fact, two characters are enough. 8 Sattat, S. and Tversky.

On the other hand, under conditions, the joint 8. Satt rees. and TwnrtkyA. (1977). Additive
distribution of the values {Xt : t E Y} at ill of similarity trees. P.%ichomctrika 42 319 345.
the terminal nodes is enough to deternihi, the
full model, at least for two characters, as the fol-
lowing result shows.
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Abstract on the ten chromosome pairs in this genome. They
measured the association between the RFLP patterns

This paper briefly examines current methodology for each marker and the phenotypic traits and used
for developing genetic linkage maps and using them the genetic linkage map to find probable sites, or loci,
to find loci for quantitative traits (QTL). Maximum of genes controlling those traits (Song, Slocum and
likelihood interval mapping is viewed as an extension Osborn, 1991).
of classical least squares methods when the trait of The purpose of this paper is to examine the statisti-
interest is normally distributed and located near a cal properties of such quantitative trait loci (QTL). In
genetic marker. Some problems in finding multiple particular we show the connection between the clas-
loci for a quantitative trait are examined for days to sical regression model at markers and the maximum
budding as measured on F2 plants from a Brassica likelihood interval mapping method presented in Lan-
rapa cross. Relevant design aspects of molecular bi- der and Botstein (1989) and discuss some inferential
ology experiments are briefly noted. questions concerning confidence intervals and finding

Introduction multiple loci (major and minor genes) which control
days to budding.

Last year colleagues in the plant sciences ap-
proached me with questions about recently developed RFLPs and Linkage Maps
programs for locating quantitative traits on genetic
linkage maps (Lander and Botstein, 1989). They Chromosomes come in pairs, and offspring inherit
wanted to know how this related to "classical" ap- one of a pair from each parent. Any locus on a chro-
proaches, and whether this new maximum likelihood mosome pair has two "alleles," or forms of DNA, one
approach was more appropriate, from each parent. The F1 was "heterozygous" (bad

The present study concerns the cross of two va- two different alleles) at each marker locus and pre-
rieties of Brassica rapa, a Michihili Chinese cabbage sumably at all QTL. F2 plants inherit (via Fl) both
(M) female with a Spring broccoli (S) male plant, pro- alleles at a locus from one grandparent (MM or SS)
ducing a single F1 offspring which was self-pollinated, or one from each (MS). Genetic recombination can
The resultant F2 seeds were germinated, yielding 95 lead to different allele types along the same chromo-
plants which were measured for various phenotypic some, which is exploited to generate RFLP linkage
traits (observable characteristics such as day.9 to first maps (Lander and Botstein, 1989).
flower, days to budding, etc.). The F2s were assayed RFLP involves digesting DNA with an enzyme and
by 297 restriction fragment length polymorphisms, using discrepant fragment lengths as markers for ge-
or RFLPs, which were drawn from previous studies netic differences among individuals. The enzyme cuts
of Brassica, DNA from both grandparents or the Fl DNA adjacent to a specific base pair pattern, say
parent, or selfed progeny of same. ACGTAT. A change (mutation or recombination) in

A genetic linkage map was constructed (Song et this restriction site for one variety (say ACTTAT) would
a]., 1990) which locates markers relative to one an- be missed by the enzyme, resulting in one long frag-
other based on the frequency of genetic recombina- ment rather than two shorter ones-a polymorphism.
tion (crossover of chromosome pairs during meiosis) Other forms of DNA rearrangement between restric-

tion sites (e.g. insertion/deletion/transposition) can*Research supported by USDA-CSRS grant 511-100. Con-. also create polymorphisms. DNA fragments are sep-
ference accomodations supported in part by Interface Founda-

tion of North America. Special thanks to Keming Song and arated by size on a Southern blot and "probed" by
Mary Slocum for providing data. 32 P-labelled DNA pieces which bond to homologous
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DNA fragments. Ideal genetic markers are probes traits (counts and +/-) should use the "deviance"
which highlight exactly one RFLP, scoring F2s at (McCullagh and Nelder, 1983) instead of the sum of
this marker as MM, SS (parent types) or MS (hybrid, squares. In some cases, this reduces to a X2 test on
having both length fragments). However, RFLP pat- two-way frequency tables at each marker locus.
terns may be difficult to align (Branscomb, 1991) or The "classical approach" computes the F-statistic
distinguish (Figure 1). at all markers, concluding that a QTL is near the

Nearly adjacent genetic markers should largely marker locus with the most significant value. Lan-
agree in allele type across the F2s, with differences der and Botstein (1989) expanded the normal model
probably due to recombination between the mark- to examine intervals between marker loci. Consider
ers. Distance is roughly proportional to the fre- markers m and m' with recombinant frequency r and
quency of recombination: 1% _ 1 centi-Morgan (cM) indicators x and z'. A QTL with pr recombination
_ 10' - 106 DNA base pairs (may vary along a chro- with m has conditional expectation
mosome and between species). Genetic linkage maps
are currently constructed by examining pairs of mark- E(ylr, m, i') = u + a[(1 - p)z + px'] + df(x, x'; p, r),
ers, then triplets, then piecing together whole chro-
mosomes (Lander and Green, 1987; Song et al. 1991). where f is complicated but tractable (Knapp, Bridges

Lander's MAPMAKER program provides a user- and Birkes, 1990). However, conditional on position
friendly environment for this empirical maximization (p and r) the model is linear in parameters a and d.
of the joint likelihood of all marker loci across the Lander's MAPMAKER/QTL program profiles the
genome. Interesting questions remain about further likelihood (cf. Kalbfleisch and Sprott, 1970; Bates
optimizing the search algorithm and ascertaining that and Watts, 1988) across intervals for adjacent mark-
it converges to a unique global maximum. ers on the linkage map, with the maximum likelihood

estimator (MLE) corresponding to the highest peak.
QTL, LOD and MLE At the MLE, if a = d = 0 then

Genetic linkage maps are used to find quantitative max(LOD) - [v,/2 log(10)]F,,,,,, _ X2,/2 log(10),
traits loci, or QTL. The mean for a single locus quan-
titative trait y depends on the allele type, i.e., with the latter approximation used in practice, ignor-ing the extra variation of the estimate &2.

E(y) = p + ax + d(1 - IxI), V(y) =Confidence Regions for QTL

with x = 1, -1, 0 if the locus is of grandparent type
MM, SS, or hybrid (MS), respectively. Here p is the Confidence regions arise by inverting the probabil-reference mean, a the additive allelic effect and d the ity statement Pr{max(LOD) < ca} = 1 - & . The
dominance effect of allele type M. Under the null y- 99% theoretical confidence region for the major QTLpothnaes ofe of alele type M. Un0) the -stof the phenotypic trait "days to budding" lies on chro-mosome 3 (Figure 2a), primarily around 100 cM but

F = [E( _ 9)2/V]/2 is distributed as F,,,,, , with small intervals around 60 and 80 cM. These in-
Ft tervals have LOD scores at least max(LOD)-2, with

with the sample mean, the least squares estimate, cal - X2;.0 1/21og(10) %u 2. Some QTL had confi-

&2 the variance estimate and degrees of freedom v, - dence regions spanning intervals on several chromo-

2 and V2 = n - 3 for n F2s scored at this locus. For somes. Beware that such regions may be too nar-

normal y, this is equivalent to the likelihood ratio row, having much smaller coverage probabilty than

statistic, typically presented in human genetics as expected (Terry Speed, pers. comm.).
The LOD score should be roughly quadratic near

LOD = log 0(likelihood ratio) the true locus. In practice, the profile is quite ir-
= [0.5E(9 - y) 2/u 2 ]/log(10) regular (Figure 2a) and the profile traces (Bates and
= vF/2 log(10) . Watts, 1988; Ritter, Bisgaard and Bates, 1991) for a

and d exhibit strong nonlinearity and some numerical
For normally distributed traits, these two ap- problems (Figure 3). This suggests caution in inter-

proaches are equivalent and exact. Transformations preting the parameter estirmates from current meth-
toward normality are used in practice. Qualitative ods, and a need for some refinement.
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Major and Minor QTL As markers become more closely spaced, one won-
ders how information from neighboring regions could

Finding multiple loci which control a quantitative be effectively included in the estimation of QTL, par-
trait is a stepwise process in which one identifies the ticularly when there may be multiple loci. Present
major QTL, removes its effect, then proceeds to the technology allows closely spaced markers (1-2 cM),
most important minor QTL, and so on. For the two- increasing the problems of riflotyping. This raises
loci additive model (ignoring interval mapping), both estimation and design questions: should one

gather more F2s or more markers? How can one ac-
E(y) = #+ aixl + d1 (1 - lxii) + a 2x2 + d2(2 - 1X21), count for rifiotype and other errors in the estimation

procedure? Finally, how can one efficiently use infor-
where the major (1) and minor (2) loci may be on dif- mation in the local neighborhood of QTL to smooth
ferent chromosomes. The LOD can be decomposed, the likelihood surface by appropriate penalization?
LOD(1,2) = LOD(1) + LOD(211), suggesting that
one fit the major locus model (as 1) and then con- References
ditionally fit the minor locus,

Bates, D. M., and Watts, D. G. (1988) Graphical
E(y - h Ixi) = a 2x2 + d2(2 - Ix 21) . summaries of nonlinear inference regions. Nonlinear

Regression Analysis & Its Applications, ch. 6. Wiley:
If the two loci were on separate chromosomes, one New York.

would expect estimates of a2 and d2 to be indepen- Branscomb, E. (1991) Building physical genome
dent of x, and LOD(211) = LOD(2). However, the maps by random clone overlap; a progress assessment
profile likelihoods for possible minor loci for days to of work on human chromosome 19. Proc. Work-
budding on chromosomes 6 and 7 changed substan- shop on Computational Molecular Biology (this con-
tially after removing a major QTL on chromosome ference).
3 (Figures 2 and 4). Further, the MLE for the first Kalbfleisch, J. D., and Sprott, D. A. (1970) Ap-
minor QTL is at one end of chromosome 7, not in the plication of likelihood methods to models involving
middle of chromosome 6 as Figure 2 implies. These large numbers of parameters. J. Roy. Statist. Soc.
discrepancies may be due to epistasis (interaction), B32: 175-194.
cosegregation of chromosomes during meiosis, or to a Knapp, S. J., Bridges, Jr., W. C., and Birkes, D.
problem with modest sample size imbalance. (1990) Mapping quantitative trait loci using molecu-

lar marker linkage maps. Theor. Appl. GeneL. 79:
Discussion 583-592.

Maximum likelihood interval mapping of QTL Lander, E. S., and Botstein, D. (1989) Mapping
Muildsamumalieliood inal mapp i. IoQt Mendelian factors underlying quantitative traits us-

builds naturally on classical approaches. ImportantinRFPlkaemp.eetc11:8-19

computational and theoretical issues remain in link- ing RFLP linkage maps. Genetics 121: 185-199.
Lander, E. S., and Green, P. (1987) Construction

age map construction and finding QTL. lk of multilocus genetic linkage maps in humans. Proc.
Several sources of variation arise in building linkage Natl. A cad. Sci. USA 84: 2363-2367.

maps. "Riflotyping" of polymorphisms involves a vi- MctulAagh P. A Nde J.
sualassy o thusads f coumn onblos, lthugh McCullagh, P., and Nelder, J. A. (1987) General-

sual assay of thousands of columns on blots, although ized Linear Models. Chapman and Hall: New York.
these may soon be scanned by computer. Riflotype Ritter, C., Bisgaard, S., and Bates, D. M. (1991) A
errors of RFLP patterns along linkage maps may af- comparison of approaches to inference for nonlinear
fect estimates of map distance and marker loci order models. (this conference).
(Steve Knapp, Tom Osborn, pers. comm.). Song, K., Slocum, M. K., and Osborn, T. C. (1991)

The interval mapping approach to QTL assumes Use of RFLP markers for locating genes controlling
independence between marker intervals and that epis- morphological traits in Brassica rapa. Ms. in prep.
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Figure 3. Profile Detail for Additive and Dominance Effects
(a) Profile Likelihood near MLE

Figure 1. RFLP Southern Blots for 3 Probes with par-
ents (SM), F1, and some F2s. Note blurring in A and
B, double RFLP in C. From Song et al. (1991).
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I. Introduction arbitrary complexity but without loops (i.e., inbreed-
ing). For those pedigree members whose parents are

The recent and almost monolithic surge in inter-
est rnmolecu eneti al t monitic a s in inr- not in the pedigree, the unconditional probability that

est in molecular genetics and genetic analysis in gen- they have genotype g is dictated by the frequency of
eral has been complimented to a great degree by recent the genotype f(g). For those pedigree members, a,
advances in computer science. For instance, the anal- whose parents, m and f. are in the pedigree, the f(g)

ysis of rotein structure and function - a vital corn- whspaetmndfreitepdgetef()
parameters are replaced by transmission probabilities,

ponent in assessing causal pathways between low-level r(golgfg,), or the probabilities that an offspring, o.
genomic phenomena and phenotypic expression - has has genotype go given that his mother m and father
been greatly aided by contemporary visualization and f have genotypes gm and g., respectively. Using this,
high-speed data processing machinery. On another the likelihood of the parameters 2. 

1AA, #ZAa, /1 aa• 
O"

plane, the comparison and analysis of genome sequence given data X = ( ,... ,zx) collected on a pedigree
data would be virtually impossible without supercom- with N members can be written as:
puters. Despite this apparent affinity between contem-
porary genetic analysis and computer science, there
exist a number of areas in genetic research which have L(p, P AA,PAaA aa,( 2 IX)

not yet tried to exploit specialized high speed comput-
ing machinery. One such area is the statistical anal- Z Z Z
ysis of linkage and segregation phenomena involving-_2 .gi', (1)

quantitative traits. This is odd given the fact that a 6(g 1 )b(x 1  )

great deal of theoretical or analytic work in these ar-

eas suggests and explicitly recommends the use of high ... b(g,)0(XliPg, ' )

speed or novel-design computers; see, for example, El-
ston and Stewart (1971), Lange and Elston (1975), El-
ston (1981), Boyle and Elston (1979), and Cannings, where the sums over the gj. i - .... aresumsover0 all possible genotypes member i might have, 5(.) is ei-
Thompson, and Skolnick (1978). In this paper, a par- all psb geno mr imi h i e -
allel strategy for computing likelihoods on large com- ther an wftio or n r(o m, f) function, depend-
plex pedigrees with quantitative phenotype data is dis- ing on whether or not the pedigree member's parents
cussed that makes use of a basic master/worker inter- are pedigree members, and 0(xiy,cr 2) is the normal

connect paradigm. density function. The compound sum in equation (11)
over the gi can be quite large and therefore prohibitive

I. Evaluating Pedigree Likelihoods computationally (e.g., for 3 genotypes, the sum for a
pedigree with N members would involve 3 N terms).

Consider a locus with 2 alleles, A and a, that
produces 3 genotypes, AA, Aa. and aa, occurring in III. Parallel Likelihood Evaluation

the Hardy-Weinberg equilibrium dictated proportions The pioneering papers of Elston & Stewart (1971).
f(AI p2 , f(.4a) = 2p(l - p). and f(aa) = (1 Lange & Elston (1974), and Cannings, Thompson, &
p) 2, where p is the frequency of the A allele. Asso- Skolnick (1978), all showed how the compound sum
ciated with each genotype is a mean effect ;g, g C in equation (1) could be written as an iterated sum.
{AA,.4 a, aa }, and a common variance. a 2 . It should The basic idea is to take small groups of closely related
be understood !hat trait values are taken to be nor- pedigree members (e.g.. nuclear families or small pedi-
mallv distributed around the relevant genotype mean. grees) and compute likelihoods involving these mem-

Consider further a pedigree with N members of bers conditionaliv on the genotypes of some "pivotal"
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member of the group who is also the member of an- needed to compute the likelihood involving the final
other group. These conditional likelihoods are saved "root" nuclear family (ni). Note that since there can
and incorporated into the evaluations of likelihoods of be no genotype elimination based on phenotype in-
other groups of pedigree members. As an example, formation for quantitative trait analysis, running time
consider the pedigree in figure la and the groupings scales with the size, not phenotype arrangement, of a
for that pedigree depicted in figure lb. Note that like- nuclear family.
lihoods involving group n, with members 1, 2, 4, 6, For more complex pedigrees a different strategy is
8, 9, 11, 13 must be computed after likelihoods in- needed. Consider the pedigree as a connected graph,
volving groups nl,... ,n 7 since the genotypes of mem- where each nuclear family in the pedigree is a node.
bers 4, 6, 8, 9, 11, 13, are needed in the computations The edge relationships between the nodes are dictated
for groups n 2 , ... ,n7 . Consider calculations involving by the relatedness of the members of the nuclear fan'-
n2 . The likelihood involving members 4, 15. 16 can ilies comprising the pedigree. Each node is assigned
be computed conditionally on each possible genotype a weight equal to the number of members in the nu-
(AA, Aa,aa) for member 4. These three conditional clear family it represents. Figure 3b depicts the graph-
likelihoods are saved. This same process is done for theoretic representation of the pedigree displayed in
n 3 ,... ,n6 by conditioning on members 6, 8, 9, 11, 13, figure 3a. Figure 4 displays a more complicated pedi-
respectively. The resulting condtional likelihoods are gree's graph respresentation. To optimally compute
then used to "weight" the possible genotype arrange- a likelihood involving a complex pedigree in parallel,
ments considered in the likelihood evaluation of n, compute, for each node, the sun of the weights of all
members 4, 6, 8, 9, 11, 13 in conjunction with members those nodes in an edge relationship with nodes them-
1 and 2. selves in an edge relationship that ultimately leads to

For pedigrees which have a single line of descent the node in question. Call the nodes entering into
emanating from each spouse-pair (e.g., only one spouse each of these sums a "path". Let Ht be the "depth"
has his/her parents in the pedigree, as in figure 2), an of (i.e., the number of nodes implicated in) each path,
implemenation of the Elston-Stewart algorithm on a t. The node with the smallest maximum path (i.e.,
parallel computer can be described as follows. Start- sum of weights) should be taken as representing the
ing with the youngest (or latest generation, G), nu- "root" nuclear family whose likelihood calculations are
clear families compute the conditional likelihoods of computed last. The nuclear families furthest away in
the members of these nuclear families conditioning on node representation from the root for each path are
those parents who are offspring in the G - 1 generation distributed to different processors for conditional like-
of nuclear families. If there are n, nuclear families in lihood evaluation. Once the conditioning processes are
the £th generation, then these conditional likelihoods completeo for a nuclear family, the likelihoods are sent
can be computed on f processors simultaneously. Once to a processor which will compute likelihoods of a nu-
conditional likelihoods for a generation's nuclear faro- clear family whose node representation is in an edge
ilies have been computed, they are saved and sent out relationship with the node representation of the nu-
for processing with the next oldest generation's nuclear clear family in question. Note that some conditional
families. This process continues until the final "root" likelihoods will be sent to a common processor (i.e.,
nuclear family's likelihood is computed. The running two nodes have an edge relationship with a common
time of this strategy would have the simple form: node). In this way, the conditioning processes will con-

verge to the root node, and thus give the complete

a likelihood of the pedigree. See Schork (1991) for more
s(n1 ) + Zmax[s(n1,i);i = 1,... , nt, (2) details, an assessment of the running time, and some

1=2 experimental results.

where s(ni) is the size of nuclear family ni, G is the IV. Discussion
number of nuclear family generations, and n, is the
number of nuclear families at generation f. It can be The algorithm to compute pedigree likelihoods
seen that the largest nuclear family at generation t outlined above is intuitive, but does possess some mi-
dominates the computation time spent computing the nor problems. First, it is imperative that an efficient
conditional likelihoods associated with nuclear families way of determining the optimal order in which to com-
at that generation, and that a single processor time is pute the nuclear families in the pedigree be used or
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Amdahl's law will render the computational savings
in computing the conditional likelihoods in parallel
useless. Second, not all pedigrees will work well with
the algorithm; for instance, a pedigree which is sim-
ply a horizontal chain of nuclear families can have no
more than two of its constituent nuclear families' con-
ditional likelihoods computed simultaneously. Third,
it may be the case that over the course of the compu-
tations through the various "paths" some processors
will not be utilized, resulting in an inefficient use of
the computer. On the other hand, the algorithm can
be improved by letting a number of processors work
on parts of the sums needed in the computation of a
given nuclear family's likelihood calculations. In this
way, processors would be utilized to a greater degree
and a faster turn around time would result also.
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Tuning Complex Computer Code to Data

Dennis Cox l 2  Jeong Soo Park ,2  Jerome Sacks'
Department of Statistics

Clifford Singer'
Department of Nuclear Engineering

University of Illinois
Champaign, IL 61820

Abstract A tokamak (a Russian acronym for "toroidal mag-

The problem of estimating parameters in a complex com- netic chamber") is a device for producing plasmas ca-
puter simulator of a nuclear fusion reactor from an ex- pable of nuclear fusion (Wesson, 1987). There are cur-
perimental database is treated. Practical limitations do rently 45 tokamaks worldwide and a large database of
not permit a standard statistical analysis using nonlin- individual "shots" (i.e., experimental runs) potentially
ear regression methodology. The assumption that the available. Currently, none of the tokamaks is capable of
function giving the true theoretical predictions is a real- producing more energy from fusion reactions than the
ization of a Gaussian stochastic process provides a statis- amount of energy neded for confinement and heating of
tical method for combining information from relatively the plasma. It is desired that the next generation of toka-
few computer runs with information from the experimen- maks should reach at least the break-even point. As such
tal database and making inferences on the parameters. devices are extremely expensive (approximately $1010),

it is critical that a good model is available for design
1 Introduction and Problem purposes.

Formulation There are several variables which the experimenters

Mathematical models of natural phenomena are often can control from shot to shot, of which the main ones

implemented in complex computer programs. Sometimes, are: I Plasma current; P = Heating power; n = par-

the mathematical model is completely specified, and it is ticle density; 13 toroidal magnetic field. There are

only necessary to execute the code to make predictions also some geometrical variables, but for simplicity we

about the natural process under study. However, there will limit ourselves to two tokamaks, ASDEX (in Ger-

may be unknown parameters in the mathematical model. many) and PDX (in Princeton), which have fixed simple

If there is an available database of experimental results, geometries, so that the only independent variables are

then statistical methods may be employed to make in- given above. We will use the first four components of

ferences about the unknown parameters and predictions the five dimensional vector x to denote the logarithms
of tile natural process. In this article, we consider an of the independent variables, and the fifth component

example of such a problem in nuclear fusion research. will be an indicator of the machine, say x 5 = 0 for PDX

In this application, the computer implementation of the and x. = I for ASDEX.

mathematical model is so complex that it is not prac- A primary factor in promoting fusion is energy con-

tically possible to execute the program as many times finement, which is measured by the global energy con-

as is needed to perform a classical statistical analysis. finement time TE. It is a measure of the rate at which

We propose a Bayesian methodology which allows us to energy is escaping from the tokamak at steady state. We

combine limited information on the mathe.natical model will let y denote the measured value of log rE. We have

(obtained from relatively few computer runs) with the 32 observations from ASDEX and 42 from PDX, giving

experimental database and still make the requisite infer- a total of 74 observations (xi, y).

ences. The methodology we propose may prove useful A comprehensive mathematical model for tokamaks

in other applications in other disciplines where complex has been developed and implemented in a computer code

computer codes must be tuned to real data sets.
____________________and NSA Grant MDA 904-89-11-2011. Support for cor-

I Research supported by U.S. Department of Energy puting was provided by Cray Research and National

contract DE-FG02-88ER53269. Center for Supercomputing Applications at the Univer-
2 Research supported by NSF Grant DMS 90-01726, sity of Illinois, Urbana-Champaign.
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known as Baldur (Singer, et. al., 1988). There are sev- of this section, the variable x does not include an in-
eral unknown parameters in the Baldur model, however, dicator for the machine and we will assume only one
which we generically denote by the vector c. Each Bal- machine. Having obtained a likelihood for one machine,
dur run requires inputting a value of x, the experimen- the combined likelihood for both machines is obtained
tally observable independent variables and machine in- my multiplication of their individual likelihoods (addi-
dicator, and a value of c. We let exact theoretical pre- tion of log likelihoods). We are not convinced this is the
diction (which is the ideal output of Baldur) be denoted best approach, but it is easy and probably leads to valid
Y(x, c). if not fully efficient results.

In principle, inferences about c can be made with For convenience, we will let s and t denote a value of
nonlinear regression techniques. Thus, c may be esti- the vector (x, c), where x and c are both 4-dimensional,
mated by minimization of the residual sum of squares so s and t are 8-dimensional. We will use d to denote

the general dimensions of s and t.

c Y )It is assumed that Y(s) is a Gaussian stochastic with
RSS(c) -[Yi - Y (xi, 01] constant mean

i= IEY(s) = ,

where y, is an observed log 7E and Y(xi, c) is the cor- and covariance function
responding theoretical prediction. Since c is four di-
mensional for our case, maybe about 100 evaluations of [ ]
RSS(c) would be needed for a nonliner optimizer to find Cov[Y(s), Y(t)] = U2 exp 0(s -)

c. Even if the nonlinear least squares estimate c and
RSS(c) are known, it requires a minimum of 10 evalua-
tions to estimate the Hessian for contructing confidence Here, fl,o2 > 0, and 0i > 0, 1< i < d, are parameters.

regions. More general models are possible (see [SSW], [SWMW],
There are two important features of the Baldur code or IPJ), but some data analysis and model fitting has

which make this classical nonlinear regression approach suggested a model of this form is appropriate.

infeasable. For one thing, each Baidur run takes about The Baldur code is executed at a set of inputs si,
4 minutes of CPU time on a Cray II supercomputer. I < i < nc, giving observations Yic, 1 < i < nc , which

Thus, even a single evaluation of RSS(c) requires about are modelled as

5 hours of supercomputer time, and 10 to 100 evalua-
tions of RSS(c) are simply not practical. Secondly, Bal- Yic = Y(si) + EiC

dur does not output the exact value of the prediction
Y(x, c), but has a sampling error because of a Monte where the random errors C¢ are assumed to be i.i.d.
Carlo integration inside of one routine. Multiple runs N(0, o,'), and independent of Y. Note that the subscript

of Baldur with the same inputs (x, c) but different seeds "C" designates computer data.

would be required to obtain an accurate value of Y(x, c). The experimental data (xi, YiE), 1 < i < nE , is
We are thus constrained to making a limited num- modelled as

ber of Baldur runs in order to obtain noisy values of YiE = Y(xi, co) + CE

Y(x, c), and then to somehow combine this incomplete where the EiE are i.i.d. N(0, a' ), independent of all pre-
and inexact computer data with the experimental data viously mentioned random quantities. Also, co denoted
in order to make inferences on the parameter vector c. the true unknown value of the fusion theory parameters
2 Statistical Model to be estimated.

It is convenient to reparameterize the variances of
We propose a statistical model for the problem described the random errors in terms of variance ratios, viz.
above. The true function Y(x, c) is assumed to be a re-
alization of a stochastic process. Such models have been 7C =47/4, Y= o/r,

successfully used for design and analysis of computer
experiments (Sacks, Schiller, and Welch, 1989, abbre- Thus, in addition to the 4-dimensional theory parameter
viated [SSW]; Sacks, Welch, Mitchell, and Wynn, 1989, co, we also need to estimate 0, 0 (8-dimensional), -2, 2},

abbreviated [SWMW]). Further details on our proposed and all. Further, we assume each of these parameters
methodology are given in Park (1991, abbreviated [P]). (other than co) is different for the tokamaks PDX and

We will treat the models for the two tokamaks AS- ASDEX. The Gaussian process assumptions allow us to
DEX and PDX entirely independently. Thus, for most develop formulae for the multivariate normal likelihoods,
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which are maximized by a numerical optimization pro- 3 Numerical Results
grain. In this section we report the results of applying the

One perspective on the above is that we are fitting a methodology of the previous section to the Baldur/Toka-
non parametric regression function Y(x, c) using an em- mak problem. More details, including the data sets, may
pirical Bayesian methodology. Part of the data (the ex- be found in [P].
perimental observations) are missing components of the Table 1 shows the smoothing parameter estimates
independent variable, and the missing components have obtained from only the computer data. To recapitulate,
at common value co . The parameters 9, 2, and for each computer data set (e.g., nc = 34 observations

control the "smoothness" of the fit, analogously to the for PDX), we can maximize the likelihood based in the
smoothing parameters ?n and A in the Bayesian interpre- vector of observations yc = (Yic : 1 < i < nc) to obtain
tation ofsmoothingsplines (Eubank, 1988, pp. 233-248). estimates of 3, o,2, , 2and 9. owever, only the esti-

Among the several strategies we have tried for es- mates of -y2 and 0 are used in the subsequent. analysis.
timating parameters, the one which has worked best in One will note that we constrained 01 = 08, 02 = 03 = 07,
simulations (reported in [PI) is the following: estimate and 04 05 = This decision was made to parsime-

the parameters 0 and -yc by maximum likelihood using niously parametrize after initially estimating 8 indepen-
the computer data alone. Then combine the computer dent 0i 's for each simulated machine.
data and experimental data to estimate the remaining 'Fables 2 and 3 present the results of the subsequent.
parameters: 3, e, , andl c 0. One reason this method likelihood maximization when computer and experimen-

may work well is that it uncouples some of the smooth- tal data from both machines were pooled. Table 2 shows
ing parameter estimation from the estimation of c 0 . It parameter estimates which are individual to a given ma-
has the added advantage that it reduces computational chine. The values in Table 3 are the ones of most interest
time. .. the estimates of the theory parameters. The estimate

There was strong prior knowledge about the theory of C2 has a relatively large estimated standard errok, in-
parameter vector c which was codified into a log-normal dicating that our knowledge of it at this time is rather
prior distribution. The components of c were a priori uncertain.
independent with the following normal distributions

log c, - N(0, (2 log2) 2 ), Finally, in Figures 1 and 2 we show residual plots
(residuals vs. predicted values). Based on our simula-

log c2 - N(log 3, (log 2)2), tion experience with toy models reported in [i], these

log c3 - N(O, (log 2)2), plots suggest a relatively good fit. In particular, the pre-

log c4 - N( log 2, (1 log 2) 2 ). dicted values for the computer data (dots) have a wider
The corresponding quadratic terms were added in to the (horizontal) range than the experimental predicted val-
Thorelihooding oe ai vuers wer adein trfo th ues. Also, the residuals for the computer data have a
log likelihood to penalize values of c for being far from much smaller (vertical) range then those of the experi-
the prior mean. The maximization of this penalized log mental data. These indicate we are fitting the computer
likelihood amounts to finding the posterior mode. datalrdati. ese at we getting th cover

One strategy which we found useful for parameter y

parsimony was to constrain components of 0 to be equal. the range of Y(x, c).

Based on initial estimates wherein all components of 0
were varied independently, we chose three blocks of the Concluding Remarks
components of 0 which were constrained to have a coin- There are a number of issues which arose in this
inon value, and then computed maximum likelihood es- investigation which we have not mentioned for lack of

timates under these constraints, space. One is the design of the computer experiment.
To assess the accuracy of our estimates of c 0 , esti- One problem which arose during the collection of corn-

iiated standard errors are computed using the diagonal puter data is that the Baldur code was modified to ima-
entries of the inverse of the lessian of the posterior log prove convergence. There was some change in output

likelihood evaluated at the maximum. This Hessian was values between the new and old codes when the same
evaluated numerically. While we are aware of no directly inputs were tried, but it, was on the same order as our

relevant, asymptotic (or finite sample) theory to justify estimate at the time of the Monte Carlo sampling er-
this, the simulations reported in [P] suggest that it does ror. However, subsequent analysis suggested the Monte

not work badly, although we have far too few simula- Carlo error was much smaller than we thought. and that
tions to assess coverage probabilities. In any event, it the two versions of the code produced somewhat differ-

does provide a reasonable indication of error. ent answers. All of our results above are baswed on the
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data from the new and improved program. This does
raise the question of the size of the approximation and
roundoff error in the code and the extent to which that
affects the parameter estimates.

This is a complex problem and there is much oppor-
tunity for future research.
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Table 1. Smoothing Parameter Estimates from Computer Code

Symbol Description PDX ASDEX
Value Value

nc Computer data set 34 31
01 Correlation Coefficient for c, 1.6 .033

02 Correlation Coefficient for c2  .19 .13
03 Correlation Coefficient for c3  .19 .13
04 Correlation Coefficient for C4  1.1 .35

05 Correlation Coefficient for log I 1.1 .35

06 Correlation Coefficient for log B 1.1 .35
07 Correlation Coefficient for log n, .19 .13

03 Correlation Coefficient for log P 1.6 .033
7 Variance ratio ac/ 4.9 x 10- 4  1.1 x 10 - 3

Table 2. Parameter Estimates for Individual Tokamaks

Symbol Description PDX ASDEX
Value Value

nE Experimental data set sample size 42 32

/0 Mean value for Y -1.68 -1.59

U2 Variance of Y .0045 .35

yE Variance ratio C2/ v  .023 .0064

Table 3. Estimates for Theory Parameters

Symbol Description PDX ASDEX

Value Value

cl Drift Waves Coefficient 1.65 .15

C2 Rippling Coefficient 2.08 .65

C3 Resistive Ballooning Coefficient 1.14 .22

C4 Critical Value for the Ion 1.16 .095

Temperature Gradient Mode
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Figure 1: Residual Plot for ASDEX
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Using Computer Experiments to Construct a Cheap Substitute

for an Expensive Simulation Model

A[)-p O 7 149 Toby Mitchell and Max Morris*
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Abstract Except for some philosophical differences, our underlying
approach is essentially the same as that discussed by

There is widespread use of computer models as tools in Sacks, Welch, Mitchell, and Wynn (1989). As noted
scientific research. As surrogates for physical or there, versions of this approach have been used for a long
behavioral systems, such models can be subjected to time in various settings, e.g., kriging and Bayesian interpo-
experimentation, the goal being to predict how the lation. The details of the method (e.g., choice of correla-
corresponding real system would behave under certain tion function, design criterion) are more in line with Cur-
conditions. For long-running (expensive) model codes, rin, Mitchell, Morris, and Ylvisaker (1991).
there may be a severe limitation on the number of experi-
ments that can reasonably be done. This motivates the 2 The Computer Model
construction of a fast-running (cheap) approximation to
the original code, for use in experiments where a large Sheet molding compound (SMC) is composed of polymer
number of runs may be necessary. Here we discuss our resin, chopped fibers, filler, and additives. Prior to the
approximation of a simulation model for the compression molding process, a "charge', or piece of SMC, is cut from
molding of sheet molding compound, applied to the a sheet and placed in a heated mold. The process is begun
manufacture of an automobile hood. The approximation by closing the mold slowly; during the process the material
was constructed using Bayesian interpolation methods for flows and fills the mold cavity. After filling, a constant
prediction of the movement of the flow front. The predic- force is maintained on the mold, as the curing reaction
tions were based on data generated by a sequence of com- proceeds; then the part is removed and the curing is com-
puter experiments, using designs chosen according to a pleted.
type of D-optimality criterion.

Designers of the manufacturing process are concerned
1 Introduction with the movement of the flow front; it is desirable that the

charge fill the mold evenly and rapidly, without the pres-
The purpose of this paper is to demonstrate the application ence of "knit lines" formed when two parts of the flow
of Bayesian methods for design and analysis of computer front meet. To help determine the effect of the design
experiments to the construction of a "cheap" substitute for parameters (e.g., the initial shape and placement of the
an "expensive" computer model. As our example, we charge) on the flow front movement, a computer simula-
shall use a computer simulation model for a compression tion model is used. This model is a version of the TIMS
mold-filling process that is used in the manufacture of (Thin Mold filling Simulation) model, which was
automobile hoods. Our primary use of this model was to developed by Tim Osswald and Charles Tucker of the
generate prediction formulas that could serve as fast sub- Department of Mechanical Engineering at the University
stitutes for the real model in certain well-defined tasks. of Illinois. The version we used came to us through the
This done, we did not follow through any further, so this courtesy of Alonzo Church, Jr. and Daniel Fleming of
account is best considered as a realistic example rather GenCorp Research, who were of great help to us in learn-
than a complete scientific application. ing to use it and in evaluating the results. The theory and

numerical implementation are described in Osswald and
*Research sponsored by the Applied Mathematical Sciences Tucker (1990). The inputs to the code include the

Research Program, Office of Energy Research, U.S. Department of
Energy Contract DE-AC05-84OR21400 with Martin Marietta Energy geometry of the part, the material properties (e.g., viscos-
Systems, Inc. ity), the closing speed, the final thickness of the part, and
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the shape and location of the charge. The output consists nodes m = 1,..., 469 at each time step in the simulation,
of all the information needed to predict the position of the where Pr(t) denotes the proportion of node m that is filled
flow front as a function of time. The code uses a finite ele- at time r.
ment method to solve a system of differential equations
based on the physics of the process. This is not a trivial At each node m, we defined the five responses
computation -- each run of the model code takes 4-5
minutes on a Cray X-MP computer. For specific, well- yrn,: the last recorded time at which node m
defined experiments, it is worthwhile, therefore, to seek a is empty (pm(yml) = 0),
fast approximation to the model; this is the purpose of the
exercise we shall describe here. Of special interest to us is Y.2: the time at which node m becomes

the highly multidimensional nature of the response (flow 25% full (pm(ym 2) = 0.25),

front movement). Previous applications of our prediction Yn3: the time at which node m becomes
method, and of similar methods described by other 50% full (pm(Ym 3) = 0.50),
authors, have been concerned with prediction of a single
response computed from the output. Although we shall do Yn4: the time at which node m becomes

nothing more than apply the same prediction method 75% full (Pn(Ym4) = 0.75),
separately to 2345 related responses, we shall see that yn5: the first recorded time at which node m
even this kind of naive approach can be useful. is 100% full (Pm(Ym5) =1).

3 Predictors and Responses Since these values are not given directly by the output,

which gives values of Pm at various times, we approxi-In this example, we are concerned only with the effect of mated them by linear interpolation of the output data. The

the initial shape and location of the charge. The input that predton proleas tenotkn o be Aprxiate the
defies his s alis of nods" (n te fniteeleent prediction problem was then taken to be: Approximate the

defines this is a list of "nodes" (in the finite element 2345 functions Ym = y (t1 , t2, t3, t4), where m = 1..469

discretization of the mold surface) that are filled initially and r = i ... , 5, over the region defined by 0 < t2 < t < 1,

by the charge. There are 469 nodes altogether, and the ini- tn r = 1 .. Tofrthe rica onst2ts o th
bal harg tyicaly flls 0 to40 f thm. Althugh 0 < .t4 < t3 < 1. Two further practical constraints on the

tial charge typically fills 30 to 40 of them. (Although region of interest were added. The first restricted the

nodes are actually points, each is associated with a small re en of te wre adde Thetrst the the

subvolume of the mold. When we refer to a node as being placement of the charge to be symmetric about the north-

"filed" weare ealy rfering o tis ssocate suvo- south center line, i.e., t3 + t4= 1.0. The second required
"tilled", we are really referring to this associated subvo- that the number of the nodes initially filled by the charge
lume.) In order to represent the list of initially filled nodes be between 30 and 40; this was our way of implementing a
by a few predictor variables, we require the initial shape of requirement that the area of the mold surface initially
the charge to be rectangular. The predictor variables are coedbytehagbefilcnsn.

then defined by the boundaries of the rectangle. This is

done conveniently using the node map as constructed for 4 Design
the finite element method, where the nodes form an
approximately uniform grid over the part of the mold The central idea (which is not original with us) is to
where the charge might be placed. The north and south represent uncertainty about each function Yr on the k-
boundaries of the charge correspond to the predictor vani- repesn u n er t e funo a o tkable t 1 andt 2, hil th eas an wet bondaies dimensional region of interest T by means of a stochastic
correspond to t3 and t4, respectively. (The scaling is such process (random field) Ynr. For simplicity and conveni-
thrrtsp0nd to t 1 and 0<, respectively. (e 1 g Fr oth ence, we use stationary Gaussian (normal) processes as
that 0< t2 <  t cl h< r and 0<14<t 3 < 1.) For other priors. These are fully described by a constant
geometries, of both the charge and the region of the mold 2 V[Y,(t)], and a correla-
into which the charge is to be placed, the representation of io = inRm , R(d) = Corr[Ycrn(t+d), Y,(t)
the initial shape and location of the charge by a few pred- tnf wherictor variables might be considerably more difficult. and where t =( 1 , ". ",•tk) and t+d =(t+d 1, •..•,.k~k

are any two "sites" (points in T) separated by a difference

The next part of the setup of the prediction problem is to vector d. For simplicity, we also take the 2345 Ymr

define, from the mass of output, a manageable set of processes independent of one other, and Rmr(d) = R(d) for

response variables that will permit prediction of the flow all (m,r). (The choice of independence is made at the cost

front. The output gives values of the function Pm for all of ignoring information about the relationships amoig the
ym,'s at any site. We have not found it feasible to
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implement such information here.) Currin, et al. (1991) for further details.

For a design criterion, we use the "maximum entropy" Here the set of candidate runs was formed by first letting t,
principle (Lindley 1956), which in this case leads to a kind and t2 take any of 11 levels and t3 and t4 take any of 13
of D-optimality, namely, the maximization of ICoDI, levels, subject to the restrictions on the region of interest
where CDD is, for any one of the processes Y,, the nxn noted above.
matrix of prior correlations among the design sites
(Shewry and Wynn 1987). We find this criterion appeal- The initial 10-run design, plus an additional 5 runs that
ing, for reasons given by Currin et al. (1991), but other cri- were chosen later, are shown in Table 1.
teria could be used. (See, e.g., Sacks, Schiller and Welch
1989 and Sacks, Welch, Mitchell, and Wynn 1989.) Initial Design

Of course, one cannot maximize 1 Coo I without specifying Run t, t2  t 3  t4

how CoD depends on D. For our priors, this means speci-
fying the correlation function R. We favor using a weak 1 0.40 0.00 0.75 0.25

correlation function, i.e., one for which R(d) decreases 2 0.40 0.20 1.00 0.00

rapidly to zero as d increases. Such a strong conviction of 3 0.80 0.60 1.00 0.00

prior ignorance is not useful for analysis, since one would 4 1.00 0.00 0.58 0.42

need to observe y at very many sites, located densely in T, 5 0.80 0.40 0.75 0.25

in order to yield predictions that are usefully precise. At 6 0.60 0.40 0.92 0.08

the design stage, however, we feel that the choice of a 7 0.50 0.20 0.83 0.17

weak correlation function is appropriately conservative. 8 0.70 0.10 0.67 0.33
9 0.90 0.60 0.83 0.17

For design purposes then, we use the exponential correla- 10 1.00 0.50 0.67 0.30

tion: Additional Points

- 61Id I (4.1)
R(d)= e I Run t t2 t3 t4

where 0 is "large". Asymptotically (as 0 -- cc), it can be 11 0.50 0.00 0.67 0.33

shown that the D-optimality criterion, where (4.1) is used 12 0.70 0.40 0.83 0.17

to construct CDD, maximizes the minimum intcrsite dis- 13 1.00 0.60 0.75 0.25

tance Ildjl among design points, and favors those 14 0.60 0.20 0.75 0.25

designs with the fewest pairs whose intersite distance 15 0.90 0.20 0.67 0.33

matches this minimum. This is a special case of a result Table 1. Design for experiment on compression molding
due to Johnson, Moore, and Ylvisaker (1990), who called model.
such designs "maximin distance" designs. In this sense,
the designs we construct will attempt to push the design The need for the additional runs was clear after inspection
points as far away from each other as possible. of the cross-validation predictions based on the initial

For design construction, we use an algorithm similar to experiment. These runs were chosen using the same algo-

DETMAX (Mitchell 1974). Starting with a random set of rithm and the same correlation function which generated
the first ten runs. The full 15-run design populates the

n sites, the algorithm does a series of "excursions" in
which candidate sites are added to and removed from the region of interest (which is relatively small here) quite

4

design. When adding a site, the chosen site is intended to densely; the maximum distance Y I tj - sj I between any
be the one at which the posterior variance, based on the j=1
burent tesne sla gest. which tte pos ibaed oenshe feasible site t not in the design and the closest design site scurrent design, is largest. It may not be possible to ensure is02

this if there are many sites to consider; if this is the case, is 0.2.

the algorithm does a limited search. When removing a site,
the chosen site is the one corresponding to the largest diag-
onal element in the inverse of the current CD matrix. See
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5 Prediction validation, each of the n experimental runs is deleted in
turn, and the data at the remaining sites are used to predict

Predictions were made using standard formulas for condi- y at the deleted site. Computationally, this is not as
tional normal distributions. Let Yrr be the vector of the n exhausting as it seems, since it can be shown that the error
observed values of y,. The mean of Y,,(t) given of prediction for response mr at the deleted site i is
YD= Y=J) is:

e = q g - JJwj

9 r(t) = Pint + CtC51 (Yr,D - Pt.J,) (5.1) where

where CtD is a row vector that holds the n prior correla- gnu = CDD Yn.,

tions between Y..(t) and Y,, and J, is the column vector w = CjD Jn
composed of n l's. In order to use (5.1), one needs to
specify the prior mean a and the correlation function and q is the inverse of the diagonal of CIL. Here CDD is
(needed for CtD and CDD). In our approach, we arbitrarily based on the full n-run design. Th- cross-validation root

chose a family of correlation functions, indexed by a set of mean squared error is then:

parameters 0, and then used cross-validation to select p. I n 469 5 '2 (54)
and 0. CVRMSE = 245 X

For the present example, we chose the product piecewise
cubic correlation (Currin, et al. 1991): Given the Oj's, this is easy to minimize over the pr's, but

k minimization over the Oj's requires iterative search -- this

R(dd, dk) = fl Rj(dj), (5.2) is by far the most (computer) time-consuming part of the
j=1 prediction method.

where k is the number of predictor variables, and To save time in the search for the optimal correlation
parameters (0j's), we used only one response at each node,

Rjd(d)= 6( _)2 +6 I djl )3 dj I (5.3a) namely Y..3, the time to 50% filling. This seemed reason-
• Oable since we expected the other response functions to be

similar in form. The values of ltm3, m = .469, and

di)= 2(1 -d 1 )3, Id 2  (5.3b) Oj, j = 1.4, were chosen to minimize (5.4) with r=-3 and
S 2Ia divisor of 469n. Then, fixing the j's at these values, we

determined values of llmr for all m and r (again by cross-
Rj (d) = 0 I dj I E 13, (5.3c) validation), this time using all 5 responses at each node.

where I,=[0, O / 2], I2=[0j / 2, 0j], and I=[Oj , -1. In our first analysis, the cross-validation results at particu-

lar nodes indicated that the predictions of ymr tended to be

There is no particularly compelling reason to use this lower than the true values when the area of the charge was
instead of some other family of correlation functions. smaller than average and higher than the true values other-
However, the piecewise cubic does have two appealing wise. That is, the predictions had the flow front moving
features: (i) R(dj) decreases to 0 as I dj I increases to Oj, so too fast when the area of the charge was relatively small.
that predictions can be made more local or less local by We assumed that this was due to the increase in the height
controlling Oj, and (ii) 9 is a cubic spline in every tj if the of the charge when the area is small (since the volume is
other t's are fixed. (This is because each element of C, held constant), which would presumably result in a slow-
regarded as a function of tj, is itself a cubic spline.) Cubic ing of the movement of the front as computed by TIMS.
splines are quite highly regarded as interpolators and data At any rate, we decided to introduce an additional predic-
smoothers; Bayesian prediction based on (5.2)-(5.3) pro- tor: t5 = (t, - t2)(t4 - t3 ), which represents the approximate
duces an interpolating cubic spline with very little effort area of the charge, and we repeated the analysis. This
on the part of the user. reduced the cross-validation errors, so the area was used as

a predictor in all subsequent predictions.
To select the parameters by "leave-one-out" cross-
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We then implemented the prediction equations for all the root mean squared error for Ym3 over all nodes varied
responses in the form of a short computer code "FTIMS", from 0.01 sec to 0.68 sec, with a median of 0.27 sec. In
which serves as a fast emulator of TIMS for investigating these test cases, the "true" times to 50% filling, averaged
the effects of changing the shape and location of the over all nodes, varied from 6.4-9.1 seconds.
charge. The input and output files for FTIMS are of
exactly the same form as those for TIMS. The only differ- The range of applications of the current version of FTIMS
ence is that the output for FTIMS is based on the predic- is obviously quite limited. Further generalizations,
tion equations that followed from the computer experiment modifications, and tests would need to be made before it
we described here, rather than the finite element solution could be a considered a practical tool for optimizing this
to the differential equations of the model. particular sheet molding process. Even at that stage, we

would regard FTIMS as only an occasional replacement
FTIMS converts the TIMS input into the site (t,..... ts) for TIMS, when one wants to consider many scenarios
at which predictions are desired. The 15X1 vector CID of quickly and one is willing to accept an approximate result.
correlations between this site and the design sites are corn- The computing time for the run of FTIMS in the first test
puted using the values of 0j, j = 1..., 5, that we found to case described above was about 43 seconds on a Sun 3/50
be optimal by the cross-validation criterion. Workstation, only 5 seconds of which were used to com-

pute the predicted response vector at each node. The rest
The predictions of the responses y,, m = 1.9 469, of the time was used for input and output. We have
r = 1. 5 are made using (5.1), where the 15xI vector already noted that each run of TIMS takes 4-5 minutes on
w = Ci J, (which is the same for all m, r) is provided by a a Cray X-MP, so the availability of a practical and well-
fixed input file, as is the 15x1 vector gm, = C-1 yr,.D and tested version of FTIMS would permit more extensive
the scalar Iamr. FTIMS then adjusts the five predicted exploration of the effects of shape and position of the
responses at each node, if necessary, to incorporate the charge on the movement of the flow front.

knowledge that the true responses are nonnegative and
nondecreasing. (We do not expect this adjustment to be Acknowledgements
needed very often, since the predictions interpolate data
that satisfy these requirements. In the test case that we We are grateful to Prof. Charles Tucker of the University
report below, the adjustment was needed at only two of the of Illinois for allowing us to use the compression molding
469 nodes.) Monotonicity is enforced in a straightforward code (TIMS), to Dr. Alonzo Church of GenCorp Research
way, based on the notion that, of the five responses at node for permission to use GenCorp's version of it, and to Dr.
m, Yrn3 (i.e., the time to 50% filling) is generally the most Daniel Fleming of GenCorp Research for sending us an
reliable. This response is therefore left unchanged, and executable version and helping us learn how to use it.

Y¢m2 and 9'm4 are adjusted, if necessary, so that
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Drug Design : Examining Large Experimental Designs
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There is a beginning amide group, -NH2 , and a terminal
Abstract carboxyl group, COOK There are three variable regions

denoted by R 1, R2 , and R3 and there is a direction to the
candathe strcurs o e a anewdg t aineds b molecule. The following diagram captures these features.

candidate structures could be made and examined by

empirical testing. Medicinal chemists would prefer some
way of selecting a diverse subset from a list of candidates. R 2
Our statistical approach is to use experimental design lip_--_
technology for the selection process and to use computer
visualization techniques for examination of the resulting H
design. A small peptide case is used as an example. The 1 R
emphasis of this paper is on the value of visualization There are 20 naturally ocuring amino acid, so there are
techniques in understanding the design and in explicating the 20x20x20=8,000 possible tripeptides. The cost of making
design to Medicinal Chemists. enough compound for testing is about $500, so it would

Introduction cost about four million dollars to make all possible
tripeptides. Because this cost is too high and the process

There are countless numbers of molecules that could be would take a long time to complete, it was decided to make
made for testing as potential drugs. Ten million different a small, diverse set of tripeptides in the hope that a more

molecules have been made and registered; for most of these cost effective discovery process would result.
molecules that have the characteristics of typical drugs, there Numerically Characterize a Tripeptide
are millions of possible modifications. Since it is
impossible to make all these molecules, there is a need to Each of the variable regions of a peptide can be
create diverse -,q of molectile that span the range of ech of the vaibers of ate can be
possible structures. Hopefully, the "gaps" between the described using three numbers. The size can be measured as
compounds in the design set will be small enough that volume or surface area. Electronic properties can be
important compounds are not missed. Our idea is to measured. Also the lipophilicity of the side group can be

describe molecules numerically, use statistical experimental measured. Lipophilicity is the propensity to dissolve in a
design software to create a design set, and examine the water or oil environment. The blood is a waterresin ign using 3D rotating scattergraph techniques. environment, as is the interior of a cell. Between the two is
reultingoesign ilusitgroting ttergrap tnan oily cell membrane. Drugs typically have to pass from
The process is illustrated using tripeptides. blood to the interior o1 cells so the water/oil relative

What is a Tripeptide? solubility is important.
To numerically describe a tripeptide we combined these

A tripeptide is a linear, directed sequence of three three numerical measures of side group properties across the

amino acids. There are three variable regions, called side three positions using linear scales.
groups, joined in sequence by amide linkages. R

oI I "
0 1  R 3

H Linear -1 0 + 1 Gradient
Quad -I 2 -1 Width
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Note the three positions from left to right. For each of the Several comments are in order. Orthogonal
three numerical descriptors, size, electronics, and polynomials "fold" a dimension. For example, a tripeptidc
lipophilicity, we created three scores, mean, linear, and that has a large, small, large R-group in the three positions
quadratic. These scores have physical interpretations. For will be intermediate in size score for the mean polynomial
example, if one adds up the size of each side group at each of and hence not selected as a vertex, but it will be large for the
the three positions, then the score reflects the total size of quadratic polynomial and will be selected as a vertex. The
the tripeptide. As the tripeptide is directed, the linear quadratic polynomial folded the size space moving a center
component measures a gradient along the tripeptide. point to an extreme point. D-optimal design software
Because the R2 group is typically on the opposite side of selects points that are vertices in a space. An obvious

the tripeptide from the R1 and R3 groups, the size quadratic strategy is to select extreme points in the various
dimensions as starting points for a design. We are

score measures the width of the tripeptide. attempting to saturate a low dimension space and do it by
There are three measures of properties of side groups creating a higher dimension space that has the right vertices

and there are three scores determined for each so there are for the lower dimension space.
nine numerical measures of tripeptide properties. In addition
to these scores, we computed various interactions among the Software for Visualization
nine scores to give a total of 34 descriptive variables, ie each
of the 8,00() tripeptides was characterized with a vector of 34 The experimental design software produces an
numerical descriptors. The problem was to select about 10 analytical solution to the selection of representative
tripeptides from the 8,000 so that the resulting set was as ripeptides. Our resulting design had 82 points in a 34D
diverse as possible, space. To evaluate this design we used various 3D rotating

scattergraph programs. This work was done on a Macintosh
Experimental Design and we used MacSpin, Data Desk, and JMP. All three

software packages were effective, although each had different
There are about 10232 ways to select I(X) objects from features that helped in the visual evaluation of the design.

8,(X)0. We chose to use statistical experimental design Our evaluation proceeded as follows. First we selected
software to make this selection. Our problem was much a random set of 800 points from the 8,000. This was
bigger than problems typically attempted using statistical necessary as rotation speed was a function of data set size
experimental design software, so we had to improvise using Next, we added the 82 design points to the data set and
various commercially available and internally developed marked them with color and/or a distinctive symbol. We
software. then proceeded to look at various 3D projections of the

random and design points.
Experimental Design Software The following figures shows three 90 degree views of

the first three dimensions of the data.
1. Ethip PC
2. ACED VAX or IBM
3. OPTEX IBM3090
4. Inhouse Fortran IBM3090

Because EChip on the PC would handle only relatively
small problems, various iterative strategies were used. For
example, one can select a trial design from a small random
set of points, say 100 out of 800, do this several times, then . 1* .

make a final selection from the "winners" of each of the trial . ., .-
designs. Solutions on the PC took days to compute. " -" '"
ACED code was obtained from Dr. W. Welch of the N
University of Waterloo and modified to handle our large
problems. We increased memory allocations and in certain
instances compiled for a vector processor. We were able to .•
obtain solutions in hours on our mainframes. Vector ... " .-

processing greatly speeded up the selection process. After .

much effort we were able to obtain a good 82 point design. ":
This design had 55 percent G-optimality. Several designs
consisting of 82 randomly selected points were checked.
These random designs typically had G-optimality of I to 2
percent.
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Discussion

Visualization helps assure the statistician that
analytical techniques have been correctly employed. With
many analytical techniques it can be difficult to detect if

. . ..gross mistakes are made. It was quite assuring to the
, • .statisticians that the points of the final design seemed to

. . .:.. saturate the 34D space. To make the 82 tripeptides cost
about 50k dollars and took considerable time. Chemists and
managers had to evaluate to reasonableness of the effort.

.. .-. ' .""•Visualization was very effective in showing non-statisticians
I .what was being proposed and some of the limitations, eg the

* -"- ." , .gaps between design points, of the procedure. The

collaborators in this project were chemists and Medicinal
* , N Chemists tend to think in highly visual ways. 3D rotating

scattergraphs were very appealing to them.
Most of this work was done some time ago. In the

meantime desktop computers have become much more
powerful. Experimental design work could now be done on
workstations, particularly if overnight or weekends were
available.

The visualization of multiple dimensions is still a
problem. With 3D rotation, color and symbols it is
possible to get some feel for 4-5D, but we were working in
34D and we wanted to have good assurance of the saturation

Z. of 9D in our 34D space. After time consuming visual
examination, we became comfortable that we had done a

- . .reasonable job, but it did take time and if we had found
deficiencies, we would have had no recourse but to start all

• over again.

"..:.-;-- . Computer Programs

. .ACED is a copyrighted program of Dr. W.J. Welch.
. N.DataDcsk is a trademark of Data Description, Inc.

S.•EChip is a trademark of Expert in a Chip, Inc.
JMP is a trademark of SAS Institute Inc.
MacSpin is a trademark of D2 Software, Inc.
Optex is a trademark of SAS Institute Inc.

Three graduate students from North Carolina State
In MacSpin we could slice through the cloud ol points University worked on this project, Kim Carswell, Kris

to examine the number and spacing of design points in Latour, and Dan McCaffrey. Their work is gratefully
planes of the data cloud. acknowledged. Three professional statisticians also provided

Note that there are about 6,0(X) ways to select three insights and software, Randy Tobias, and John Sail of SAS
dimensions from the 34. Also note that if a certain Institute Inc., and William J. Welch of U. of Waterloo.
projection looks bad, design points are absent or poorly
spaced, then there is no easy way to fix the design.
Dropping one design point because it is visually close to
another in a certain subspace and adding a point to fill in a
void are likely to upset the design in other dimensions. The
visualization is reassuring, but it does not offer an easy way
to fix a perceived deficient design.
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Abstract motive for that aspect of the subject which Arbib [1] has
called "computational neuroscience." In what must be

This paper investigates approaches to the design of called the pioneering paper of the subject. McCulloch and
simulation experiments for training neural networks which Pitts [2] described how neurons with firing thresholds
are to be used as classifiers. Hierarchical clustering applied function as logic gates, and how interconnected groups of
to the ARTI and ART2 (ART = Adaptive Resonance neurons could perform operations describable by a logical
Theory) neural network architectures developed by calculus. In their next paper [3]. these authors proposed a
Carpenter and Grossberg [20.21] is the basis for the totally different computational model of memory: an analog
approach. A series of experiments based on this approach spatial map developed as a consequence of the dynamics of
will test the performance of ARTI and ART2 as pattern neural activity. While the analog approach has since
classifiers against a variety of real and artificial data sets. predominated in neuroscience. the two models are not
The issues to be investigated in these experiments include contradictory. but complementary, a point emphasized by
the sensitivity of performance to a variety of network Von Neumann [41 and apparent in many current neural
parameters, pattern characteristics, and pattern presentation network models. Neural analogies were also central in
disciplines. A background is provided for those unfamiliar Wiener's vision of a new discipline of cybernetics [5].
with neural networks in general, and with Grossberg's
approach in particular. The complementary nature of logical (digital) and dynamic

(analog) activity provides the second motive for
Some Background on Neural Networks investigating neural networks, that of designing massively
Neural networks are the latest super-hyped glamor parallel hybrid computers which mimic to some extent the
technology, following hard on the heels of "artificial architecture of the brain. The first "neurocomputer" was
intelligence." and many statisticians are no doubt wondering Rosenblatt's "perceptron" [6]. The subsequent flurry of
how much substance, if any, lies behind the smoke. Many excitement led to a brief period of heavy government
of the claims are of course exaggerated, and many techno- funding of "brain machines" in the 1960's in an atmosphere
promoters are pushing the use of neural network algorithms of techno-hype that makes the current round pale by
where (for example) a standard linear regression analysis is comparison. Hardware limitations, early technical failures,
sufficient to do the job. Nevertheless, neural networks and the devastating impact of Minsky and Papert's [7]
which can outperform traditional statistical, signal analysis led to a 15-year long "dark age" in which neural
processing and pattern recognition approaches already exist networks were eclipsed by "artificial intelligence."
and have proved their worth in a number of applications.
As with artificial intelligence, there are unresolved The current revival began in 1982 with the introduction of
theoretical and practical issues of "machine learning" which the Hopfield network [8,91. Since then. many
on the one hand are in desperate need of stutistical neurocomputing algorithms have been proposed or revived.
assistance, and on the other hand stretch both theoretical the most popular being the Boltzmann machine [10]. which
and applied statistics to their limits. owes a great deal to the work of statisticians Geman and

Geman [11], and above all, back-propagation [12,13]. which
There are many motivations for investigating neural has become almost synonymous in many people's minds
networks, and a large number of different approaches. with neural networks. Ease of implementation and some
Understanding brain function was the initial motivation for impressive, well-crafted applications of "backprop" have
the study of neural networks, and remains the primary unfortunately overshadowed its limitations, and the
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importance of the steady, ongoing developments which tained network on the testing set. Testing corresponds to
continued in spite of the "dark age." the statistical practice of cross-validation, and the issues

surrounding the tradeoff between bootstrapping and cross-
Another impetus for the current revival of neural networks validation are especially complex in this context.
is the availability of new technologies for hardware
implementation. Large-scale integrated circuits operating in Grossberg's Neural Principles and Adaptive
either the familiar digital mode or in analog (subthreshold) Resonance
mode based on neural architectures are already being While many authors have modeled specific aspects of brain
produced, and optical processors are in the design stage. function, the most comprehensive theory and the broadest

collection of models of cognitive activity has been produced
Statistical theory is already playing a role in undfrstanding by Stephen Grossberg and his collaborators [17.18.19].
learning performance [14,15]. In a closely related Their approach is to search for and apply general principles
development, statistical decision theory is the latest "hot underlying a wide range of experimental evidence from
topic" in the field of machine learning, not only for neural neurophysiology and psychophysics.
networks but also for "conventional" artificial intelligence
[16]. Grossberg begins with a physically-based model of neural

activity, leading to a system of non-linear differential
Learning Properties of Neural Networks equations for synapse activities and connection weights.
Unlike a digital computer, which performs its computations The time constants of the connection weights, which store
by following a series of programmed instructions, a neural long-term memory, are much longer than those of the
network is trained by presenting it with a series of examples synapses which constitute short-term memory. Unlike
of the inputs for which outputs are desired. If desired back-propagation and other feedforward algorithms which
outputs are presented simultaneously with inputs, and the do not always converge, global dynamic stability is built in
neural net adjusts its connection weights so that its output to the structure of these equations. The details of the
approximates the desired output, the training is called differential equations are highly flexible, allowing for a
supervised, otherwise it is unsuprvised. Once the training wide variety of architectures capable of representing
period is over, the neural network is presented with new important aspects of vision, speech, memory, conditioned
inputs for recognition. The parallel with statistical and unconditioned responses, and even reasoning. For a
estimation and prediction is immediately apparent. A closer more detailed overview, see the references above, especially
examination reveals that supervised learning resembles Chapters 1 and 13 of [18]. (Chapts. I and 12 of [18] also
nonparametric regression analysis if the output is appear in Anderson & Rosenfeld's collection of "classic"
continuous, and nonparametric discriminant analysis if it is papers [AR] as Chapts. 24 and 19 respectively.)
discrete, while unsupervised learning corresponds to either
cluster analysis or nonparametric density estimation. Adaptive Resonance Theory (ART) refers to the neural

feedback mechanisms which have been developed to ensure
A major difference between training a neural network and stable encoding of incoming stimuli within the framework
applying a statistical algorithm is that the input examples of this broader theory. ARTI and ART2 are general-
are presented to the network one at a time. In this respect a purpose neural network modules based on ART principles.
neural network resembles a recursive statistical algorithm Functionally, they provide a means for rapid, unsupervised
such as the Kalman filter. But what many neural networks learning and classification of incoming patterns (represented
learn depends on the order in which the patterns are as extremely high-dimensional vectors) based on "reset" of
presented, which is typically not the case for a statistical poor matches with generalizations of previously learned
algorithm. It is common practice to cycle through the patterns (templates), and "resonance" with good ones.
training set repeatedly until the network weights cease to ART1 is designed for binary ("black & white") patterns.
change, or some other criterion for stability is satisfied. In while ART2 operates on continuous-valued ("grey-scale")
some cases the order of presentation is varied randomly or patterns. Both ARTI and ART2 depend on a single
systematically from cycle to cycle, in others it is not. parameter called the "vigilance level" which determines the

fineness of the resulting classification. Higher vigilance
Despite these differences, it is clear that statistical methods results in a larger number of classes. Details will be found
will be useful in evaluating neural network performance. in Carpenter and Grossberg [20,21]. While most of the
The usual practice at present is to set aside a portion of the computing tasks performed to date by these "ART units"
training set for testing, and evaluate the performance of the
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involve pattern learning & recognition, this limitation is not (Vigilance zero places all patterns in one class, while a
inherent, value of one creates a separate class for each pattern). More

specifically, the open interval (0,1) is broken into open
As with many other neurocomputing algorithms, the natural subintervals: each subinterval is a range of vigilance level
computer implementation of ART is on an integrated silicon values which will give a specific classification. Relating
chip. optical circuit or other physical device. But until such learning to single-linkage cluster analysis may prove critical
devices are more readily available, simulations of neural in establishing the statistical consistency of the learning
algorithms will be carried out on digital computers. Unlike process; see Hartigan [23]. The mathematical
some other neurocomputing algorithms, "fast learning" demonstration of these results will be presented in a future
special cases of the ARTI and ART2 algorithms are easily publication.
coded, and many experiments and practical applications of
ART can be implemented in a digital computing Thus the order-dependence of the learned restult of training
environment, has been eliminated by a statistical algorithm which

"simulates" the neural network, handling the training
Order Dependence of Neural Network elements simultaneously instead of one at a time. It may be
Learning: A Remedy for ART1 feasible to characterize other neural network classification
The fast learning versions of ARTI and ART2 may be algorithms by a similarity measure, and use the same
regarded as clustering algorithms for the purpose of approach to achieve order-independent training of the
understanding training. In some contexts the order of network.
pattern presentation may be meaningful, and it should be
allowed to affect the resulting classification. But for many Simulation Experiments with Neural Network
technological applications, the presentation order of the Training
training patterns is irrelevant, and the dependence of the In many applications, an important part of the simulation of
classification of training patterns and templates on input ARTI learning and recognition performance will involve
order is undesirable. Furthermore it is a sign that the the use of hierarchical clustering to remove the effect of
resultant classification is statistically inconsistent. training order on what is learned. This presupposes, of

course, that the investigator has no predetermined
Under these conditions it would be desirable to find a way classification in mind. if he does. and this classification
to train the network to find a classification of the training agrees with a canonical one, his problem is solv-d (and
patterns which is free from this problem. For ARTI it is ARTI is an extremely appropriate architecture .- r his
possible to do so, and it appears likely that it will also be problem!). When this is not the case, a certain amoint of
possible for ART2. The resulting classification may be classification error may be tolerated (as it generaU) is in
described as a "canonical" one (it is not clear that it is discriminant analysis).
unique). If the nodes of the ARTI unit are encoded with the
templates corresponding to this canonical classification, If the training elements are very high-dimensional. v.,,
each training pattern will "resonate" automatically with the complex, or very numerous. this approach may not .,e
correct node, regardless of the order of presentation. computationally feasible. Even for applications where it is

practical, many other statistical issues must be resolved.
This result depends on the fact that the ARTI and ART2 The need to test the performance of the network raises the
algorithms may be characterized by similarity measures of issue of "bootstrapping vs. cross-validation" noted earlier.
the type used in cluster analysis. Furthermore, as a result of For example. how does one compare an assortment of
a 1978 theorem of Grossberg (Chapter 12 of [18] or Chapter hierarchical clusterings arising from bootstrapped or cross-
19 of [AR]), ART2 will correctly identify pattern validated training/testing samples? The answer will depend
classifications which are sufficiently separated from one in part on whether or not memory (templates in the case of
another. The author of this paper has shown a similar result ARTI) will be "frozen" in the implementation.
for ARTI [22], although the similarity measure proposed in
that paper must be slightly modified. By putting these two References
facts together, it is possible to show that a single-linkage
hierarchical cluster analysis of the training patterns based on [1] M. Arbib (1987), Brains. Machines. and Mathematics.
the similarity measure will produce a nested family of 2nd Edition. New York: Springer-Verlag.
canonical classifications corresponding to a family of ARTI
units with vigilance levels ranging from zero to one.
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--N CLASSIFICA'I'ION BY EM-TRAINED Ii¥iNAMVPLi. ,tRTIiICIAL NEURAL Nl .IS
BASE) ON IIII)IEN PERCEPIRONS.

ARTIIUR NAI)AS0...Slivech Recognition Gronp, Computer Science )epartment
INIBM T..J. Watson Research Center, IBox 704, Yorktown Ileights NY 10598

ABS'IRACT ploit. A DANN f R" - [0, 1] is defined as a condi-

tional expectation

We propose to classify points in Rd by functions (2) ](x) [ U) I X = x]
related to two-layer (a single hidden layer) fcedfelrward
artificial neural nets (ANNs). These functions, dubbed where I is the unit step function
dynamic ANNs (1)ANNs), arise in a rather natural (3) if y<0
way from probabilistic and also statistical consider- () ify ()
ations. We treat the binary classification problem and
outline an approach to the n-ary classification problem. and Y is jointly distributed with X. If Y were a linear
There are two key ideas. The probabilistic idea is that function of X then U would be a perceptron, in fact a
l)ANNs arc conditional probabilities in certain mixture 'threshold logic unit'. We shall construct Y by adding
models. The statistical idea is that these models, and noise to a randomly chosen linear function of X. We
hence the T)ANNs defined by them, arc conveniently cannot observe the identity of such a linear function,
trainable by an expectation - maximization (1,M) al- hence the 'hidden perceptron' of the title. This con-
gorithm. struction produces a joint distribution P for (X, Y) in

which
IN''RODU"I'ION k

(4) flX) L l fi(xfr?(Zwii+H~)
Consider classification of points x e Rd (feature j=1

vectors) by using continuous functions of x for the 'The f (4) differs from fin () only in tht the
probabilities of classes. For binary classification this r in ameans any continuous function Rd --, [t), I] and for real constants i arc replaced by certain hidden state
n-ary classification any continuous function from R1d probability functions ir,(x). We shall argue elsewheren-ar clssifcaton ay cntiuousfuntionfro Rd that, as is the case fo~r the ANN funictions fi, the class
to the n - I dimensional simplex in [0,1]". In this pa- ta As isntheocs f the unio ns fpoite lper we focus on binary classification and merely sketch of I)ANN functions f can uniformly approximate on
ther wenfo to n-ary classification, a compact set any function which is continuous there.the generalization tIt will become clear that l)ANNs arc not ANNs except

in the degenerate case of where the irj are constant in
fucbneino ac9)mhas t s tt ny cntnuos x; this corresponds to a certain statistical independence

function defined on a compact set in Rd can be uni- i u oe.Cncsl nANwt n rmr

formily approximated by a two-layer (= one hidden in our model. Conversely an ANN with one or moreformy aproimaed y atwolayr ( on hidcn negative cx, cannot be a l)ANN so neither class con-

layer ) artificial neural net (ANN) fi-, i.e. a function tains the other.

of the form

k i_ 'he motivation for this approach to classification(I) fc(x) is both theoretical and practical. On the one hand we

wish to use statistical optimization criteria, such as MI,
or Bayes, for training the classifier, and at the same

where k is a sufficiently large integer, er: R - [0,1] is time we wish to accomplish the training with the sin-
a sigmoid and the a,, w~i arc constants. Barron (1991) plest numerical algorithm. For this reason we coin-
has given a bound on the number k of of summands pletc the choice of the form of the joint distribution of
required for approximation within prescribed precision. (X, Y) so as to also allow the construction of an EM

algorithm (l)empster ct al.(1977), Mcilijson (1999)) for
A different class of approximating functions, which estimating its parameters. The EM algorithm for

we call dynamic artifical neural nets ()ANNs) will be learning the distribution I' thus becomes an indirect
introduced. Unlike (I), these functions arc based on a but simple training algorithm for i)ANNs flx) . By
probabilistic description of the classification process the way of contrast: the standard current approaches
and hence enjoy certain properties which we shall cx- using ANNs consist of some curve filling ("back
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propagation" etc.) methods. These typically vary the the coded version (X,Z). The probability element for
constants defining f so as to minimize the sum of (X,Z) has the form
squared errors in predicting the unit sum bitstring z (6) gd(x)p(zjx)
which encodes (see the discussion below) the index of
the class corresponding to x by its expectation .fx). where gd is a density on Rd and for fixed x , p(z.x) is a

probability on {(0, ). In the terminology of the IFM al-
TilE CLASSIFICATION PROBLI N gorithm, a sample from the distribution of the observ-

able pair (X,Z) is the 'incomplete data' and g,(x)p(zjx)
A probabilistic version of the classification problem is the incomplete data model. When this is

is this: given a completely specified joint distribution parametrized as gd(xjl)p(zlx, 0) then the corresponding
P of the random pair (XI) with XE Rd an d incomplete data likelihood function is
I c {0,..., n - I), find a classifier function T
T: Rd {.. , n} which minimizes the probability of (7) IM(o)= ,log gd(X,) + log P(z,0)
misclassification 1(P(AV #/). The well known sol-
ution is to let 'I(x) be the least (say) nonnegative inte-
ger which achieves max P(I = iI= x). A direct numerical approach attempts to maximize (7).

1< <" Instead, the FM algorithm iteratively maximizes a dif-

In our approach to classification a coded version Z fcrent function which however has a maximum at the

of the class index I is introduced. Corresponding to a same 0.

random feature vector X let f.Z memberof Ibrace 0,1
rbrace sup m be a one-to one encoding of the class In order to model the generation of the data and to
index I as a bitstring. For tile sake of concreteness the construct an E M algorithm, we now introduce the
reader may wish to regard Z as the binary expansion complete data model. The idea is to make local models
of the class index I and in this case in is the least in- of the joint distribution of the feature vector X and a
teger n > = log2n. The more popular encoding consists noisy locally linear function Y whose only purpose is
of encoding the event I = i as the bitstring associated to define the classifying bit Z. L.ocality is achieved
with the i- th vertex of the n dimensional simplex; in through the use of a mixing variable .1 e 1I, ... k) with
this case m= n. It is obvious that from the probabi- P(.I =./) = (Xi. let
listic point of view it does not matler which one-to-one S , X Rd,
encoding one chooses. Contrast this with the statistical Y , Y.I) X e I,  R .e J E k

point of view, i.e. the typical practical situation wherein denote tile complete data. Conditionally on .1 =j the
the joint distribution of (X,!) is not specified corn- density of (X. V) is d + I dimensional Gaussian with
pletely; in this case one has some training data mean vector

(5) 7.= {(xit)I= I. N)

to work with instead. We assume that '1 is a random
sample from the distribution of (X,/). The usual statis- (9) (it)

tical approach, which (for the lack of a better idea) we
also adopt, is to estimate the joint distribution 1) by a dl

distribution Pr and thereafter ignore the error of the
estimate. Since some functions are easier to estimate
than others, it is no longer clear that different en- and covariancc matrix
codings are equally good. We do not pursue the cn-
coding issue but simply assume that sone encoding is Fr, 1 . F1 ,/
specified. It is likely that ultimately some problem de- (10 FI i 122
pendent encoding will will be preferred to either of the
two simple encodings mentioned above; an encoding Observe that X has a Gaussian mixture distribution
chosen to optimize the performance of the trained describing the feature space and Y is the noisy signed
classifier. distance to a hyperplane determined by tile coefficients

of the random linear function F( IX,.). (Actually the
BINARY PERCI;PI'RON AND IlS I)ANN Gaussian assumption is not necessary; any tractable

d-dimensional kernel will do here. The conditional
We now fix in = I so Z is just a random bit. A joint distribul ion of Y given both X = x and .1 =j can also

distribution for the input-output pair be replaced by any tractable non-Gaussian distribution
(X,I) e I x fI ,... n) implies a jointl distribution for but the latter must have a location parameter which is
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linear in x. The d + I- dimcnsional Gaussian assump- hence to estimate the complete data log likelihood. The
tion automatically satisfies this condition.) latter is then (trivially) maximized to get 0'> in the r-th

iteration.

Without loss of generality we call parametrize the
rest of rj as follows: TIlE E-STIE.1 OF TRAINING

(II) rl 2j = F' 2 1i - r'l lift
The I'-S'TFP in the usual Gaussian mixture prob-

where fl, are the regression coefficients of the regression lem estimates all the unobservable complete data suffi-
of Y on X given .1 =j and the variance of Y given cient statistics. These are unobservable because .J, the
.=j is mixture index, is hidden. Our problem is similar but

2 differs from this in that in addition to the unavailability
(12) F22  = ' f of./, the r.v. Y. is also hidden except for its sign. Thus

the conditional expectations required here are based on
where . is the conditional variance of Y given not only less information than in the usual mixture problem.
.=. but also X = x (residual variance). We now put Let A(A) be I or zero as A occurs or not. In our setup

(13) Z = U(Y) the complete data sufficient statistics are

where 1U is the unit step. Then N --k

E(ZIX = x) = Z P(,I =iIX = x)P(Z = I IX = x,. =j) SXj =SX 6(.l t1 S

k SXX'j = ( 45(.1 =J)XtXt"

(14) = Zlri(x)P(Y > oIx = x,1 =) (1 )

L ,rj(.,), J " + X('IJ s ,5(.1, = Y,1

= I v p~x
SY L 5(.It , j Y,

where ir,(x) = ir,(x)(x) = P(.1 = /IX = x) and (1) is the =

fllj
standard normal integral. Setting wi1 = f and The corresponding conditional expectations are

d 7'

v Y- N Yp{(X, Z,)
w=j- . , and choosing the sigmoid to be
standard djaussian CI)F SX tlI P (XZ)X t

(15) (y) = 11y) - (u)du (xx pj(X,, Z,)XA",•0-o (19) 5xr=
with- 2,u S2r .YA- j =_ j(Xt, Zt) yt()A' t

with 4(u) = (2 1r) -e 2  we see that the DANN in (4) P
is precisely the conditional expectation = I

(16) Jx) = F(ZIX = x) P(Z = I IX =x).

sy= ZpiX,, Z,)i)
TIE TRAINING ALdGORITIlM t=

where
i Lt 1 denote a vector whose components form a list

of all the unknown parameters of the distribution P1(Xt, Zt ) = I'(I t =jIXt = x, Z, = z1; 0),

(1 7) 0 = ((aIL/v/,FiNI = I, .... , k). (20) Y0) = E( 5(.I) YIX,Z; 0),

After initializing 0 = 0 the FNI algorithm for expo- y2t(/) = "(( V-1I = , X = x; 0)
nential family (our setup) iterates two steps, (E): get
the conditional expected values of all complete data with 0 = 0' 1. It is easily checked that p,(x,1) is given
sufficient statistics given the incomplete data and (M): by
use these to estimate their unobservable versions and
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d "and 'N'. We tested tile modcl on an independent set
x)j Woj +.wix t  of test data from tile same phones. Our best results

wcre obtained with 5 hidden states yielding an error(21) kdrate of 7.5 percent on the test data and 3.0 percent onl

k ( '\ the training data. This is virtually identical with results,

Z ir(x)I) oi + vnyiX1 on thc same data, that had been obtained by training
i=l = / and testing comparable neural nets with the usual fixed

and where, similarly, p(x,) is given by weights.

7r(x)HE n-CLASS PROB IN.

Suppose that the bitstring encoding Z e f0, }" is
(22) kgiven and (,V,Z) has some joint distribution. Decfine

k the complete dlata model by
7--] ri(x)(D w0i wlix t  (26) (X, Y,./) X e Rd, Y c R"', .I e { 1,... k}.

and set Zi = U( Y,) i = I, ... ,m. In this case condi-
We still need to define Y), 2(/), andXYQi). Since tionally on . =j the density of (X, 1) is chosen to be
E(XYIX,Z) = X E(YIX,Z) , we need only the first two. d + m-dimensional Gaussian. For convenience in
We have for r = 1,2: computing P(1 = ilX = x) = P(Z = zlX = x) we lake

(23) K(.J) X = x,Z = Z) the conditional covariance matrix of Y given bolh
= p(x,z)F( YIX = x, Z = z, .1 = i). X = x and .J J to be diagonal. Then P(Z = zJX = x)

is given by

The last expectation may be evaluated as follows. k m
W riting (27) J lrj(x)HPpi(x)"i( I - p I) - 2i

(24) = (x) = vi + Z f/it(x, - i)
where

we have (28) pY(x) =!( 'i > IX = x,.1 =.).

(25) 'E YrIX = x, Y > ( )0,,/ .1 (x) We shall argue elsewhere that as in the case of in =
(25(() (X) ± = YY1)rY > ( I ) -)) the lBayes classifier based on the true joint distribution

of (X,Z) can be uniformly approximated with such
where Yo; is a standard scalar Gaussian r.v. with mean forms. ''he FM algorithm is again applicable; the only
zero and variance one; its two conditional moments are new object is the conditional covariance between
not hard to obtain in closed form and we omit them. components of 1' given both X and ./. While this is zero

by construction, enforcing this constraint in tile M-step
TiE M-STEP OF TRAINING requires some care.

Assemble the results of the F-S'I'iP to form esti- REFERi.NCES
mates of the k mean vectors and the k covariance ma-
trices of the model and extract the required regression 1. Barron, A.R. (1991), 'Universal Approximation
coefficients flj and residual variances V. Compute the Bounds for Superposition of a Sigmoidal Func-
neural net weights and thresholds w# after the last iter- tion', to be presented at the I11FF Information
ation. 'heory Symposium, Budapest, .lune 1991.

2. Cybenko, G. (1989), 'Approximation by Super-
positions of a Sigmoidal lunction', Math. Control

We trained various versions of the model on data Signals Systems, 2, 303-314.

generated by the model itself. In these experiments we 3. l)empster, AP.. laird, N.M., Rubin, D).l. (1977)

verified that the model behaves as the theory predicts; 'Maximum Likelihood from Incomplete Data via

in particular we were in each case able to recover the the FM Algorithm', .. Roy.Stat.Soc., B, 39,1-38.

parameters of the generating model with reasonable 4. Mcilijson, 1. (1999), 'A Fast Improvement to the
accuracy. In addition, we trained the model on 50 di- FM Algorithm On Its Own Trms',
mensional speech data belonging to the phones 'M' T.Roy.Stat.Soc., B3, 51, 127-139.
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COMPARING MATHEMATICAL AND ALGORITHMIC MODELING IN BIOLOGY

G. Arthur Mihram, Ph. D. Danielle Mihram, Ph.D.
P. 0. Box No. 1188 Doheny Memorial Library

Princeton, NJ 08542-1188 University of Southern California
Los Angeles, CA 90089

Abstract struggle being conducted as well in the context of computer-
ised modelling of social systems in that same decade by the

The paper uses several examples to illustrate a distinctive mathematician Kemeny (1969).
difference between alternative models of biological systems: Completely generalizing this struggle to biological
those of the mathematical vs. those of the algorithmic format. systems, including not only neural networks/organs but also
Primary among these comparisons are the models of research- socio-political organizations, was the 1975 Ludwig von
ers dealing with neural networks versus those of artificial Bertalanffy Lecturer, J.G. Miller (1978). Miller notes that
intelligence [AI] researchers who predicate their work on the there are seven levels of living systems, from the cell to the
cognitive sciences. We show how the literature of biology 'supra-national society',and thatatany level there are nineteen
itself reveals why one approach to the modelling of biological functional subsystems, the central one of which is the system's
systems is more likely to succeed than the other. We compare decider. Since any algorithm is a recipe for a decision-making
historically the acclaimed successes of non-mathematical bi- process, Miller unknowingly [cf. Mihram (1979)] had uncov-
ologists [e.g., Darwin's ORIGIN OF THE SPECIES and ered the preference for algorithmic, as opposed to mathemati-
Lorenz's paper, "Fashionable Fallacy of Dispensing with cal, models among biologists, sociologists, and sociobiolo-
Description "]. gists as well.

We include in the paper a review of the literature
dealing with the principles for conducting the design and 2 The Algorithm
analysis of experiments with computerised stochasic models,
applicable whether their dynamics are 'controlled' within the Wheatley and Unwin (1972) made quite explicit what Mihram
computer mathematically or, alternatively, algorithmically. (1970) had suggested quite strongly: viz., that algorithmic
Exemplary models of Al systems are the current software modelling is distinctly different from models written in the
packages being implemented throughout the research and language of mathematics:
university communities: viz., bibliographic retrieval An algorithm is a mathematical recipe. From this, its
progammes which, e.g., include statistical analyses for the meaning has been extended to cover a recipe in any
purpose of suggesting alternative subject-search strategies. field of activity.

Wheatley/Unwin (1972)

1 Introduction This distinction between the algorithm and mathematics is,
however, quite grammatical [cf. Mihram (1973)]: the algo-

For the past four decades [since, e.g., McCulloch and Pitts rithm is a second-person expression, or command, whereas a
(1943)], researchers in Al have become very slowly aware of mathematical statement is expressed in the third person (e.g.,
the distinctive advantage which algorithmic models possess F =mXa).
over those other computerised models of the strictly math- The pertinence of the distinction to biologists, how-
ematical format. Quite recent authors [e.g., Amit (1989)] ever, liesinMiller'srevelation(1978)thateverylivingsystem,
persist, particularly in the literature of neural networks, with no matter how small or complex, contains as its central
their fascination with mathematical modelling, as though the subsystem its decider:
success of the mathematically-expressed Newtonian models the executive which receives information from all the
(of physics) will automatically be conferred on their own work. other subsystems and transmits to them information

On the other hand, Mihram (1973) noted that philoso- outputs that control the entire organization.
phers Sayre and Crosson (1963) had been struggling with the Miller (1978)
non-mathematical ("non-formalized") natureofcomputer pro- Thus, if one is to capture the dynamics of any living system in
gramming as it might affect the modelling of mind, a mental terms of a computerised model, one would do well to employ
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the algorithmic (as opposed to mathematical) construction. pressions.
The algorithm is ideally suited for capturing the dynamics of
any living system because it can precisely describe the condi- 4 Concluding Remarks
tions under which a change is made, a decision or choice is
enacted. The history of science actually reveals that one need not use

mathematics in order to qualify as a scientist. Newton may
3 Exemplary Systems well have given mathematics an esteemed place among lan-

guages used by scientists, and the French philosophers/math-
Many researchers in Al take, nonetheless, the mathematical ematicians/scientists of the early nineteenth century only en-
approach: e.g., researchers dealing with neural networks [cf., hancedthis image [cf.,e.g., Mihram, 19911 whenthey virtually
e.g., Newman's paper in these 1991 proceedings and Gagliano 'institutionalized' the notion of scientific method as being no
et a] (1991)] express their models in mathematics, then use more than the theorem-proving mechanism of mathemati-
computer algorithms to exercise a particular solution to these cians.
mathematical relationships. Ampere and these other early nineteenth-century

This is the same approach used by the authors (e.g., scientists were in actuality only serving to confirm the correct-
Forrester and the Meadows-es) of the once-highly-touted ness of Newton's laws: they first accepted/assumed that New-
"world models": viz., describe the world's economic develop- ton was correct, then assumed (like the geometry student in
ment in terms of differential, or difference, equations, then go quest of the terminating 'QED') that matter is particulate in its
solve (arithmetically evaluate) this 'system' of time-depen- character, and then by mathematical argumentation derived
dent equations on a computer [Mihram (1974a)]. Unfortu- results (such as the inverse-square laws of electricity and
nately, here the underlying algorithms mime the passage of magnetism).
time by: (a) computing, from the present status, the status at the However, scientists (and biologists, particularly)
next step of time; and (b) advance time by one unit; then, (c) should recall the success (also in the nineteenth century) of
using the same algorithms, re-compute the next status .... Charles Darwin. His ORIGIN OF THE SPECIES, if it were

Unfortunately, such an approach fails to capture the not for the editorial insertion of the pagination sequence,
quite erratic dynamics of any living system: one needs to write contains virtually no mathematics. As importantly, they should
an algorithm which, like the particular living system which it heed the message of Nobel Laureate Konrad Lorenz:
describes, is activated not regularly but, rather, if and when The Fashionable Fallacy [Today] of Dispensing with
required. Description [in Favour of Mathematics] "...." I have

The algorithmic, as opposed to the mathematical, never in my life published a book or a paper with
among computerised models is thus far better suited to capture either a table or a graph in it.
with scientific credibility the dynamics of any living system Lorenz, 1973
(or, of any system containing at least one living component). Scientists who convey their model of the reality which they

The researchers dealing with neural networks via have observed may choose a natural language (the first-person
their mathematical models typically are describing motor format: a la Darwin), the language of mathematics (the third-
activities of the living system; however, artificial intelligence person format: a la Newton), or computer programming (the
researchers, attempting to capture the decision-making capa- second-person format). The decision/choice must not be a
bilities of a living organism, are finding that the algorithm is mere predisposition, but, rather, a result of a reflexion [cf.
much better suited to their task than is mathematics, notwith- Mihram and Mihram, 1984; Mihram, 1974b] on the intrinsic
standing the negativistic approach of writers like Winograd/ character of the natural phenomenon, or system of phenomena,
Flores [cf. Mihram, 1989]. being studied/observed. Are deciders to be mimed?

As a further example, consider the currently increas-
ing use of bibliographic retrieval systems in major research References
libraries. These software packages, or computer programmes,
are in actuality simulation models of a librarian-researcher Amit, D.J. (1989), World of Attractor Neural Networks, Cam-
team seeking pertinent literature citations on a specified logi- bridge U. Press, London.
cal combination of subjects. The models become, in effect, an Gagliano, R. et al (1991), Pre- versus Post-Synaptic Long-term
AI model of a librarian or researcher at his/her task. They are Potentiation in Neural Circuits, Modeling & Simulation 22:
not mathematical, but they do describe the reason why algo- to appear, 1991.
rithmic models are much better suited forcapturing the dynam- Kemeny, J.G. (1969), Mathematical & Computer Models of
ics of any living system than is mathematics: the decisions are Large Systems, Cybernetics & the Management of Large
described precisely by algorithms, not by mathematical ex- Systems, E.M. Dewan, ed., Amer Soc Cyber., Washington,
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Checking the Validity of the Bootstrap Analysis by Bootstrap
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Abstract v[s(Xn) - 8(F)] is nondegenerate. However, the pro-
posed algorithm is also applicable to other measure of

We describe a method for using pseudo realizations of errors, such as standard error.
data to check the validity of the simple bootstrap anal- In this case, the bootstrap estimate of 4) is the cor-
ysis considered in Efron (1979). A simulation study is responding kth percentile of ,fn[s(X*) - 0(F)]. Here
performed to demonstrate the usefulness of the proposed Fn is the usual empirical distribution function based on
method. Xn and s(Xn) is the corresponding estimate based on

the bootstrap sample X n = (X*,...,Xn), which is a
random sample of size n from F,.

I INTRODU CTION The proposed algorithm is motivated by the following
argument. Suppose that we have two observed samples

Simple bootstrap analysis, as described in Efron (1979), of size n from F. Denote them by x,,l and Xn2, respec-

gives nonparametric estimates of accuracy of statistic of tie Alto u F. i no wnity is a fd nube r.

interest. Major advantages of a bootstrap analysis are tvl.Atog sukon ti ie ubr
iterst.m Majoridvan tges f a btcaswhtr analyi a When a bootstrap analysis is a valid one, the two boot-
its simplicity and its use at the case when the analy strap estimates of based on X and X 2 , respectively,
method is intractable. However, it is not clear in general should not be too different. In other words, the vari-

whether a bootstrap analysis is valid. Refer to Bickel abil o boorap et on over r s of X,,
and reeman(198) fr eampls tat he botsrap ability of bootstrap estimate of 0 over realizations Of Xnand Freedman (1981) for examples that the bootstrap should be "small" compared to 4) when the bootstrap

analysis fails. In view of this, an algorithm is proposed in analysis isvald.

this article for using pseudo realization of data to check

its validity. The specifics of this algorithm is given in In summary, a bootstrap analysis is not valid if the

Section 2. bootstrap estimate of 4 varies "dramatically" over real-
izations of Xn. Therefore, the accuracy or the sensitivityLet us start with a brief review of the one-sample of bootstrap estimate of 4) over realizations of X,, should

sim ple bootstrap analysis. Suppose the quantity of in- be analyzedp beforetreportingethee bootstrap statistics.
teret i O(F, wich s aparmete ofunknwn is- be analyzed before reporting the bootstrap statistics.

terest is 0(F), which is a parameter of unknown dis- Hwvr ao udei bevn h aiblt
tribtio F.Let ~xn bean etimte f O() bsed However, a major hurdle in observing the variability

titon F. Lheret= (1,..,x,,) entesaealit of of bootstrap statistics over X,, is that the statistician
radon sampe X = (X, , X) enos a .realizatn o has available only one realization of Xn, xn. Hence we

need to assess the accuracy Of (Xn) as an estimator of propose to generate "pseudo" realizations of Xn basedneedto sses te acurcy f sX, asan stiato of on a smoothed estimate of F to get an estimate of the

0(F). In this article, the measure of accuracy, 4, will varabltofthe bstap estimate of thm
alwas b reerre toas he kh prcetileof he is- variability of the bootstrap estimate of 0. This algorithm

always be referred to as the kth percentile of the dis-
can be called smooth bootstrap-after-bootstrap accord-

tribution of V'-[(X,,) - O(F)] when the distribution of ing to Efron (1990b). This idea is, strictly speaking, not

'Research supported by the National Science Foundation under new. It is just another application of the bootstrap. This
Grant No. DMS-8901556.
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problem is also considered in Efron (1990b). It suggestes tical disadvantage of this algorithm is that it is compu-

to use the jackknife method to estimate the variability of tationally expensive. As a rough guide, the execution

the bootstrap estimate of 0. This leads to the so-called time of the proposed algorithm is roughly equal to the

jackknife-after-bootstrap method. execution time of evaluating the bootstrap method by a
Monte Carlo experiment. Through various reports in the
literature and the greater availability of fast computer,

2 Proposed Algorithm the computational cost should not be a big problem in
According to the discussions in Section 1, the following today's computing environment.

algorithm it proposed to assess the "accuracy" of the In the implementation of proposed algorithm, four

simple bootstrap analysis. This algorithm proceeds in issues are needed to be addressed. Namely,

three steps: I. the prescription of F,, (in Step 1),

Step 1. Construct a smoothed estimate of F, F,. (See 2. the choice of B (in Step 2),

Section 3 for discussions on the construction of F,,.) 3. the computation of bootstrap statistics (in Step 3),
Secton 3forand

Step 2. Draw B random sample of size n from F,,, say ars

for I < b < B 4. the variability of bootstrap statistics (in Step 3).
For the first issue, there are various methods to con-

Xbi = Xbi, X,bi "Snd F i = 1,... , n. struct a smooth probability density in the density esti-
mation literature. The smooth probability distribution

Call these the test bootstrap samples, X~b = F,, can be then obtained by an appropriate integration.

(Xsbl,. .. X,bn), and Xb = (zbl,.. -X,bn)- Two natural questions are then raised. They are smooth

Step 3. For each test bootstrap sample xb, find its boot- distribution function versus empirical distribution func-

strap estimate of 0, and then study the variability among tion and the choice of smoothing scheme. For the first
those B bootstrap estimates of 0. question, refer to Hall, DiCiccio, and Romano (1989)

When a "significant" variation among the B boot- and references therein. As a remark, the use of smooth
strap estimates of 4 is found, it indicates that the result probability distribution may not be appropriate if X
of bootstrap analysis is dubious. Let Fnb be the empiri- is a discrete random varible. For the second question,
cal distribution function based on Xb. Since Fnb lies in we are investigating the smoothing scheme based on the

a neighborhood of F.n, the found "significant" variation logspline density estimate in Stone and Koo (1986). The

means the lack of uniformity over the above mentioned result will be reported elsewhere. An advantage of log-

neighborhood. Hence, we may cast doubt on the useful- spline density estimate over other smoothing schemes is

ness of bootstrap analysis since Fn lies in a small neigh- that most widely used density functions are oi the form

borhood of F. No specific recipe on measuring variation log-spline.

is given in this article. See Sections 3 and 4 for further For the second issue, we suggest to let B be around

discussions in this regard. n(n - 1)/2 based on the following reason. When the

If F,, is replaced by Fn at Step 1 of the proposed al- jackknife-after-bootstrap method is used, the accuracy

gorithm, the implementation of the proposed algorithm measure of bootstrap statistics is obtained by repeat-

is almost identical to the implementation of nested dou- edly deleting a single observation. On the other hand,

ble bootstrap algorithm in Eeran (1987) and others. x,b may contain any number of xi with different prob-

However, these two algorithms are proposed with totally abilities among those B pseudo realizations of x if F

different rationale. The nested double bootstrap is pro- is in place of F~n in the proposed algorithm. Further-

posed to improve the bootstrap estimate of 4' whcn the more, Theorem 6.1 of Efron (1982) attempts to view the

bootstrap works, but the proposed algorithm is used to jackknife as a linear approximation to the bootstrap. As

estimate the variability of the bootstrap estimate of 4'. it is known, the jackkbife method may have trouble for

markedly nonlinear statistics. To avoid the proposed

3 Discussion algorithm to be reduced to the jackknife-after-bootstrap
method, we would like to choose B large enough to guar-

An algorithm is proposed for evaluating the variability antee that these pseudo realizations should include some

of a bootstrap analysis over realizations of X,. A prac- of the "delete-many" samples.
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For the third issue, it is known that one cannot usu-
ally compute analytically the bootstrap statistics except
in special cases or in small samples. A viable alternative
is to approximate the bootstrap distribution numerically
by means of a Monte Carlo sampling. When this method
is used, the number of Monte Carlo sampling will be
constrained by the available computing power. It then .

raises the question on how many bootstrap replications I
must be taken to insure that the observed variability at _j --'_/ _ "__"__
Step 3 does not come from the randomness added by the 6 4J 41 A

Monte Carlo sampling. Note that a bootstrap sample is
the same as a random sample of size n drawn with re- FtNomiwLaBods*A.kMi V
placement from the actual sample x,. For simple statis-
tics, some obvious estimate on the variability of Monte
Carlo sampling can be obtained based on Berry-Essden
type bound. It turns out that a large number of replica-
tions may be needed. However, Efron (1990a) suggested
that between 1000 and 2000 replications are to be appro-
priate. Currently, we are investigating this error bound
along the line of Efron (1990b). 0-

For the last issue, the variability can be revealed by 41 .;U

various available exploratory data analysis tools such as
the one used in Section 4. Formal tests similar to these FonICaid, Bira
proposed in Nair (1982) can also be used.

4 Simulation Study
A Monte Carlo study was performed to demonstrate 0

the usefulness of the proposed algorithm in Section 2.

For simplicity, we consider the estimation of popula-

tion mean by sample mean based on 50 observations. .11 •

The two cases considered for F are Normal and Cauchy,
and the measure of accuracy is various percentiles. The F4:C,kdtriffd*
specific percentiles considered here are 5th, 10th, 16th,
and 32nd. Since the density function of Normal is of
the form log-spline but the density function of Cauchy
is not, we replace F,, in Step 1 by F in this Monte
Carlo study to avoid a possible bias toward the pro-
posed algorithm. Therefore, the algorithm used here .

is the bootstrap-after-bootstrap method instead of the
smooth bootstrap-after-bootstrap method as described

in Section 2. Also, a Monte Carlo algorithm is used in .

Step 3 to find the bootstrap estimate of 0.
For each realization of 50 observations, B (in Step 2)

is set to be 1000 and the number of bootstrap replication
(in Step 3) is 2000. Results are then summarized in Fig-
ures 2 and 4 for the first realization. In these figures, the
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plotted curves from left to right are the estimated density confidence sets. Biometrika 74, 457-468.
functions for those four percentiles arranged in ascend- Bickel, P.J. and Freedman, D.A. (1981). Some a.ymp-

ing order. Each curve is obtained by applying the kernel totic theory for the bootstrap. Ann. Statist. 9,
smoother over 1000 bootstrap percentiles. For kernel 1196-1217.
smoother, a triangular kernel is used and the bandwidth Efron, B. (1979). Bootstrap methods: another look at

is set to be one-quarter of the sample range of these 1000 the jackknife Ann. Statist. 7 1-26.

bootstrap percentiles. However, Figure 4 is constructed Efron, B. (1982). The Jackknife, The Bootstrap, and

without the normalizing factor V5-. This experiment is Other Resampling Schemes. SIAM. CBMS-Nal.
then repeated for another 99 times. The characteristics Sci. Found. Monogr. 38 Philadelphia.

of all figures from the next 99 realizations are similar Efron, B. (1990a). More efficient bootstrap computa-

to Figures 2 and 4 correspondingly. Here the character- tions. J. Amer. Statist. Assoc. 85 79-89.
istics refers to the amount of overlapping among these Efron, B. (1990b). Jackknife-After-Bootstrap Standard

four density functions and the shape of the density fuiic- Errors and Influence Functions. Technical Re-
tions. However, the "center" of these curves does vary. port #339, Department of Statistics, Stanford
For example, the median of the estimate4 5th percentile University.

density function over these 100 experiments ranges over Hall, P., DiCiccio, T.J. and Romano, J.P. (1989). On

[-1.119, -2.078] when F is Normal. smoothing and the bootstrap. Ann. Statist. 17,

In order to check whether the estimate of the vari- 692-704.
ability of the bootstrap estimate of 4 obtained from Knight, K. (1989). On bootstrap of the sample mean

bootstrap-after-bootstrap is close to the variability of the in the infinite variance case. Ann. Statist. 17
bootstrap estimate of 4,, we compute bootstrap statistics 1168-1175.

based on 2000 replications for 100 realizations of 50 ob- Nair, V.J. (1982). Q-Q plots with confidence bands
servations. Figures 1 and 3 summarize the result from for comparing several populations. Scand. J.

those 100 realizations. They are constructed in the same Statist. 9, 193-200.
fashion of as Figures 2 and 4. Figure 3 shows clearly Stone, C.J. and Koo C.-Y. (1986). Logspline density
that the four estimated density functions have a concen- estimation. In AMS Contemporary Math. Ser.

tration around [-10, 01 and spread over a wide range of 29 1-15. Amer. Math. Soc., Providence.
values. These just reflect the fact that there are a few
wild outliers presented in most realizations of 50 obser-
vations.

Based on Bickel and Freedman (1981) and Knight
(1989), the bootstrap analysis is useful for Normal but
is not good for Cauchy. Figures 2 and 4 confirm it. The
dissimilarity between Figure 3 and Figure 4 suggests that
the estimate of the variability of the bootstrap estimate
of 0 obtained from bootstrap-after-bootstrap is not nec-

essary equal to the variability of the bootstrap estimate
of 0.

In summary, the proposed algorithm has the poten-

tial of revealing whether a bootstrap analysis is a valid
one. But the proposed estimate of the measure of ac-
curacy is not necessary close to the unknown measure
of accuracy, 4,. This again confirms that the bootstrap
analysis may fail sometimes although it is a quite useful

method.

Reference
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Abstract index vectors ib = (n1) ii)), < b < B, by
Quasi-random sequences are known to give efficient nu-

merical integration rules in many Bayesian statistical problems b= [l +nu )] b I,...,B; j=
where the posterior distribution can be transformed into pe- where [r denote the largest integer not exceeding x. Then
riodic functions on the n-dimensional hypercube. From this
idea we develop a quasi-random approach to the generation is an in

of resamples used for Monte Carlo approximations to boot- ,,. .. ,t denote quasi-random resamples defined by
strap estimates of bias, variance and distribution functions. We
demonstrate a major difference between quasi-random boot- X't - {X( ,,),..., ., }, b = 1. B.
strap resamples, which are generated by deterministic algo-

rithms and have no true randomness, and the usual pseudo- Thus by using the idea of selecting points according to
random bootstrap resamples generated by the classical boot- a deterministic scheme that is well-suited for numerical in-
sirap approach. Various quasi-random approaches are consid- tegration, we develop a quasi-random approach to bootstrap
ered and are shown via a simulation study to result in approx- resampling. Our contributions are twofold: (i) we expand
imants that are competitive in terms of efficiency when com- the scope of usefulness of quasi-random methods to other
pared with other bootstrap Monte Carlo procedures such as bal- computer-intensive areas, in particular we familiarize "boot-
anced and antithetic resampling. strappers with this school of thought; (ii) we explore possible

1. Introduction efficiency gains (over pseudo-random resampling) in using dif-

Let X = { XI,..., X, } denote a random sample of size n, ferent types of quasi-random resampling.

write t for a function of these data, and let " represent the 2. Quasi-random sequences
same function of the data in a sample ,' = {x ,-..., x- The terminology given here is not always standard but has
drawn randomly from X, with replacement. Thus, .' is a been found to be the easiest for distinguishing the nature of
uniform resample. The bootstrap estimate of t = E(t) is quasi-random sequences. We shall consider regular quasi-

= E(t- IA'). In the event that the X,'s are vectors, assume random sequences generated by

that we can write T = g(X) for a smooth function g, where
X denotes the mean of X. Let bracketed superscripts de- ub.l = Ub + a(modl), (1)
note indices of vector elements, and put gj(x) = Dg(r)/9z( ), where uI is a fixed or random point in the n-dimensional hy-

G(X,) = IjX j~g (X). We begin by describing an algorithm percube. Note that the jth coordinate in Ub is the fractional
for constructing a quasi-Monte Carlo approximation to t. part of the jth coordinate in ub + a. Regular sequences are dis-

First, sort the n data values in X, obtaining ' = tinguished as rational or irrational according as a is a vector
X,,. . ., X.) } where G(X(I)) < ... < G(X(,)). (Alter- consisting of only rationals or only irrationals. We also con-

natively, we could ask that G(X(1)) >. G(X( )). If the sider irregular or quasi-random sequences generated by other
sample A' is univariate then we may order the sample values di- forms of algorithm and include pseudo-random sequences. As-
rectly, and not pass to the function G(X(,)).) Let B denote the sessment of how "good" a deterministic sequence is can of-
number of bootstrap resamples and let u... , u), ten be expressed in terms of its discrepancy. The discrepancy
1 < b < B, represent B points in the n-dimensional hypercube measure provides a bound to the integration (i.e. expectation)
Cn = [0, 1)" generated by a quasi-random algorithm, which error in numerical integration, provided the function to be in-
we shall describe in section 2. Transform the Ub's into a set of tegrated is of bounded variation. In the bootstrap framework,
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approximation of bias, variance, and distribution functions are SEQUENCE 3
generally based on well-behaved functions. Therefore, it is an-
ticipated that low-discrepancy sequences for integration rules a = ( , ,.. , ) where =p,

will provide bootstrap approximants with high accuracy. SEQUENCE4
To construct low-discrepancy sequences, Hlawka (1962)

used the so-called method of good lattice points which takes 2 47r 2 rn
account of the regularity of the function f, in addition to the a = 2 cos 2-, 2 cos .
bounded variation property of f. Hlawka considered the case
of B being prime and k a point with integral coordinates. Let where p > 2 n + 3 and satisfies either (i) 2 has order p - I modp
R(k) be the set of all non-zero vectors h such that k • h E or (ii) 2 has order (p - l)/2modp and p = 7mod8.
0(modB). Define 9 Irregular sequences. We focus attention specifically on

three irregular sequences that have been used successfully in
nl integration problems.

r(h)= Jmax(l,jhjI); p(k)= min r(h).
j-1 hER(k) SEQUENCE 5. (Haber sequence)

Hlawka called the lattice point k good modulo B if U = (--'.. bI, (mod).

p(k) > B(8 log B)- , SEQUENCE 6. (Hammersley sequence)

and proved the existence of good lattice points modulo any
prime B. Zaremba (1966) showed that in the case n = 2, even ub = (B-'b, 0r,(b) ... , Op_(b)),

"better" lattice points corresponding to a larger p(k) can be ob- where pj,...,p, are the first n - I primes and ,(b) is the
tained where B does not need to be prime. Niederreiter (1977) radical inversefunction of b to the base p (a rigorous definition
improved on Zaremba's result for an arbitrary dimension n. is given below).
Shaw (1988) considered another measure of distance defined SEQUENCE 7. (Halton sequence)
as n

v(k) = min E hjl, ub = (0r,(b), Op2 (b), . 46. (b)).
hER ) 1 The function o(b) is the rational inverse function of b to the

where v is an upper bound to the minimum number of par- base p. obtained by taking the p-ary representation of the num-
allel (n - 1)-dimensional hyperplanes covering the sequence berb and reflecting the digits about the decimal point.
U1- ... , uB. We shall discuss below the construction of several 3. Simulation Study
different types of quasi-random sequences and their properties. In this section we summarize the results of a simulation
S Rational sequences study of the performance of quasi-random resampling relative

to uniform resampling. We applied our method to the prob-

a= (B - ' , B-'k, B-k modB,..., B-Ikn-TmodB). lems of estimating bias and variance when T(,) = X 2 or
T(X) = Vi'.I, and of estimating the distribution of the Stu-

The construction of this sequence is based on the method of dentized mean. Let T be the numerical value of the statis-
good lattice points. When n = 2, it is possible to explicitly tic of interest calculated from the original sample. and let
construct good lattice points by using continued fractions. T; be the corresponding value calculated from the bth boot-
* Irrational sequences. These can be generated using a strap resample. Bias, variance and the distribution function
method closely related to that of rational sequences. Here the P(x) = P(T" < xl,) can be estimated by
Ub's are as defined in (1) where a is an irrational point of the
form a = (al,..., On) and 1, a ,..., a, are linearly indepen- bias = T- T
dent over the rationals. Davis (1963. pp.356-457) proved the B

equidistribution property for these sequences. Letp, p 2 .... be v"- = B-' E (T; - T;')
the sequence of prime numbers 1, 3, 5, 7, 11, ... and p be some 6.1
prime. A numberx issaid tohave orderymod: if ,. = Imod: B

andzk llforl <k<y. FWr) = B-'ZI(T; <,),
In our bootstrap simulation study, we consider equidis- b-I

tribuled irrational sequences by using a as described below.SEQUENCE 2 where T = BIb
Consider the problem of estimating P(.r). We calculated

a = (V/1, V , ... , v11.), P(x) using 100.000 uniform resamples. Let P7,(.r) and PQ( )
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denote our approximations to P(x) using B uniform resam- Davis, PJ. and Rabinowitz, P. (1984). Methods of Numerical
pies and B quasi-random resamples respectively. We corn- Integration. 2nd ed. Academic. Orlando, Fla.
puted DQ = { FO(x) - P(x)}2 and computed the average, Haber, S. (1966). A modified Monte Carlo quadrature. Math.
Di, of { Pu(.) - P(z)} over A! = 100 independent repeats Comp. 20, 361-368.

of the uniform resampling scheme, for a given sample. Note Halton, J.H. (1960). On the efficiency of certain quasi-random

that we do not need to average DQ over M, repeats since there sequences of points in evaluating muli-dimensional inte-

is only one deterministic quasi-random sequence for each sam- grals. Numer. Math. 2, 84-90.
ple. We then averaged Do and Du over N = 250 independent Hammersley, J.M. (1960). Monte Carlo methods for solving

samples, obtaining dQ and du, say: and finally, took the ratio multivariate problems. An. New York Acad. Sci. 86,
r = dur/dQ. This gave a measure of the efficiency of quasi-

random resampling relative to uniform resampling in esima- Hlawka, E. (1962). Zur angendherten Berechnung mehrfacher

tion of distribution functions. The case of bias and variance Integrale, Monatsh. Math. 66, 140-151.

estimation can be treated similarly, with obvious analogues for Niederreiter, H. (1977). Pseudo-random numbers and optimal

dt, and dQ. It was observed that quasi-random resampling does coefficients. Adv. Math. 26,99-181.

not perform better or worse than quasi-random resampling in Niederreiter, H. (1978). Quasi-Monte Carlo methods and

the problem of bias estimation. Therefore the tables presented pseudo-random numbers. Bull. Amer. Math. Soc. 84,
957-1042.

in this paper will concentrate only on efficiencies in variance Sw7H198.

and distribution estimation. Shaw, J.E.H. (1988). A quasi-random approach to integration

In the problem of distribution estimation, we have re- in Bayesian statistics. Ann. Statist. 16, 895-914.

stricted our considerations to rational sequences only. Rational Warnock, J.T. (1972). Computational investigations of low-

sequences perform better than straight random sequences at all discrepancy point sets. Applications of Number Theory to

quantile values. They exhibit the common pattern of better per- Numerical Analysis (S.K. Zaremba. ed.). Academic Press,

formance towards the centre of the distribution. However, ef- New York, pp.319-343.

ficiency gains at the tails are still impressive and surpass those Zaremba. S.K. (1966). Good lattice points, discrepancy, and

obtained from balanced and antithetic resampling, especially numerical integration. Ann. Mal. PuraAppl. 73. 293-317.
when the parent population generating X is exponential.

4. CncluionsTable.14. Conclusions Efficiencies for variance estimation using rational sequences
Regular sequences are no more difficult to implement

than pseudo-random sequences and usually exhibit consistent n B k Distribution T(X) = X 2 T(X) = I
trends in efficiency gains. Bootstrap resampling based on
Haber sequences is rather disappointing due to their erratic be- 10 237 10 Normal N(II) 2.25 1.81
haviour, but quasi-random resampling based on radical inverse Exponential 2.35 2.17
functions such as the Hammerslcy and Halton sequences can Folded Normal 2.35 2.36
yield significant efficiency gains for large B. The behaviours 10 342 17 Normal N(II) 2.15 1.75
observed here for irregular sequences are in close agreement Exponential 2.23 2.06
with results in Shaw (1988) and Warnock (1972), who con- Foldd Normal 2.23 2.7
centrated on efficient numerical integration rules. It should 10 610 23 Normal N(121) 2.15 1.87
be emphasised that the problems of variance and distribution Exponential 2.24 2.19
estimation are usually of more practical importance than bias Folded Normal 2.36 2.29
estimation, since bias is generally small relative to standard
deviation. Therefore, even though quasi-random resampling
does not provide an improvement over pseudo-random resam-
piing in problems of bias estimation, quasi-random sequences
remain attractive in the bootstrap context because of their su-
perior performance in variance and distribution estimation. We
suggest that regular sequences he applied quite generally in
bootstrap resampling problems, although greater caution is rec-
ommended for irregular sequences. A more rigorous and de-
tailed version of this paper is available from the author.
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Table 2 Table 4
Efficiencies for variance estimation using Efficiencies for variance estimation using

irrational sequences Hammersley (S6) and Halton (S7) sequences
n B Distribution Seq. 2 Seq. 3 Seq. 4 T(X) = X 2 T(X) =rJIXI

n B Distribution S6 S7 S6 S7
10 100 Normal N(l,1) 1.34 1.33 1.03

Exponential 1.55 1.37 1.05 10 500 Normal N(l,1) 2.37 0.46 1.87 1.89
Folded Normal 1.62 1.39 1.08 Exponential 0.89 0.21 8.86 6.75

10 200 Normal N(1,I) 1.39 1.38 1.00 Folded Normal 1.54 0.35 5.61 6.03
Exponential 1.75 1.41 1.02 10 1000 Normal N(l,1) 3.16 0.53 2.13 2.31
Folded Normal 1.79 1.44 1.09 Exponential 1.11 0.33 2.25 3.79

10 300 Normal N(,1) 1.89 1.61 1.11 Folded Normal 2.41 0.51 2.38 4.59
Exponential 1.93 1.69 1.24 10 2000 Normal N(l,l) 5.99 0.65 3.78 4.01
Folded Normal 1.97 1.75 1.26 Exponential 2.19 0.39 3.15 4.50

10 500 Normal N(1,1) 1.96 1.88 1.39 Folded Normal 2.60 0.47 3.00 4.71
Exponential 2.30 2.00 1.38
Folded Normal 2.41 1.97 1.42

Table 5
Efficiencies for distrbution estimations using

rational sequencesTable 3
Efficiencies for variance estimation using a: 0.90 0.95 0.975

Haber sequences n B k Distribution z,: 1.282 1.645 1.96
n B Distribution T(X) = X 2 T(X)-- /ljXj

10 237 10 Normal N(l,l) 2.55 2.23 1.88
10 100 Normal N(1,1) 10.31 2.20 Exponential 2.57 2.34 2.23

Exponential 4.43 5.80 Folded Normal 2.59 2.23 1.53
Folded Normal 7.67 5.19 10 342 17 Normal N(,I) 2.51 2.10 1.97

10 200 Normal N(l,l) 4.46 1.37 Exponential 2.47 2.35 2.15
Exponential 1.91 5.74 Folded Normal 2.49 2.06 2.01
Folded Normal 2.84 4.25 10 237 10 Normal N(1,I) 2.42 2.06 1.74

10 300 Normal N(l,l) 3.22 1.82 Exponential 2.41 2.25 2.15
Exponential 2.87 14.86 Folded Normal 2.40 2.07 1.95
Folded Normal 3.9 6.58

Efficiencies for bias, variance anidstribution estimations using rational

sequences in comparison to balanced and antithetic resampling

T(X)- 'x/IjX T(X) = vri(P -X
Resampling method a: 0.90 0.95 0.975

Bias Var z': 1.282 1.645 1.96

Quasi-random using
rational sequence
(n, B, k) = (10,237, 10) 1.00 2.17 2.57 2.34 2.23
Balanced
(n, B) = (10,500) 1.35 0.70 1.36 1.11 1.04
Antithetic
(n, B) = (10,500) 2.31 1.12 1.23 1.06 1.00
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Bootstrapping with Constraints: Analysis of Scattering
Asymmetry for Polarized Beam Studies

Kevin J. Coakley
National Institute of Standards and Technology

Statistical Engineering Division
Gaithersburg, MD 20899

1 Abstract Suppose that the number of scattering events for two
different spin orientations are measured in two indepen-

In polarized beam studies, an asymmetry statistic of dent experiments. Further, assume that each experiment
physical interest is an estimate of the ratio of the differ- lasts the same amount of time t. This assumption can
ence and the sum of the Poisson rate parameters for two be relaxed with out loss of generality. The first observa-
scattering processes. Typically, an additive background tion N, can be expressed as the sum of two unobservable
signal contributes to measurements of each scattering pro- quantities as follows.
cess. Background is measured in a third experiment.
Data is corrected by subtracting measured background. N1 = Nl* + NBG,I* (1)

When the measured background is larger than one of the
other measurements, the asymmetry computed from the Above, Nl* represents what would have been observed

background corrected data is nonsensical. For such cases, if there had been no background. The number of counts

true asymmetry and an associated conservative interval due to the background is NBG,1*. The terms on the right

are estimated using a bootstrap procedure. Bootstrap hand side of Eq. 1 are realizations of Poisson processes

replications of the observed data satisfy a constraint that with parameters Alt and ABGt. The second measurement

insures physically meaningful results. is expressed as

N2 = N2* + NBG,2* (2)

2 Introduction where the two terms on the right side of Eq. 2 are inde-
pendent realizations of Poisson processes with parameters

In many areas of research, asymmetry statistics are A2 t and ABGt. The goal is to estimate the asymmetry
of physical interest. For example, in atomic collision term
physics, asymmetry statistics computed from the scatter- A - A2
ing of spin-polarized electrons from atoms carry informa- R = (3)
tion about atomic structure (McClelland, et. al. 1989). A1 + A2  (
In materials science studies, maps of magnetic microstruc- Note that since true asymmetry R lies between -1 and
ture are made based on the polarization of secondary elec- +1, so should any estimate of asymmetry as well as the
trons emitted from the material after it is bombarded by endpoints of any confidence interval for asymmetry.
an energetic beam of electrons (Scheinfein, et. al. 1990). In order to estimate the asymmetry, experimenters
To estimate these polarizations, asymmetry statistics are measure background in a third independent experiment.
computed. Suppose that this experiment also lasts time t. Further,

Many of the experiments in which asymmetries are of assume that the experimental conditions for the back-
interest involve the counting of electrons or other parti- ground measurement are the same as for the other ex-
cles. Generally, streams of pulses (assumed to be Poisson periments. The number of detected background counts
distributed) are counted in two experiments, one for each NBG,3 is modeled as a realization of a Poisson process
orientation of the spins in the system. The number of with parameter ABGL. With this third measurement, ex-
counts measured in each experiment is associated with perimenters typically estimate asymmetry as
an intensity for each of the two spin orientations. The
asymmetry is estimated by taking the ratio of the differ- = N1 - N2
ence and background corrected sum of the two intensities. R N + N 2 -

2 NBG,3 (4)
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As the duration of the experiment increases, R con- that asymmetry is high even though background is larger
verges to R. However, for short experiments, A may be than N2.
far from R. Moreover, for short enough experiments, the In Table 1, bootstrap estimates of asymmetry are listed
measured background can be greater than one of the other for ten simulated data sets. The average of the bootstrap
two signals and the asymmetry computed from the data is estimates for all 1000 data sets was 0.938. The standard
not between -1 and 1. That is, the above estimate is out- error of this average value is only 0.0004. Thus, the boot-
side the physically meaningful range. For such cases, it strap estimate of asymmetry is slightly biased. Although
would seem as though the experiment was a failure. Here, slightly biased, root mean square prediction error (RMS)
useful information is extracted from such data using the was only 0.039.
bootstrap. A confidence interval for true asymmetry is computed

from the histogram of bootstrapped statistics as follows.
3 Bootstrap Approach If the asymmetry estimated from the observed data ft islarger than unity, i.e. N1 > N2 , a one-sided confidence

Using a parametric bootstrap (Efron, 1982) approach, interval is computed. The upper endpoint of the interval

replications of the observed data (N1 , N2 , NBG,3) are is unity. The lower endpoint is the 5% percentile of the

obtained by simulating Poisson random variables with bootstrap histogram. If i.e. N 2 > N 1, the lower endpoint

means N1 , N2 and NBG,3. To insure physically meaning- is set to -1 and the upper endpoint is the 95% percentile

ful results, replications for which simulated background is of the bootstrap histogram. If Ni = N 2 , the confidence

larger than either of the other signals are discarded. Also, interval endpoints are the 2.5% and 97.5% percentiles.

replications for which twice background equals the sum In Table 1, confidence intervals are listed for the ten
of the other signals are discarded. This second condition data sets. For the 1000 simulated data sets, true asym-
insures that computed asymmetry is well defined. Thus, metry 0.9 was outside the computed bootstrap confidence
the kthbootstrap replication of the observed data satisfies interval 9 times out of 1000. That is, coverage was 99.1%.
the following constraint. All the upper endpoints were unity. Hence, for this case,

the bootstrap method gave conservative 95% confidence
NB,3: <N 1k (5) intervals.
NBG,3 k < N 2

k  (6)

2 NBG, 3 k < N1k + N2 k (7)
Table 1. High Asymmetry.

Because of this constraint, the three simulated signals N1  N 2  NBG,3 ft c.i.
are correlated with one another. The true asymmetry is 220 59 65 0.924 (0.803,1.0)
estimated by the mean of the bootstrapped asymmetry 243 63 64 0.916 (0.796,1.0)
statistics. A confidence interval is also computed from 227 50 53 0.928 (0.817,1.0)
the histogram of the bootstrapped asymmetry statistics. 224 50 56 0.935 (0.829,1.0)

236 48 60 0.953 (0.867,1.0)
4 Applications 230 40 62 0.968 (0.899,1.0)

238 44 51 0.947 (0.856,1.0)

4.1 High R 219 66 72 0.915 (0.779,1.0)
236 50 61 0.948 (0.853,1.0)

First, the Poisson parameters for the data were set to 261 50 51 0.936 (0.840,1.0)
(240, 60,50). For this case, true asymmetry is 0.9. One
thousand data sets, where simulated background is larger
than one of the other two signals, were simulated. For
each data set, 10,000 bootstrap replications were simu- 4.2 Intermediate R
lated as described earlier. In Figure 1, the histogram of
bootstrapped asymmetry statistics for one of simulated The same kind of analysis done above was repeated for the
data sets, (N1 , N2, NBG,3) = (220,59,65), is shown. For case where the true Poisson parameters were assumed to
this particular data set, the mean of the 10,000 boot- be (460,420,400). Here, true asymmetry is 0.5. In Tablu
strapped asymmetry statistics was 0.924. Hence, the 2, the bootstrap estimate of asymmetry and a confidence
bootstrap estimate of asymmetry f is 0.924. This is very interval are listed for ten data sets. For the data set
close to the true value of 0.9 ! Intuitively, the method (433,393,394), the histogram of bootstrapped asymmetry
worked well because N1 was much larger than N2 . The statistics is shown in Figure 2. Note that this histogram is
fact that the two measurements are far apart is telling us more dispersed than the one for the data set (220,59,65).
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Table 2. Intermediate Asymmetry. Table 3. (A1,A 2, ABG)= (100+ X,5+ z,z).
N 1  N 2  NBG,3 R? c.i. x Ave.lR RMS Coverage Ic.i.I
433 393 394 0.416 (-0.217,1.0) 5 0.963(0.010) 0.059 0.854 0.108
435 421 423 0.148 (-0.692,1.0) 10 0.949(0.013) 0.046 0.974 0.142
461 420 444 0.415 (-0.368,1.0) 20 0.932(0.018) 0.033 1.000 0.184
487 430 439 0.532 (-0.014,1.0) 50 0.893(0.026) 0.029 1.000 0.272
447 378 394 0.626 (0.171,1.0) 100 0.853(0.035) 0.062 1.000 0.359
479 391 406 0.689 (0.304,1.0) 200 0.796(0.059) 0.124 1.000 0.478
493 390 391 0.703 (0.368,1.0) 500 0.702(0.098) 0.225 1.000 0.678
484 395 401 0.673 (0.298,1.0) 1000 0.601(0.145) 0.338 1.000 0.896
481 408 410 0.604 (0.170,1.0)
434 441 437 -0.074 (-1.0,0.793) For z < 20, the asymmetry estimate was biased high.

For larger backgrounds, the estimate was biased low. This
downward bias for high background is plausible because

The mean value of the 1000 bootstrap estimates of the difference between N, and N2 , in units of standard de-

asymmetry is 0.497. The standard error of this average viations of either one, diminishes as background increases.

is 0.007. Although the bootstrap estimate is not signifi- As the standardized difference between signals tends to

cantly biased, root mean square error is larger than be- zero, confidence in claiming that true asymmetry is close

fore. Here. RMS = 0.215 whereas before, i.e. for the to unity diminishes.

high asymmetry case, RMS was over five times less. As background increases, both the variability of A and
the average confidence interval length increase. However,

The true value of the asymmetry fell in the confidence RMS does not increase monotonically since RMS de-
interval constructed from the bootstrapped asymmetry pends on both bias and variability. The coverage of the
statistics 988 out of 1000 times (98.8%). Seven times bootstrap confidence intervals for low background was less
the lower endpoint was greater than 0.5. Five times the than 95%. This probably is due to both the shortness of
upper endpoint was less than 0.5. Thus, the bootstrap the intervals and the bias of the estimate. At larger back-
confidence interval is again conservative, ground levels, bias is greater but the confidence intervals

are longer and coverage is 100%.

4.3 Interval Width 4.5 Other Examples
For the case (A1,A2 ,A3 ) = (600,505,500), the aver-

In Figure 3, the width of the confidence interval for each age bootstrap estimate of asymmetry was 0.702 whereas
of the 2000 simulated datasets from the high and interme- true asymmetry was 0.905 (Table 3). When the second
diate asymmetry study are plotted versus II + N2 II- parameter is changed to 510, true asymmetry drops to
This ratio is a measure of how close N, and Nz are to one 0.818 from 0.905 (Table 4). However, the expected value
another. In general, the intervals are broadest when N, of h was almost the same and the variability of R dimin-
and N 2 are closest. ished only slightly. This is reasonable; if the difference

between A2 and ABG is very slight, the expected value
of the bootstrap estimate will depend mostly on A, and

4.4 Background Study ABG.

Table 4.
In order to study how background affects the accuracy Al A2 A2 R Ave.R RMS
of the bootstrap estimate, the Poisson parameters were 600 505 500 0.905 0.702(.098) 0.225
set to be (A,, A2, ABG) = (100 + x,5 + x,x) where x= 600 510 500 0.818 0.704(.087) 0.144
5,10,20,50,100,200,500, 1000. Asymmetry is 0.905 for 573.5 531.5 500 0.400 0.473(0.236) 0.247
each value of x. For each set of parameters, 1000 data 563 542 500 0.200 0.295(0.319) 0.333
set., where background exceeds one of the other signals,
were simulated. A confidence interval and an estimate for In two other examples, the first and second parameter
asymmetry were computed for each data set. In Table 3, were both adjusted so that true asymmetry was 0.4 and
the average of the estimates with the standard deviation 0.2. However, the sum of the two parameters was invari-
of the estimates in parentheses, root mean square error, ant. Thus, the difference between A2 and ABG is increased
coverage fraction and average length of the confidence as the difference between A, and A2 is diminished. For
intervals are listed. these cases, the variability of R and RM S were greater
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than for the high asymmetry example. However, bias was 0.2
less. The results are summarized in Table 4. Note that
in parentheses, the standard deviation of A is indicated.
The coverage of the bootstrap confidence intervals for the 0.15-
second, third and fourth examples in Table 4 were 100%,
98.4% and 95.8%.

A simulation study was also done for the example 0.1
(Al,A 2, A3 ) = (605,499,475). For this case, true asym-
metry is 0.688. The average of the bootstrap estimate
of asymmetry for a 1000 data set study was 0.739(.078), 0.05
RMS was 0.092 and coverage was 100%.

Conclusion 0.6 0.7 0.8 0.9

For cases where the observed background signal was Figure 1. Bootstrap replications of asymmetry statistic
larger than either of the other signals, the asymmetry for data set (220,59,65)
computed from the data is nonsensical. Using a bootstrap
approach, true asymmetry and an associated confidence _ _ _ _ _

interval were estimated. In the bootstrap method, repli- 0.15
cated data sets satisfied a constraint that insured phys-
ically meaningful results. For all cases except very low
background signal cases, the bootstrap 95% confidence
intervals were conservative. For some cases, the boot- 0.1
strap estimate for asymmetry had very small prediction
error. The prediction error of the bootstrap estimate was
greatest for cases where the background was very large oo5
relative to the other signals. The bootstrap estimate of
asymmetry, i.e. the mean of the bootstrapped asymmetry
statistics, was biased in general. The magnitude of the
bias was greatest for cases where background was very 0
high and asymmetry was was close to unity (0.905). For -1 -0.5 0 0.5
other high background cases where asymmetry was less
extreme, bias was less but RMS was larger. Figure 2. Bootsrap replications of asymmetry statistic

for data set (433,393,394)
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Abstract of Justice is to maintain competitive economic markets.
Markets that are the least concentrated-that is, those

We consider the problem of constructing confidence in- that are not dominated by a small number of firms-tend
tervals for possibly "messy" functions of a multinomial #o be the most responsive, other things being equal, to
parameter. The number of categories can be large and the discipline of competition. Over time, a given market
the sample size small, meaning that the problem of will become more concentrated if existing firms fail or
sparseness must be confronted. Thus, standard asymp- exit the picture; if a few highly successful competitors
totics based on the delta method will often prove un- gain larger market shares; or, if mergers occur among
satisfactory. Alternatives to the delta method include: existing firms. The first two of these often arise from
(1) Madansky's method, based on constrained maximum market forces themselves, and are seldom amenable to
likelihood; (2) the bootstrap; and (3) intervals derived or appropriate for regulatory control. Mergers, however,
from the brute force (Monte Carlo) calculation of exact can be and often are contested by the Antitrust Division
confidence regions. These approaches are discussed and in the interest of keeping markets competitive.
contrasted in the context of an empirical problem. The decision to contest a merger depends on a com-

plex analysis, including the level of concentration in the

1 Introduction market both before and after the merger. While there
is no single right way of measuring concentration, the
Herfindahl Index has emerged as a favorite in much of theLet ir denote the vector parameter of a multinomial dis- mireomcltrauaninheAirstDvin

tribution, and let 0 = 0(7r) be a "smooth" (i.e., dif-
since 1982. If a market has K firms, with market shares

ferentiable) scalar-valued function of ir. Suppose that sinc 82. If amr has K firms , t ae ses
71 -,IK, where 7rk > 0 and _ = r,=1,teHrid

a random sample of size N is taken from Multin ( ar), r
from which we wish to construct a confidence interval Index is is defined by H = 10,000 x - rT, It is
for 0. We can approach this problem in a variety of easy to see that H assumes its smallest possible value of

ways, ranging from computationally intensive "exact" 10,000/K when the market is least concentrated (equal
market shares for all firms), its largest possible value ofmethods, to the bootstrap, to Jess computationally in- ~

tensive but approximate methods based on asymptotic 10,000 when it is most concentrated (monopoly), and

arguments. But, how workable are these methods in a is increased if two or more of the firms merge. One of

particular instance where both the dimensionality of 7r the great virtues of the Herfindahl Index is its simplic-

and N are large, but N is not large enough to justify ity: even nonmathematically astute judges, lawyers, and

faith in the validity of asymptotic approximations? jurors c; i understand it, and multiplication by 10,000
eliminat s the need for fractions.

This paper is a summary of ongoing research moti-
vated by a problem arising from estimating the degree
of concentration of an economic market. An important 2 Estimation
concern of the Antitrust Division of the U.S. Department

*This paper does not purport to represent the policy or views Occasionally, Ilerfindahls are estimated when market
of the U.S. Department of Justice sharcs are imputed from a "random sample" of con-
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sumers. The implied model is that a randomly sampled r.,j denoting marginalized market shares. A "weighted"
consumer responds in favor of firm k with probability Herfindahl Index is given by
equal to its market share. Suppose that N consumers
are sampled, and that * are the sampled proportions of H - K ( 2(

the firms. The naive estimate of H is then H = E j= , k=\ (ri-
(we will from here on drop multiplication by 10,000). j1 k1l
The mean and variance of H are easily found to be which is simply a convex combination of the stratum-

1 N - 1 specific Herfindahls. As before, let rk,j denote the esti-
E (H) = - + N H mated cell shares based on a random sample of N con-

sumers. We will assume that the marginal firm shares
and Pk = Wk,. are known, giving ikj = frkJPk/Irk,, as the

Var ( A 1 + A2 + A3  (2.1) MLE of r' d . Take *.j = k=I1 ,j. Substituting these
N N 2  N 3  estimates into (2.4) gives an estimated weighted Herfind-

where A, = 4(T - H2 ), A2 = 6H + 10H 2 
-16T, A 3  ahl that we will denote/j(t0), with Aft(w) obtained in a

6(2T- H - H 2), and T = 1 7,. Using the fact that similar manner.

H2 < T <H gives In one particular problem, K = 10, J = 5, N = 400,
and many cells in the frk* table were empty. Some of

Var < H(1 - H)rN , (2.2) these zeros were surely structural, but others were plau-
( - sibly induced by sampling. It seems intuitive that the

where rN = 4N-1 + 6N- 2 + 6N- 3 . Appealing to the weighted estimates should exhibit greater bias than their
asymptotic normality of ft, an asymptotically conser- unweighted counterparts, and simulations have borne
vative 100(1 - 2a)% confidence interval for H can be this out. One might ask whether taking advantage of
derived as follows: knowing the firm shares Pk is more trouble than it is

worth: for instance, an estimate of H(w) taking the form
, 2  4 _(t - )2 [(N_, )2 + Z2N]-- [ - 2(.) O .,, (ft Ni.j N*'J ) (2 5)\ N ? , -

LN-- - rN] j=l *, *,

where 0),N= 2 - (N1) +ZrN(see Bickel and is unbiased conditioned on Nt. d, > 1, with /, denot-
(, t I) a ing the estimated Herfindahl for stratum j using the ob-

Doksum [1977], p. 160). Replacing z, by a Chebyshev served proportions. We used the constrained estimates
inequality bound (i.e., Vx/2 for 1.96 at a = .025) gives because they were proposed by the parties contemplat-
a confidence interval with guaranteed coverage for every ing the merger, who could argue that the unconstrained
N. estimates failed to take advantage of known information,

Suppose that firms 1 and 2 propose to merge. This leading to discrepancy measures that unfairly worked
would increase the Herfindahl index by an amount equal against them.
to AH = 2a,71 r2 . Using arguments similar to those
above, exact expressions for the mean and variance
of Aft can be given, and a confidence interval simi- 3 Confidence Intervals
lar to (2.3) can be derived. In particular, E(AH) =
(-N.) AH, from which it is seen that the estimated Between the blunt edges of asymptotics and brute
Herfindahl tends to be biased upward, but that the esti- computing force lie a variety of methods for de-
mated change due to a merger tends to be biased down- riving confidence intervals. We discuss several in
ward. the context of estimating Herfindahl indices. Our

Usually, the market shares {lrk) are regarded as known conclusions are based on simulation exercises taking
quantities, and H is not the subject of statistical infer- K = 10, J = 5, and N = 400; (P1,...,P 10) =
ence. Even with this knowledge, however, the issue of (.20, .20, .20, .15, .10, .05, .03, .03, .03, .01); equal stra-
inference may arise if a more detailed analysis is desired. tum probabilities of .2; and, independence between stra-
Suppose that the universe of consumers is partitioned tum and firm. Figure 1 shows histograms of 1000 simu-
into J strata, with 7rk,j representing the share of the lated values of ft ( ') (truth = .1578) and Ait(w) (truth
market belonging to firm k and stratum j, and wk,. and .08).



Multinomial Confidence Intervals 307

w.1 l fl. 4 - 400 Cbaa. St Wogd flah

ues of 0(.) evaluated over the region can be called a
,25 100(1 - 2a)% confidence interval for 0(7r). There are

many ways to choose C, and not all of them will pro-
duce good (narrow) confidence intervals for 0(7r). In fact,

So the best confidence regions will not generally produce the
best confidence intervals. Intuition suggests that desir-
able confidence regions will follow the contours of 0(.) as
closely as possible, and will concentrate as much of their

*0.073 0. 0.01 mass as possible between them.

3.3 Constrained MLEFigure 1: Simulation Histograms A likelihood-based confidence interval can be obtained
for 0(r) in the following manner. Let

3.1 The Delta Method

Both H(W) and Ail(-) are consistent and asymptotically L(ir;X)= ( (; (3.1)

normal estimates, because they are "regular" functions j= k=l kJ

of the observed cell proportions. Thus, asymptotic stan-
dard errors can be derived by evaluating the gradients where X = [zJ] is the matrix of observed cell frequen-
of these functions at the observed proportions, and us- cies. Let SKi denote the region of the unit simplex in
ing the facts that Var(irkJ) = N-1rkJ(1 - 7rk,j) and ZKJ that has marginal firm shares equal to the known
COV(irj,r,) =-N-lrkj7r,s. This is tedious and ul- quantities. Fix a value 00, and let SKJ(On) denote the
timately not satisfying, because (1) the standard error subset of SK, for which 0(r) = 00. The MLE of r over
estimates are poor; (2) the estimates are substantially SKi and SK,J(Oo) will be denoted -r and 7(5n) respec-
biased; and (3) the estimates have sampling distribu- tively.
tions that are not very normal-like. It is interesting to Consider a test of the hypothesis ?-(Oo) : 0(r) = 00
note that all of the simulated values of f(w) exceeded based on the statistic
the truth, while A/H(w) exhibited less bias. These results L (F; X)
are summarized below: R (0o; X) L - (3.2)L (w(0o): N)

Bias SETr a S o TFor ir E b,J(Oo), 21ogR(O0; N) is asymptotically dis() Truth Mean Simulation Theory tributed as chi-square with one degree of freedom. This
.1578 .0793 .0017 .0023 can be used to test 2"(0 0 ), with the set of 00 for which

W.0800 .(0 0 ) is accepted giving an asymptotically valid confi-
dence interval for 0(r). Recently, Owen (1990) has ex-

The "simulation SE" is the standard deviation of the tended this classical idea to a nonparametric context.
simulated values. The "theory SE" refers to the aver- One difficulty with this approach is the computation
age, across simulations, of the estimated standard error of the constrained MLE i(0 0 ). Treating it as a Lagrange
obtained from the delta method. multiplier problem requires the simultaneous solution of

It is often worthwhile to apply a variance-stabilizing a large set. of nonlinear equations, a numerically diffi-
transformation, if known, when deriving confidence in- cult problem for which no method is guaranteed safe
tervals. This cannot be done exactly in the present con- and sure. Projected gradient methods may offer the best
text, due to the presence of "nuisance parameters." In hope, provided that good starting values are available,
the case of ft, (2.2) suggests that an arcsine transforma- which is often the case. We have used projected gradi-
tion may come close to doing the job, and it may be a ents with success only in lower dimensional problems.
good first guess for H:(w) as well. If g is a 1-1 function over the range of 0, applying

g-' to a confidence interval obtained for g o 0(r) gives

3.2 Confidence Regions a confidence interval for 0(7r). Sometimes working with
g o 0 offers computational advantages over working with

If C0 is a 100(1 - 2a)% confidence region for the multi- 0. One particular choice for g that often seems to work
nomial parameter ir, the minimum and maximum val- well is the Lagrange multiplier attached to the constraint
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0(7r) = 00, an idea which is due to Madansky (1965). For One problem with bootstrapping large-order multino-
example, for 0 = H (unweighted Herfindahl), it can be mials is sparseness: the bootstrap samples contain at
shown that 00 and the Lagrange multiplier A are in a 1-1 least as many empty cells as the root sample, and of-
decreasing relationship, and that solving the constrained ten more. Thus, if the quantity of interest is sensitive
"normal equations" reduces to finding the fixed point of to sparseness, the bootstrap may produce disappoint-
a contraction mapping when A is positive. ing results. One outcome of this that we have observed

The reliance on asymptotics can be obviated if the ex- is that the variance within bootstrap samples can be
act finite sample distribution of R(00 ; X) is used. This much smaller than the variance between, which bodes ill
is usually not feasible analytically, but it can be done for staying true to nominal coverage levels. A possible
via simulation within the context of a projected gradi- corrective measure would be to "smooth out" sparse-
ent problem. We have not tried this, so the extent to ness before bootstrapping, using either a Bayesian or a
which it pays off to expend the additional effort is not non-Bayesian argument. None of these problems detract
clear, from the asymptotic validity of the bootstrap, but they

do underscore the need to carefully study its small sam-

3.4 The Bootstrap ple behavior.

An advantage of using the bootstrap to construct con-
fidence intervals is its ease of implementation, which in 4 Discussion
its simplest form is basically the same for all problems.
We have used the bootstrap to construct confidence in- While producing good standard error estimates is usu-

tervals for H, AH, H(w) and AH(w) . Our conclusion ally easier than producing good confidence intervals,

is that the simplest use of the bootstrap produces dis- many of us prefer the latter. In the context of estimating

appointing results, but that it offers a fertile area for Herfindahls, we felt that it was important to show that a

experimentation, variety of states of nature could plausibly explain a given

The "simple" bootstrap proceeds by taking B random set of sample results. However, even with a full menu of

samples from a Multin (F) distribution, computing esti- options to choose from, constructing good small-sample

mates of the desired quantity from the B bootstrap sam- confidence intervals is not an easy problem, and there is

pies, and choosing quantiles of the bootstrap estimates much room for further experimentation.
corresponding to the desired confidence level. This tech-
nique can produce good confidence intervals if certain References
conditions are satisfied. One condition-that the esti-
mates be asymptotically normal and consistent-is in Bickel, P.J. and Doksum, K.A. (1977). Mathematical
our view not too severe. The estimates should also ex- Statistics, Holden-Day, Oakland.
hibit little or no finite sample bias, and the effect of Sast, B(o2de aknd.
not knowing the values of any nuisance parameters that Efron, B. (1982). The Jacknife, the Bootstrap, and Other

may be present should be negligible. These last two Resampling Plans. CBMS No. 38, SIAM, Philadelphia.

conditions are more troublesome, and embellishments Madansky, A. (1965). Technometrics (7) 495-503.
to the simple bootstrap have been made to deal with Madansky, A. and Olkin, 1. (1959). Approximate con-
them: various bias-correction schemes and pivoting, re- fidence regions for constraint parameters. Multivariate
spectively. They, and bootstrapping in general, are dis- Analysis H 261-286 (P.R. Krishnaiah, ed.) Academic
cussed in Efron (1982). Press, New York.

Our best results were obtained for AH using A/t, with Pre, Ne York.
B = 1000, no bias correction, and no pivoting. Based on Owen, A. (1990). Ann. Math. Statist. (18) 90-120.
250 replications of the model described above, the esti-
mated lower and upper tail violation probabilities for a
95% confidence interval were 1.2% and 2.8% respectively.
Other quantities fared much worse, with much larger-
than-nominal violation probabilities, and badly unbal-
anced intervals. Bias correction is obviously needed, but
the usual quantile-adjustment methods have not worked
well because the bias tends to be of a much larger order
than the standard error.



AD-P007 158 92-19578

lii m llmm int11 m ii IN IIi 111 ln 111 n 11111111 11111 n11i1 ed New 
o n-Raphson 309

RANDOMIZED NEWTON-RAPHSON AND ANIMAL SEARCH
A. Levine and J. Liukkonen
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ABSTRACT. Adding "systematic noise" to the step 3 in association with the analytical issues raised there.
term of the Newton-Raphson (NR) root finding algo- Applications are discussed in Sec.4.
rithm permits "expected q-linear convergence" and con-
vergence almost surely to the root for a larger class of 2. RANDOMIZED NEWTON-RAPHSON
functions and larger starting sets than those for which (RNR): The Newton-Raphson (N!?) algorithm for y
NR converges "deterministically." These results have R - R, It a compact interval in R. g' the derivative of
application not only to a wide range of optimization prob- g, E the set of initial values, xo E F C ItI is
lems but also to understanding the behavioral repertory
of animals undertaking pheromone induced search. It is Xk+1 = X. - Yk., Xk E It

shown that the "search" reduces in many cases to find- yk = g(Xk)/'(x.) (step term)
ing the root of a function of two or three dimensions. In
cases (as in the search of the gypsy moth for its mate) with some stopping rule. NI? is a root finding algrilhin
where the animal cannot simply travel in the direction where {xk} is a sequence of t~craths which, under certain

of increasing signal (scent) randomized NR gives insight conditions, converges to the root p of g. We use V'? as

into the search behavior required to discover the signal a paradigm because of its optimality properties (Ortega

source. and Rheinholdt (1970)). Furthermore. its use permits
a concise presentation while at the same time making

1. INTRODUCTION. The numerical determina- clear the methods by which the results may he extended
tion of a global maximum or minimum of a function to other root finding algorithms.
g : R' - R" where R' represents Euclidean I-space is In "animal search" we assume that the prey (or po-
commonly accomplished through an iterative algorithm tential mate) omits a signal (such as a gas) which pro-
Xk = Hk-i(xk-l,..x.,o), k = 1,2,...,x0 E E C Ryn, duces a continuous spatial distribution having a unique
where E is the set of initial solution estimates and {rXk, maximum h(p) at the location p of the source at any
{Hk } represent, respectively, a sequence of solution es- given time. \Ve also assume that h has no local miin-
timates (which we call the path) and operators on the ima. (We will subsequently weaken these assumitions.)
estimates. It has long been recognized that numerical al- Under these conditions, there are many ways of chang-
gorithms are subject to "unacceptable convergence;" i.e., ing the animal search problem into a root finding prob-
non-convergence to a solution or convergenct too slow to lem. For example, we can assume the animal "knows'"
yield practical results. Paths in two or more dimensions the threshold value of h(p). Defining g(.r) = h(x) -- h(p).
are particularly subject to traps, to being caught in ridges the problem becomes one of finding tile unique root of
or to cycling. Joseph, et al (1990) present examples g(x). Another method of changing the problem to root
where this type of non-convergence occurs for one dimen- finding is to let q(x) = h'(x). Then the position p of the
sional paths as well. To ameliorate these problems, the source can be found by solving g(x) = 0. We shall as-
authors introduced randomized Newton-Raphson (RNR) sume for the moment that the "maximization" problem
in which a random element is injected into the Newton- of the animal can be transformed into finding the root p
Raphson algorithm in order to allow cycles to be broken of a function. We call the location p. the targt of the
or to permit large jumps along the path towards the so- algorithm.
lution, thereby increasing the speed of convergence. (See In Sec.4, we shall motivate the introduction of RNR
Joseph, et al (1991) for an application in two dimensions into the issue of animal search, but for the moment we
to a problem in seismic exploration.) We examine RNR present RNR as capable of resolving areas of "unaccept-
in Sec.2 and in Sec.3 introduce some new results related able convergence" as described in Sec .L
to it. To define RNR in one-dimension, the step term

Of additional interest here is that RNR serves as a in (2.1) is now a random variable )' = (q(xl.) +
source for conceptual models of animal search, especially Zlk)/(9'(X.r)+ Z,,.) where Z71- is a random variable bay-
where chemical systems provide the dominant means of ing a density and zero expectation: Z2k is either an inde-
communication. This matter is discussed in Secs.2 and pendent, continuous random variable with the same sign
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as g'(xk) or is a constant with the same sign as g'(xk). Theorem 1. Suppose {Xk} is a Markov process in a
The RNR algorithm is compact interval W. Let p represent the target and

,p(d) = E(lXk+l - P1 I X - p = d) for all d E W - {p}.
Xk+1 = Xk - Yk when xk E W, xk is a realization of Xk Suppose: (a) for all d in a neighborhood of 0, V(d) <c ldl
Xk+1 = zk- 1  when Xk V W (re-set) . (2.2) for some positive c < 1; (b) the conditional density f of

Xk+1 is bounded below as follows: f.,+,,,(y I w) >_ b(w)
The stopping rule for the algorithm is: for a specified for all y,w E R, where the bound b is a continuous func-
t, and St = {x : jg(x)j < t) C W, stop when Xk+1 = tion of w, positive except possibly for w = p. Then
Xk E S1. (Note, the re-set condition in (2.2) can be Xk , p a.s.
replaced by the re-stdrt condition: Xk+1 is uniform over
W when Xk V W.) Joseph, et al (1990) obtained results Proof: By conditions (a) and (b), there are values r,
for the convergence (in a probabilistic sense) of RNR to a > 0 such that (i) for [dl < r, E(IXk+l - P1 I Xk - P =
the root. We do not repeat them here since we develop d) :_ cid and (ii) for Idi > r, f..+, I (y I d + p) > a for
stronger results in the next section. all Y E R. For each k, let Yk = IXk -plAr. Then {Yk} is

Animal search goes on in more than one-dimension, a sequence of non-negative, uniformly bounded random
The generalization of (2.2) to higher dimensions can be variables. For 0 < t < r, using (i), E(Yk+lI Yk = t) < c.
found in Joseph, et al (1990). For conceptual purposes, When t = r, using (ii), E(Yk+l I k = t) < c'I for
our discussion mainly will be in one-dimension but the some positive constant c' < 1. Consequently, E(Yk+i) <
results are easily generalized to higher dimensions. c"E(Y) for some positive constant c" < 1. The result

The algorithm (2.2) permits steps of arbitrary size, follows from Lemma 1.
steps which can overshoot the target by a greater amount This result suggests that the design of the density of
than is permissible in any animal tracking problem. To the injected random variable Zlk in the algorithm (2.2) is
avoid unrealistic step sizes, in all that follows, we fix Z2k crucial to insuring almost sure convergence to the target.
as a constant, the size of which depends on each partic- Specifically, this theorem demands that the concentra-
ular tracking problem and the time frame permitted for tion of the density of Xk about the target p increases
each iteration. "rapidly" as Xk approaches p. The theorem gives an

It is important to emphasize that the random vari- indication of how rapidly this concentration must take
ables {Zik} are injected into the system by the algorithm, place. Moreover, the density of Zlk must be condition-
These "noise" terms are not introduced externally as is ally bounded below (condition (b) of the theorem). This
done with "Robbins-Monro" which attempts to extract condition insures there are no other points of concentra-
the signal g(x) from the noise. In RNR the purpose is tion. It can be relaxed, if condition (a) is correspondingly
to add "noise" in a controlled way to the NR algorithm changed.
to obtain convergence in some cases where NR does not
yield acceptable convergence. Example 1. Suppose we seek the root of g(x) = 2x -X 2 .

Using RNR, Xk+ 1 = Xk - (2xk - xk + Zlk)/(2 - 2xk +
3. STRONG CONVERGENCE. We present here Z 2 ) where Zlk, Z2k are independent random variables;
some new results on the convergence of RNR to a unique E(Zlk) = 0, Z2k > 0, a.s. (Z 2k could be a positive
root which are both of general interest in numerical com- constant.).
putation and to the issue of animal search. The ques- (a) Observe that E(IXk+lI I Xk) !< [2-2xk] 1 [ +
tion, what conditions on the density of the random vari- IxkIE(Z2k)+E(ZIkf)]. For IxkI small, if we had designed
able ZIA are required to insure convergence, is treated in the density of Zlk so that E(IZlkl I xk) < .91xkI and
Th.1. What happens to the search if these conditions are the density of Z2k so that E(Z 2k I xk) < .9 (or Z2k is a
(mildly) not met is treated in Ex.1. constant less than .9), then E(IXk+l II Xk) < .95fxkl (fXkl

small). From our results, we expect a.s. convergence. We
Lemma 1. (Dinwoodie). Let {Xk} be a sequence of performed a simple simulation on a hand calculator using
random variables such that E(lXk+1I) < cE(IXkI) for all Z2k E U(0, 1.8), Zlk E U(-1.8x1Xkl, 1.8jxk1). Stopping
k and for some positive c < 1. Then Xk - 0, a.s.. when lg(x)l < 10' , and using x0 = .75, we arrive quickly

00 at x6 = 3 x 10- 6.
Proof: Clearly, _ EXk < oo. Since, for every - > 0 (b) Note thati=1 b oeta

and n, ,P(lXkI > ) < E(IA4I) so ZP(IXkI > ) <
oo as well. By the Borel-Cantelli lemma, for every e > E(X2+ [) = x2E + +Z2k(Z2k -2rki±<2 ZiA.
0, P(IXk I > e,i.o.) = 0. The conclusion follows using E (2 - 2 xk+Z,,.)2 -

Chung (1974), pg.73, Th.4.2.2. (3.1)
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If 0 < Z2k < 1, and we design the density guide for the remaining distance." The random flying
of Zlk so that V(Zlk I Xk) = IzkI/4, then the about depicted by Wilson does not suggest purposefully
term on the right of (3.1) is greater than or equal to directed behavior. Some consideration of the problem
(x /25) [(4Ixkl) + - 2Z 2kXk)]. For small ixkI, from the standpoint of the moth makes clear that this

EX+ I xk)/xk is large. Thus, we do not expect conver- random flying about is an integral part of the solution.

gence. In fact, letting Zik - U (-'k/4 /4) In fact, it is not correct that simply flying upwind the
moth "inevitably moves toward the female." As Wilson

adue of (x ) afs.008;ther 2500ence ite ra se osmlltest shows in a figure on page 103, the wind forms a plume
value of g(z) was .008; the sequence xk largely oscillated from the gas the female emits; unless the moth happens

between -. 1 and .1. There appears to be a barrier to fo h a h eaeeis nestemt apn
boeenc-. ato happily be flying along the "line of sight" to the fe-
convergence, male, flying upwind must inevitably bring him to the

The following example treats the questionofconver- edge of the plume. At this point, the moth must use
gence barriers more generally, derivative information (decrease in intensity) to return

to the plume, not totally along the downwind direction
ous function taking on the value 0 only at zero. Define but with some motion along the line perpendicular to
s(x,t) = [2 p(t)]-'I[o,2,,(t)](X) to be the transition ker- btwt oemto ln h iepredclrt
nel of) [2r)chion; iie., wito be hevitransaitioner- the wind's path. The search for the plume cannot be
nel of a Markov chain; i.e., with X 0 having an arbitrary "totally random" for this would suggest that the moth's
density on [0, 1] and given the density fk(X) of Xk, the motion could be modelled by a "random walk" model in
density fk+1 (x) of Xk+l is given by two dimensions. Such a model results in infinite expected

1 time to return to the plume. Hence, some deterministic
fk+1(x) = s(x,t)fk(t) dt . component depending on g(x) (a function inversely pro-

portional to intensity) and g'(x) must be included in the
By direct calculation, E(Xk+l I Xk = t) = A(t). If "random" algorithm dictating the moth's motion. These
p'(0) < 1, then by Th.1, X,, -- 0, a.s. On the other hand, observations are supported by Wilson who notes that in-
if V'(0) > e/2 = 1.36, then X, does not even converge creasing scent is a "guide" to the moth. This algorithm
in probability to 0. In fact, we state without proof, that must be efficient in order that the moth has a chance for
there exists a nontrivial distribution F 0 as close to the success before it exhausts itself.
constant 1 as we wish, such that if Fxk(x) Fo(x) for Another type of animal search is found in the in-
every x, then the same is true of Fx,+l. Thus, there exist visible odor trails fire ant workers leave to guide their
"stable barriers" to convergence, colleagues to a food source. The trail consists of a

With respect to the rate of convergence, using the pheromone laid down by workers returning to their nest
notion of q-linear convergence (Dennis and Schnabel after finding a source of food. The signal consists of in-
(1983)) we say that we have "expected q-linear conver- termittent "hot" spots which decrease in density as the
gence" if condition (b) of Th.1 is satisfied. In this sense, distance from the source increases. Again, one observes
Th.1 gives us both the "expected rate of convergence" a "random" motion of the ant as it hits one "hot" spot
and the certainty of it. and searches for the next. Again, the path of the ant

cannot be patterned after a random walk. The function
4. ANIMAL SEARCH. Investigators have observed g(x) must be inversely proportional to a cumulatite sum
that animal search often appears random. Their reports of "hot spots."
suggest thereby that the search is not purposefully di- What can go wrong? As the theory of the last sec-
rected. As an example, Wilson (1963) observes that the tion suggests, it is possible for an algorithm not "finely
male gypsy moth detecting the "faintly tinted air" pro- tuned" to produce erratic behavior even near the source.
duced by the female (perhaps thousands of meters dis- Anyone who has watched an exhausted retriever try to
tant) cannot fly in the direction of increasing scent be- find a source (such as a familiar tennis ball buried in
cause the "attractant is distributed almost uniformly af- deep grass) will observe that the retriever at times sim-
ter it has drifted a few meters from the female." Wilson ply steps over the source without ever focusing upon it.
then describes the path of the moth: "... they simply fly It appears that exhaustion has distorted the algorithm
upwind and thus inevitably move toward the female. If into producing a "stable barrier" to convergence.
by accident they pass out of the active zone, they either
abandon the search or fly about at random until they 5. FINAL COMMENTS: We have only here touched
pick up the scent again. Eventually as they approach upon the connection between animal search and random-
the female, there is a slight, increase in the concentra- ized algorithms. We have also investigated a number of
tion of the chemical attractant and this can serve as a models, such as "hot spots" distributed over lattices and
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run a number of simulations which appear to demon- REFERENCES
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Abstract

We present and compare learning rate schedules for
stochastic gradient descent, a general algorithm which - - -

includes LMS, on-line backpropagation and k-means
clustering as special cases. We introduce "search-then-
converge" type schedules which outperform the classical "
constant and "running average" (1/t) schedules both in
speed of convergence and quality of solution.

Introduction: Stochastic Gradient De-
scent

The optimization task is to find a parameter vector W Figure 1: Comparison of the shapes of the sched-
which minimizes a function G(W). In the context of ules. Dashed line = constant, Solid line = search-then-
learning systems typically G(W) = £x E(W, X), i.e. G is converge, Dotted line = "running-average"
the average of an objective function over the exemplars,
labeled E and X respectively. The stochastic gradient
descent algorithm is * "Running Average": q(t) = io/(l + t)

AW(t) = -i(t)Vw E(W(t), X(t)).

where t is the "time", and X(t) is the most recent * Search-Then-Converge: 77(t) = to/(1 + t/r)
independently-chosen random exemplar. For compari-
son, the deterministic gradient descent algorithm is

AW(t) = -q(t)Vw~xE(W(t), X). "Search-then-converge" is the name of a novel class

While on average the stochastic step is equal to the de- of schedules which we introducein this paper. The spe-

terministic step, for any particular exemplar X(t) the cific equation above is merely one member of this class

stochastic step may be in any direction, even uphill in and was chosen for comparison because it is the simplest

£xE(W(t), X). Despite its noisiness, the stochastic al- member of that class. We find that the new schedules

gorithm may be preferable when the exemplar set is typically outperform the classical constant and running

large, making the average over exemplars expensive to average schedules. Furthermore the new schedules are

compute. capable of attaining the optimal asymptotic convergence

The issue addressed by this paper is: which function rate for any objective function and exemplar distribu-

should one choose for q(t) (the learning rate schedule) tion. The classical schedules cannot.

in order to obtain fast convergence to a good local min- Adaptive schedules are beyond the scope of this short
imum? The schedules compared in this paper are the paper (see however Darken and Moody, 1991). Nonethe-
following (Fig. 1): less, all of the adaptive schedules in the literature of

which we are aware are either second order, and thus
* Constant: q(t) = qo too expensive to compute for large numbers of parame-

ters, or make no claim to asymptotic optimality.
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Example Task: K-Means Clustering distance proportional to q and to a variance which de-
pends on the objective function and the exemplar set.

As our sample gradient-descent task we choose a k-means Since the statistics of the exemplars are generally as-
clustering problem. Clustering is a good sample problem sumed to be unknown, this residual misadjustment can-
to study, both for its inherent usefulness and its illustra- not be predicted. The resulting degradation of other
tive qualities. Under the name of vector-quantization, measures of system performance, mean squared classifi-
clustering is an important technique for signal compres- cation error for instance, is still more difficult to predict.
sion in communications engineering. In the machine Thus the study of how to make the parameters converge

learning field, clustering has been used as a front-end for is of significant practical interest.

function learning and speech recognition systems. Clus- Current practice for backpropagation, when large

tering also has many features to recommend it as an m utent i ce is toprsatin wh a
illutraivestocastc otimiatin poble. Te aap- misadjustment is suspected, is to restart learning with a

illustrative stochastic optimization problem. The adap- smaller q}. Shrinking q does result in less residual mis-

tive law is very simple, and there are often many local sme nt bu at e s i e es d o nv-

minima even for small problems. Most significantly how- adjustment, but at the same time the speed of conver-
ever, if the means live in a low dimensional space, visu- gence drops. In our example clustering problem, a new
evertion if the eanser lo dinsiolse viasu- phenomenon appears as q} drops-metastable local min-
alization of the parameter vector is simple: it has the ima. Here the parameter vector hovers around a rela-
interpretation of being a set of low-dimensional points tively poor solution for a very long time before slowly

which can be easily plotted and understood.

The k-means task is to locate k points (called transiting to a better one.

"means") to minimize the expected distance between
a new random exemplar and the nearest mean to that Running Average Schedule
exemplar. Thus, the function being minimized in k- The running average schedule (q(t) = i/o/(l + t)) is the
means is ,xlIX - Mn,,112 , where Mnrt is the near- staple of the stochastic approximation literature (Rob-

est mean to exemplar X. An equivalent form is bins and Monro, 1951) and of k-means clustering (with
f dXP(X)ent of (X)IIX Mi i 2 , where P(X) is the Yl0 1) (MacQueen, 1967). This schedule is optimal for
density of the exemplar distribution and c(X) is the k 1 (1 mean), but performs very poorly for moder-
indicator function of the Veronois region corresponding ate to large k (like our example problem with 9 means).
to the ath mean. The stochastic gradient descent algo- From the example run (Fig. 2A), it is clear that j? must
rithm for this function is decrease more slowly in order for a good solution to be

AMnrst(t) = -.. (tnrt)[Mnrj*(t) - X(I)], reached. Still, an advantage of this schedule is that the
parameter vector has been proven to converge to a lo-

i.e. the nearest mean to the latest exemplar moves cal minimum (MacQueen, 1967). We would like a class
directly towards the exemplar a fractional distance of schedules which is guaranteed to converge, and yet
ri(trt). In a slight generalization from the stochastic converges as quickly as possible.
gradient descent algorithm above, tnrt is the total num-
ber of exemplars (including the current one) which have Stochastic Approximation Theory
been assigned to mean Mnrat.

As a specific example problem to compare various In the stochastic approximation literature, which has
schedules across, we take k = 9 (9 means) and X uni- grown steadily since it began in 1951 with the Robbins
formly distributed over the unit square. Although this and Monro paper, we find conditions on the learning rate
would appear to be a simple problem, it has several ob- to ensure convergence with optimal speed '.
served local minima. The global minimum is where the From (Ljung, 1977), we find that q(t) -- At-P
means are located at the centers of a uniform 3x3 grid asymptotically for any 1 > p > 0, is sufficient to guaran-
over the square. Simulation results are presented in fig- tee convergence. Power law schedules may work quite
ures 2 and 3. well in practice (Darken and Moody, 1990), however

from (Goldstein, 1987) we find that in order to converge

Constant Schedule at an optimal rate, we must have q}(t) -. c/t asymptot-

A constant learning rate has been the traditional choice ically, for c greater than some threshold which depends

for LMS and backpropagation. However, a constant 'The cited theory generally does not directly apply to the full
rate generally does not allow the parameter vector (the nonlinear setting of interest in much practical work. For more
rt gdetails on the relation of the theory to practical applications and
"means" in the case of clustering) to converge. Instead, a complete quantitative theory of asymptotic misadjustment, see

the parameters hover around a minimum at an average (Darken and Moody, 1991).
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on the objective function and exemplars 2. When the dient descent, and adaptive search-then-converge algo-
optimal convergence rate is achieved, 11W - W'l12 goes rithms which automatically determine the search time.
like 1/it.
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cally. Unfortunately, the convergence rate of the running The authors wish to thank Hal White for useful conversations
average schedule often cannot be improved by enlarging and Jon Kauffman for developing the animator which was
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weigh the improvements in asymptotic convergence rate. Grant N00014-89-J-1228 and AFOSR Grant 89-0478.

Search-Then-Converge Schedules References
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guaranteed to converge and furthermore, can achieve the Conference on Neural Networks 190, 2:233-238. IEEE Neu-
optimal 1/t convergence rate without stability problems. ral Networks Council.
These schedules are characterized by the following fea-
tures. The learning rate stays high for a "search time" C. Darken and J. Moody. (1991) Learning Rate Schedules
r in which it is hoped that the parameters will find and for Stochastic Optimization. In preparation.
hover about a good minimum. Then, for times greater L. Goldstein. (1987) Mean square optimality in the continu-
than T, the learning rate decreases as c/i, and the pa-

am te cvearnge ous time Robbins Monro procedure. Technical Report DRB-
rameters converge. 306. Department of Mathematics, University of Southern

We choose the simplest of this class of schedules for California.
study, the "short-term linear" schedule (q/(t) = iro/(l +
t/r)), so called because the learning rate decreases lin- L. Ljung. (1977) Analysis of Recursive Stochastic Algo-
early during the search phase. This schedule has c -r70 rithms. IEEE Trans. on Automatic Control. AC-22(4):551-
and reduces to the running average schedule for r = 1. 575.

J. MacQueen. (1967) Some methods for classification and
Conclusions analysis of multivariate observations. In Proc. 5th Berkeley

We have introduced the new class of "search-then- Symp. Math. Stat. Prob. 3:281.

converge" learning rate schedules. Stochastic approxi- H. Robbins and S. Monro. (1951) A Stochastic Approxima-
mation theory indicates that for large enough r, these tion Method. Ann. Math. Stat. 22:400-407.
schedules can achieve optimally fast asymptotic con-
vergence for any exemplar distribution and objective
function. Neither constant nor "running average" (l/t)
schedules can achieve this. Empirical measurements on
k-means clustering tasks are consistent with this expec-
tation. Furthermore asymptotic conditions obtain sur-
prisingly quickly. Additionally, the search-then-converge
schedule improves the observed likelihood of escaping
bad local minima.

As implied above, k-means clustering is merely one
example of a stochastic gradient descent algorithm. LMS
and on-line backpropagation are others of great interest
to the learning systems community. Due to space limi-
tations, experiments in these settings will be published
elsewhere (Darken and Moody, 1991). Preliminary ex-
periments seem to confirm the generality of the above
conclusions.

Extensions to this work in progress includes applica-
tion to algorithms more sophisticated than simple gra-

2 This choice of asymptotic q satisfies the necessary conditions

given in (White, 1989).
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A B

C D

Figure 2: Example runs with classical schedules on 9-means clustering task. Exemplars
are uniformly distributed over the square. Dots indicate previous locations of the means.
The triangles (barely visible) are the final locations of the means. (A) "Running average"
schedule (9 = 1/(1 + f)), 100k exemplars. Means are far from any minimum and pro-
gressing very slowly. (B) Large constant schedule (ij=0.1), 100k exemplars. Means hover
around global minimum at large average distance. (C) Small constant schedule (q,=0.01),
50k exemplars. Means stuck in metastable local minimum. (D) Small constant sched-
ule (t=0.01), 100k exemplars (later in the run pictured in C). Means tunnel out of local
minimum and hover around global minimum.
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Abstract the genetic PP algorithm is applied to datasets generated by
the infamous RANDU pseudo-random number generator.

Exploratory Projection Pursuit is a technique for

forming projections of a multivariate point cloud
and searching for those projections that reveal the 2 Exploratory Projection Pursuit
most structure. The search component is typically
some variant of a steepest descent procedure and, When applying PP, the analyst's goal is simply to locate inter-
particularly when the search space is ill-behaved, esting structure within the high dimensional data space. The
leaves open the possibility that the best projection basic paradigm for PP is:
will not be found. Genetic Algorithms are generally
applicable optimization techniques, well suited for Assume the data is unstructured in p-space
search spaces in which more traditional techniques REPEAT:
fail. This paper describes experiments designed to 1. locate and save directions indicating the presence
ascertain the effectiveness of Genetic Algorithms of structure
as optimizers for exploratory projection pursuit. 2. return to the unstructured assumption by removing

any structure found in step 1.
UNTIL: no significant structure can be found

1 Introduction
For the purposes of this paper, the critical issues are related

A common goal of exploratory data analysis is to find struc- to Step 1, namely, how the computer can recognize when a
ture (clusters, hyperplanes, and the like) among a configu- projection is "interesting", and how such projections can be
ration of points in p-dimensional space. This is a difficult located.
task for large p because high-dimensional space is inherently
empty, and procedures that rely on interpoint distances to es- 2.1 Evaluating a Projection
tablish structure fall prey to the "curse of dimensionality". A
typical approach to the problem is to reduce dimensionality Techniques for defining evaluation functions that can measure
with the hope that, in doing so, information loss is minimal, the degree to which a given projection reveals structure are
Exploratory Projection Pursuit (PP) [4, 5] is a dimension re- described in detail in [7]. Due to the ease with which it can be
duction technique for forming projections of a multivariate programmed, the evaluation function used in the experiments
point cloud onto subspaces spanned (usually) by the first 1,2, in this paper is the simple "clottedness" index described by
or 3 coordinates, and searching for those projections that re- Friedman and Tukey in [5].
veal the most structure. The search component of PP systems The clottedness index was designed to locate projections that
is typically some variant of a steepest descent procedure and, simultaneously maximize both the overall "spread" and the
particularly when the search space is not well behaved, leaves local density of the datapoints. In order to keep the nota-
open the possibility that the best projection will not be found. tion simple, an index designed to assess the clottedness of
Genetic Algorithms (GAs) [6] hold a great deal of promise as a one-dimensional projection direction a is described here.
generally applicable optimization techniques [I], and are par- Friedman and Tukey defined the clottedness of a as:
ticularly suitable for search spaces in which more traditional
techniques fail. This paper provides a brief overview of both
PP and GAs, and describes an implementation of PP in which C(a) = s(a)d(a) (1)
a GA is used to locate the most interesting projections. The
power of the GA approach is illustrated by examples in which Here, s(a) is a measure of the overall variability of the data
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Figure 3: Comparison of 10 runs over the various schedules on the 9-means cluster-
ing task (as described under Fig. 1). The exemplars are the same for each schedule.
Misadjustment is defined as 11W - W6 1'. (A) Small constant schedule (1=0.01).
Note the well-defined transitions out of metastable local minima and large misad-
justment late in the runs. (B) "Running average" schedule (tq = 1/(l + t)). 6
out of 10 runs stick in a local minimum. The others slowly head for the global
minimum. (C) Search-then-converge schedule (r) = 1/(1 + i/4)). All but one run
head for global minimum, but at a suboptimal rate (asymptotic slope less than -1).
(D) Search-then-converge schedule (q = 1/(l + t/32)). All runs head for global
minimum at optimally quick rate (asymptotic slope of -1).
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as projected onto direction a, and is computed as the trimmed 3 Motivation
standard deviation of the N data points, as projected onto a.
Local point density is defined as Data obtained from IBM's now infamous RANDU pseudo-

random number generator are often described as the kind of
N N data to which PP techniques might be applied. The RANDU

d(a) = f(rj )l(R-r,,). (2) generator has the property that any three consecutively gener-
=j=1 ated numbers satisfy X,+2 - 6x,+l + 9x, = 0 (mod 1), and

so the triplets lie on 15 parallel planes through the unit cube.
In (2), rij is a measure of the absolute distance between any These planes are, however, visible only over a narrow "squint
pair of points as projected onto a, and f(ri,) is a kernel func- angle" (less than 50) and it has been suggested that PP meth-
tion that monotonically decreases for increasing r. A local ods could be used to located two-dimensional projections that
cutoff radius, R, defines the neighborhood within which point reveal the planes. However, Buja and Stuetzle', state that:
density is measured, and an indicator function, I(17), that
evaluates to unity for q > 0, is used to identify those pairs "The RANDU planes do suggest several ques-
of points no further apart that R. In words, then, the average tions about PP. First, it seems doubtful that any
nearness of the points along a is computed as the sum of the version of PP would pick up the planes...even if the
contributions of all pairs of points no farther apart than R, sample estimate of the projection index had min-
such that the closer the points, the greater their contribution ima at projections which show the RANDU planes,
to the double sum defined in (2). Locating a direction, a, the valleys might be much too narrow to be found
that maximizes (1) therefore amounts to locating a direction by conventional optimizers...in spite of being pro-
that shows a configuration of well separated, dense clusters moters of PP methods ourselves, we are not quite
- an "interesting" projection. The extension of (1) and (2) convinced that this example makes a strong case
to two-dimensional projections is straightforward. Data vari- for PP. On the opposite, it might highlight some
ability across the plane defined by (a, /3) is defined simply as unresolved problems." (italics mine)
s(a)s(13) and point density is measured just as in (2) with rij
defined as the Euclidean distance between pairs of points on This statement prompted the work described in this paper-
the projection plane. an investigation designed to ascertain whether a decidedly

unconventional optimizer (a Genetic Algorithm) could be ap-
2.2 Searching for Interesting Projections plied in a PP setting in order to locate two-dimensional pro-

jections that reveal the RANDU planes.
Given that any arbitrary projection can be evaluated according
to its degree of interest, a mechanism must be found to locate
interesting projections in the p-dimensional data space. If one 4 Genetic Algorithms
imagines a two-dimensional grid encompassing all possible
two-dimensional projections, then the values obtained from GAs typically follow a standard paradigm:
the clottedness function define a third dimension that is a sur- * define an encoding scheme,
face over the grid of possible projections. In this context, the * generate a starting population,
search for interesting projections amounts to a search for local * evaluate the starting population,
maxima along this surface. A standard approach to problems * reproduce, recombine, mutate and re-evaluate until some
of this sort involves choosing an initial starting point, choos- termination criterion is met
ing a "step" size and then varying a and )3 by steps until a
new point, "uphill" of the previous point, is located. The In the context of PP, the application of GAs to the search for
application of numerical optimization procedures of this type interesting projections involves a straightforward implemen-
to PP is described in some detail in [4 and [5]. tation of this paradigm. Each step is described below.

2.3 Summary 4.1 Define an Encoding Scheme

PP is an effective approach for uncovering structure in multi- Note that a projection is usually represented algebraically as
variate data. The analyst need not specify a model in advance, a pair 2 of linear combinations of the original p-dimensional
estimation takes place in low-dimensional context (thus avoid- data. For example, a starting projection might be composed
ing the "curse of dimensionality"), projections that reveal of a = .32x, + .45X2 -... + .12x, and ;3 = .56x, - .77X2 +

structure can be cheaply applied to new data, and multiple ... + .7 8 x,. We transform each of the 2p parameters into
informative projections can often be found. Unfortunately,
the projections located by PP can often be difficult to interpret 'On p. 486 of a discussion of Huber's Projection Pursuit review
18). In addition, the numerical optimization procedures might paper [2].
locate spurious structure [3] or fail to locate real structure. 2To simplify things, we'll assume we are projecting onto the
The latter possibility is the subject of this paper. plane, so that our solutions will always be 2D-scatnerplots.
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a binary string3 of sufficient length to represent the desired
range4 . Concatenating the 2p bit-strings then delivers a single
bit string representing the projection.

4.2 Generate a Starting Population .... .-

Instead of starting with a single projection and searching up- " "- -.

hill from there, we start with many (hundreds, even thousands) 2. " " -

randomly' selected projections. Each projection is then trans- .
formed into the bit-string representation defined above. "

4.3 Evaluate the Starting Population 0.14

0.12

Associated with each bit string is an index of merit measuring 0.1
how "interesting" that projection is. For our experiments, the
index of merit is the clottedness function shown as equation 0.0

(1). The index of merit is applied to each bit-string in the 0.06

starting population. 50 10 1 200 2 30*0 350

4.4 Iterate W-*.""i o• •.-','::.:',e. • population: 100
• "." " " .:., "1J' . . cmsover rate: 0.9

GAs make use of a biological metaphor in which we imagine . ., i. r.'.,':, cs r:• .r l' ..T:. -¢:... .. mutation rate: .005 1

each bit string to be a chromosome capable of combining with • rate: .'" .
• , .. .... • bits per parameter: 1

another chromosome and producing offspring that share the . .. e
characteristics of each parent. The following five steps are
repeated until some termination criterion is met:
Selection: Just as in biological evolution, natural selection is
the guiding force towards adaptation. Reproduction is con-
trolled by a biased "roulette wheel" in that the probability that Figure 1: Resuls for 3D RANDU data.
a bit string will be allowed to provide a copy of itself to the
next generation is proportional to its index of merit-the best
projections provide multiple copies of their "genetic material" Re-Evaluation: Each projecuon is evaluated and assigned an
to the next generation, whereas the worst projections do not index of merit.
survive to the next generation at all.
Recombination: The biological metaphor is followed once 4.5 Summary
again, as the collection of bit-strings form into pairs, and each
member of some proportion 6 of the pairs exchanges 7 a se- When used for numerical optimization, GAs differ from more
quence of bits with the other member. This process is called traditional procedures in that they are stochastic in nature,
crossover and mimics the exchange of genetic material be- they use an encoding of the parameter set rather than the
tween biological chromosomes. parameters themselves, they start with a collection of points
Mutation: To ensure that genetic diversity is maintained (i.e. rather than a single point, and they use a simple evaluation
premature convergence on local maxima is avoided), single procedure rather than computed or approximated derivatives.
bits spontaneously change state at a predefined mutation rate. Because of these characteristics, GAs tend to be extremely
Restructuring: Selection, recombination and mutation serve simple to use and generate multiple, parallel search paths
to generate a brand new population of projections. However, that tend to locate global maxima in ill-behaved (multimcal,
unlike the starting population, the pairs of directions that form discontinuous, noisy) search spaces where more traditional
each projection are unlikely to be orthogonal. In this step, a approaches fail [1]. An additional advantage of the genetic
Gram-Schmidt orthogonalization is applied to each projec- approach is that GAs can be readily implemented on fast
tion to ensure that the orthogonality constraint is maintained, parallel hardware when large problems must be tackled [ 10].

3 A special transformation called grey scale encoding is used to
ensure that bit strings representing close numbers are similar. 5 Resu

4 For example, 211 = 2048, so an Il -bit string can be used to

represent parameters in the range -1.024 < x, < 1.024.
5Some carefully chosen projections (e.g., principal component For the first experiment, a dataset consisting of N=500 cases

directions) can be included in the starting population if desired. was generated. Each case consisted of three consecutive ran-

6This proportion is called the crossover rate. dom variates generated by the RANDU generator. Figure 1
7An exchange point is selected at random. shows a plot with generation number on the x-axis and com-
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6 Summary

' -' . ".. , The experiments described in this paper clearly demonstrate
,, "... • •- ,. . '' -,that a genetic version of PP can readily locate projections that

*,...*.-" ,.,. ,.reveal the RANDU planes--even in the exceptionally difficult
*.,*.-.,.N., 4D and 5D spaces.• .. ,o*",.". *%. , '2. , "

... .. -" GAs seem well-suited for PP not only for their good perfor-
mance as general purpose optimizers, but also because they

I, are able to generate a collection of interesting projections in-
0.275 stead of the one (hopefully) optimal projection returned by
0.25 the currently used search techniques. Current implementa-
0.225| tions of PP get around this problem by transforming the data

0.2 to remove found structure, searching for additional structure
0.175 in the transformed space, and repeating until no more struc-

0.1 ture can be found [4]. This iterative approach is not necessary
0.125 when using GAs for search. Finally, when fast, parallel im-

0 2C 400 0 1000 1200 1400 plementations of GAs are available, a genetic version of PP
generations " "..* can readily be applied to very large problems.

• ' f* *4 'S %

population: 200 ' : , *..- '.. References
crossover rate: 0.9 " . ". "
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Abstract A matrix experiment consists of a set of experiments
where we change settings of the various product or process

The use of mixed multilevel orthogonal arrays in robust parameters we want to study from one experiment to another.
design has gained popularity in quality improvement areas in Conducting matrix experiments using orthogonal arrays
recent years. We have investigated the use of genetic allows the effects of several parameters to be determined
algorithms in the construction of such arrays. This paper efficiently and is an important technique in robust design.
addresses issues encountered in formulating the problem
(such as encoding and representation), as well as the results In this paper, we describe using genetic algorithms to
of this application. We compare this technique with simulated generate mixed multilevel orthogonal arrays, without the need
annealing which we published previously, to resort to complex combinatorics theory. This is a contin-

uous effort in exploring novel optimization techniques forIntroduction generating general orthogonal arrays. We have reported on
The objective of engineering a major part of the use of simulated annealing for such a purpose in a previous

dheobetveomentiseeton design, amjrptof paper (Wang and Safadi, 1990).research and development, is to produce high quality products
that meet customer requirements. Knowledge of scientific Genetic Algorithms: What are they and how
phenomena and past engineering experience with similar they work.
product designs and manufacturing processes form the basis
of engineering design activity. However, a number of new Genesare essentially blueprints ormaps thatcontain many
decisions related to the particular product must be made segments that are responsible for the way the parts of a living
regarding product specification, parameters of the product species appear and function. These genes are modified during
design, the process design, and parameters of the manufac- the evolutionary process by means of reproduction and
turing process. A large amount of engineering effort is mutation, where genes that are responsible for attributes in
consumed in conducting experiments (either with hardware the organism that help it survive are carried over with greater
orby computer simulation) to generate the information needed probability into the next generation (survival of the fittest).
to guide these decisions. Robust design promoted by Dr. Now, if one thinks of survival of the fittest as an optimization
Genich; Taguchi is an engineering methodology for problem, with the genes mapping variables that are respon-
improving productivity during research and development so sible for the value of an objective function (the fitness of the
that high-quality products can be produced quickly and at low organism), then this evolution process should lead to values
cost (Taguchi, 1986). of these variables that optimize the objective function. A

genetic algorithm is a procedure that mimics the evolutionRobust design draws on many ideas from statistical process, and uses bit-strings (strings of l's and O's) as genesexperimental design to plan experiments for obtaining to represent values of the independent variables, in whichdependable information about variables involved in making these bit-strings undergo the changes that genes undergo
engineering decisions. Robust design makes heavy use of during evolution. Thus, bit-strings that represent a large (high
orthogonal arrays. Robust design adds a new dimension to fitness) valueof the objective function will survive, eventually
statistical experimental design. It helps engineers to reduce giving us a solution to the optimization problem. The fol-
economically the variation of a product's function in the lowing is a list of steps that a simple genetic algorithm could
customer's environment. Robust design also ensures that follow (Goldberg, 1989)(also see Figure 1):
decisions found to be optimum during laboratory experiments
will prove to be so in manufacturing and in customer envi-
ronments.
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1. Mapping of the variables into genes (encoding). array F Wa
2. Marking of the genes with probabilities for their partici-

pation in the reproduction process based on the value they columns that contain the various levels for each factor. The
cause the objective function to have. orthogonality requirement is met if and only if the following

3. Reproduction (Collection of a gene pool for mating). is true:
4. Mating of the genes (crossover). 1. Within each column, there must be an equal number of
5. Mutation. occurrences of each level setting.

In order to illustrate these steps, we shall formulate the 2 Rows having a particular number of level settings in a
problem of mixed-multilevel orthogonal array generation, certain column, must have an equal number of all other
encode it in the aforementioned binary form (genes), then level settings in the rest of the columns.
apply the algorithm. 3. The number of rows in the matrix should be the minimum

that achieves the above conditions.
A To generate the OA, we first generate an unbalanced array,

START, then use simulated annealing to balance it. To generate the
initial unbalanced array, the following steps are taken:

1. Satisfy condition 3 above. The minimum number of rows
NR is the lowest common multiplier of the following list:

ENCODE Ljori = 1, n;L- LJor i,j = 1,N; Li. Lfor i = 1, N if F > 1

2. Find the number of occurrences of each level for each
PROBLEM particular column (condition I above). If the number of

levels in that columns is Li then the number of occurrences
for each of these levels in that column is:

NIL,

E E3. Fill the columns with the appropriate number of levels as
calculated above.

This would give us the initial unbalanced matrix. To
NOT MET illustrate, consider the array 3' x 24, which gives the following

initial (unbalanced) matrix shown in Figure 2. The minimum
number of rows is lcm(2,3,4,6)=12. The balanced matrix is

SELECT given in Figure 3.
NEW

To speed up the computation time, we balance the array
one column at a time. First, the first column is fixed, the
algorithm is performed on the second column to balance it
with the first using condition 3 above. Once this column is
balanced, the algorithm is performed on the next while trying
to balance it with the previous two columns. This is repeated

CROSS- until the whole array is balanced.

OVER &

MUTATION I 1111
22222
31111
12222

Figure 1. A general Genetic Algorithm 21 1 1 1
3222211111

Orthogonal array generation 22222
31 1 11

The problem statement for the generation of an orthogonal 1 2 2 2 2
array (OA) is as follows: 21 1 1 1
Given F, factors at L, levels, F2 factors at L2 levels, L2 levels, 3 2 2 2 2

F, factors at LN levels, generate the orthogonal (balanced)
Figure 2. The unbalanced 3' x 2 matrix
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111 2'A 5. Mutation: The function of mutation is to help prevent the
1 12 1 algorithm from being trapped in local minima. Mutation
1 2 1 2 2 happens infrequently and to a random chromosome in a
1 2 2 1 2 randomly selected gene.
21112
21222
22121
2221 1 Table 2. Gene Fitness and Segment assignments
31111
3 1 222 Gene Fitness Segment Probability of
32112 # Reproduction
32221 (%)

1 4 0.00-0.04 4.0
Figure 3. The balanced 3' x 2' matrix 2 10 0.04-0.14 10.1

3 15 0.14-0.29 15.2
4 20 0.29 - 0.49 20.2

The Algorithm 5 50 0.49 - 1.00 50.5

We will now illustrate the five steps of the algorithm on
one of the columns of an array.

1. Encoding: An encoding scheme should insure that all
possibilities for a column configuration can be represented by
it. We designed the encoding scheme illustrated in Figure 4.
The encoding gene in this case specifies a series of switching
operations to be performed on a fixed initial column in order 0
to arrive at the column that the gene encodes. In Figure 4, we
have a column of 6 rows, and an encoding gene with 15 1 >
"chromosomes", each of which represents a combination of
two rows in the column. To arrive at the column that the gene 0
is actually encoding, we switch the rows of the column whose I I
corresponding chromosomes in the encoding gene have a 0 2
value of 1. For example, chromosome #1 has a value of 0, so 3 0 3
rows I and 2 will in the column will not be switched.
Chromosome #2, however, has a value of 1, so rows 1 and 3 3 0 3
will be switched. This process is repeated for all row
combinations. 0

2. Assigning genes probabilities for reproduction: Table 0
1 shows a list oi genes and their corresponding fitness, and
based on that fitness, a segment of real numbers between 0 0
and 1. The idea is that the larger the fitness, the larger the 0
corresponding segment, and the larger the probability (Figure
3) that a random number between 0 and 1 will fall in that 0
segment, which is the way the genes are chosen for mating
and reproduction. This method insures higher probabilities 0
of reproduction for genes with higher fitness.

3. Selection of the mating pool: A random number is
generated, and the gene that corresponds to the segment into 0
which this random number fits is selected to be a member of
the mating pool. This is repeated as many times as the number
of genes in the initial gene pool. Encoding Gene

4. Mating and crossover: After building the mating pool,
genes from this pool are paired randomly, and crossover will
take place between them. In other words, a segments of the Figure 2. Gene Encoding.
same (random) number of chromosomes are chosen from
random locations in the nmating genes and exchanged (Figure
4).



Constructing Multilevel Orthogonal Arrays 325

REFERENCES

1. Taguchi, G., Introduction to Quality Engineering, Asian
Productivity Organization, 1986.G-(Ley Gne i

,Gene 2 2. Wang, R. H. and Safadi, R. B., "Generating Mixed
G ne ,3 Multilevel Orthogonal Arrays by Simulated Annealing",

(
1

5.250 in Proceedings of Interface '90, 1990.Gone 0
3. Goldberg, D. E., Genetic Algorithms in Search, Optimi-

zation, and Machine Learning, Addison-Wesley:
(20,29 Reading, Massachusetts, 1989.
Goene 4

Figure 3. Gene Mating probabilities.

1 0 1 0
0 1 0 1
1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0
0 1 0 1
1 0 1 0
0 0 1 0
0 1 1 1
0 0 1 0
0 0 0 0
1 0 1 0
1 0 1 0

A 1 0 1

Figure 4. Crossover

Conclusion
We have used a genetic algorithm to construct mixed

multilevel orthogonal arrays. These arrays are quite useful in
robust design and quality improvement projects. The use of
this novel search and optimization technique allows us to
generate these arrays without resorting to complex combi-
natorial techniques which can also be restrictive.
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The Use of LEGO Bricks to Construct Solid 3-Dimensional
Dose-Response Surfaces

William R. Greco1

Pharmacometrics Laboratory
Roswell Park Cancer Institute

Buffalo, New York 14263

Abstract

Three-dimensional graphs of mathematical/ Introduction
statistical models are useful for the understanding of
many phenomena. However, even with sophisticated The visualization of 3-dimensional (3-D)
expensive computer hardware and software, realistic mathematical/statistical models is important in many
rendering of 3-dimensional graphs is still a difficult branches of applied and theoretical mathematics and
task. For scientists with a limited budget, it is close statistics. Such visualization is very difficult however,
to impossible. A simple inexpensive approach is to even with expensive computer graphics capabilities. It
construct 3-D surfaces with LEGO bricks. Steps is especially difficult to represent 3-dimensional
include: (a) simulate data (calculate outputs, i.e., z surfaces as 2-dimensional (2-D) static images. Tricks
values from a design matrix of x, y inputs) for the such as shading, shadowing, motion, stereoscopic
surface via a favorite computing language or package; hardware and holography may provide some
(b) roundoff data to the resolution of individual assistance in 3-D visualization, but none of these
bricks, and tabulate data on sheets of paper, one approaches are ideal, and most are expensive.
sheet for each brick layer; (c) construct a wooden
platform with axis tic marks and labels; and (d) Driven by the need to intimately understand
construct the 3-D surface with bricks. Examples of 3-D concentration-effect surfaces for my research in
useful models which have been constructed include Pharmacometrics, and constrained by the limits of a
ones of: (a) synergism for two anticancer drugs; (b) small budget, I constructed four 3-D graphs with
antagonism for two anticancer drugs; (c) a composite LEGO and LEGO-compatible building blocks. A
generalized nonlinear model consisting of a logistic picture of me with three of these models is shown in
dose-response structural model with a binomial data Figure 1. They are of a suitable size for classroom
variation model; and (d) a likelihood function teaching, one-on-one tutoring, and contemplative
associated with the fitting of a monoexponential thinking. When carefully packed in boxes with
pharmacokinetic model to data with two estimable styrofoam beads, they are easily transported by car
parameters, illustrating profile likelihood. These 3-D and/or plane. The approach which I used to construct
LEGO models are useful for (a) studying the shape of these models is quite general, and should be
3-D functions; (b) gaining insight into physical applicable and useful to a wide variety of
phenomena; (c) explaining concepts in statistical mathematical/statistical topics for both research and
analysis approaches; and (d) designing experiments, teaching purposes. This article describes the

construction and use of these models.

'Supported by NCI grants CA46732, CA 16056, and
CA2107 1.
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of color is a great aid to the thorough understanding
of the 3-D model by the viewer.

For each model, a wood base, 13 in by 13 in
bv 4.5 in was constructed, and covered with black
laminate. (A simpler base made from one piece of 0.5
inch pressed board or plywood would be adequate.)
Axis labels with tic marks were made to the proper
scale, were laminated, and then glued to the wood
bases. Finally, the LEGO models were glued onto the
bases.

Description of Models

A. Synergism. Figure 2 shows a concen-
tration-effect surface for two drugs, DDATHF (5,10-
dideazatetrahydrofolate) and trimetrexate, and a
response which is the growth of cells in a cellN culture assay, expressed as a percent of control
growth. The details for this in vitro cancer
chemotherapy experiment are described elsewhere

-(Greco et al, 1990). Equation 1 was fit to the data in
Figure 1 with iteratively reweighted nonlinear least
squares. The best fit surface, shown in Figure 1, was
constructed with SAS/GRAPH (SAS Institute,
1990). The mathematical/statistical details of the

Figure 1. A proud man and his models. nature, origin and use of Equation I have been
published elsewhere (Greco et al, 1990; Greco and
Lawrence, 1988; Greco, 1989; Syracuse and Greco,

Methods 1986).

Briefly, Equation I allows the slopes of the
Each 3-D mathematical/statistical function concentration-effect curves for the two drugs to be

was first simulated with custom FORTRAN unequal. A convention used in Equation I is that as
programs. The 3-D array of points was then printed drug concentration(s) increases, the measured
out on a 2-D table with the values of the X and Y response decreases; the slope parameter, m, is
variables listed along the top and leftside of the table, negative. The output, E , is the measurement from
and with the values of the Z (height) variable listed in the cell growth assay; and the inputs are [ TMTX],
the cells of the table. The Z values were rounded to [DDATHF, the respective concentrations of TMTX
the nearest LEGO brick. and DDATHF. The seven estimable parameters

include: Econ, the control or maximum response at 0
Using the 2-D table as a guide, each of the drug concentration; B, the extrapolated background

models was constructed on a standard 10 in by 10 in response at infinite drug concentration; IC5OTAITX,
LEGO base. The heights of the models varied from
11 to 22 standard LEGO bricks. (Each brick is 0.375 in IC50,DDATHF , median effective concentrations of

high.) Models were constructed, one layer at a time of TMTX, DDATHF respectively; mTAMTX,
a uniform color, with each adjacent layer (or set of mDDATHF, slope parameters for TMTX, DDATHF
layers) being a different color. Black bricks were often respectively; and a , the synergism-antagonism
use to highlight important contours. The judicious use

parameter. When a is positive synergism is
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indicated, when a is negative antagonism is model in Figure 3, and on the computer screen in
indicated, and when x is 0, no interaction or Figure 3, is the best fit surface for data from an
additivity is indicated, The magnitude of x is experiment in which cells were exposed to 2 pM folic
algebraically related to the degree of bowing of acid in addition to the drugs, trimetrexate and
isobols (contours cut through the surface at specific DDATHF. The parameter estimates were: Econ =
response levels); a larger a will result in a larger 0.787 response units; B = 0.0213 response units;
degree of bowing. IC50,DDATHF = 3.91 nM; mDDATHF = -3.91;

The specific surface shown in Figure 2, the IC50,TMTX = 16.7 nM; mnTMTX = -2.16, and a = 4.68.

LEGO model in the lower left of Figure 1, the LEGO

ITMTXI IDDATHF]

E-B 1/nTMTX TMT E-B3 I MDDATHF
C50,TMTX IEcon-E5JC 50,DDATHF 1Econ-E

+ C a ITMTX 1/2DnTMTX _E-B 112'nDDATHF

C5OTMTX C5ODDATHF [Tcoln-EI l011-E]

100-~

75

0/

25- 25

0 75 -
2

4 100 q

[DOArHFj](M) 8 10 25

Figure 2. A 3-D surface ,f Equation I with parameter values listed in the text, constructed with SAS/GRAPH.
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Ww

Figure 3. Comparison of 3-D LEGO model with the same surface generated on a computer screen.
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Figure 4. General scheme for the dissection of a generalized nonlinear model into random and structural
components for a concentration-effect curve for a single drug.
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B. Anatagonism. The LEGO model on the lower Cp = [DIVI exp(-ICI/V! 1) (2)
right of Figure 1 is for drug antagonism. The surface
was simulated using the generic form of Equation 1, Where: Cp is the concentration of a drug in plasma; D is
for which drug I and drug 2 are designated as D1 and the administered dose of drug; t is the time that a plasma
D2, and with Econ = 100; IC50, 1 tM; IC50,2 = I sample is drawn for a plasma drug level measurement; V is

the volume of distribution (a parameter); and C1 is the
1AM; n1 = -2; in2 = -1; (x = -1; and B = 0. Note the plasma clewaance of the drug (a parameter).
saddle shape of the surface.

A set of hypothetical data is as follows (D = I Jimole):
C. Generalized Nonlinear Modeling. Figure 4 Data: time (min) Cp (AM)
is a pictoral dissection of a generalized nonlinear 1 0.904
model (McCullagh and Nelder, 1983) into structural 5 0.607
and random components. The heavy black sigmoid 10 0.500
curve is the structural component, and was simulated 20 0.135
from the lower equation in Figure 4. In this equation, The data were fit with the nonlinear regression software
t is the expected (mean) response; D is the package, PCNONLIN (Statistical Consultants Inc., 1989),

concentration of drug; Dm is the median effective in which the weight, wi, for each point was equal to the
dose (same as IC50); and in is the same slope reciprocal of the square of the predicted plasma
parameter as in Equation 1. For the simulated curve, concentration, with the sum of the weights forced to equal
DM = 10 and in = -1. The threc distributions shown in N, the number of data points.
Figure 4, the normal, a modified binomial and a
modified Poisson distribution, represent possible i N
random components of a complete generalized Weight.A 2 Xwi=N
nonlinear model. For the modified binomial Cp i=l
distribution, the equation is shown in the upper The parameter estimates at the optimum (minimum of the-A A

portion of Figure 4, where Y = kAn, and k is the objective function)were V = 0.896 + 0.15 (S.E.)L, and Cl
number of successes, n is the number of tries; mean = 0.090 + 0.19 (S.E.) L/min.

t; variance = p(l-p). The graph of the binomial

distribution in Figure 4 was simulated at D = 2.5 ^iM, The objective function, 0, shown in the LEGO model
with t = 0.80 and n = 5. For a complete description of of Figure 5 is defined in Equation 3.
the application of these generalized nonlinear models
to concentration-effect data, see Greco and Lawrence, 2
1988 and Greco, 1989. ____w(C _-C_0 = 2(3)

The LEGO model being held in Figure 1 is a 3-
D representation of Figure 4, with the same sigmoid-
logistic structural model, the same modified binomial
model, and with the same parameters. However, in
the LEGO model, the binomial distribution is shown A 2
all along the length of the sigmoid curve. 1wj(Cpj - CPj)

D. Likelihood Surfaces. Figure 5 shows a 3-D where: s = N P (4)
negative log likelihood surface for the following at theoptimum.
problem: A A

Thus, the 3-D surface in Figure 5 has V as the X-axis, Cl
Equation 2 is a standard monoexponential 1- as the Y-axis, and 0 as the Z-axis. Note the irregular
compartment pharmacokinetic structural model with shape of the negative log likelihood bowl. Asymptotic
bolus intravenous injection of drug. 95% confidence intervals are usually calculated based

upon the assumption that the negative log likelihood
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surface is a regularly-shaped ellipsoid (football shape) succinctly presented if the reader could have seen and
near the minimum. The optimal values for the touched the LEGO models. In a paradoxical sense, this
parameter estimates are at the lowest point in the article, filled with symbols, numbers and equations. is the
negative log likelihood bowl. At this point, antithesis of the point which I would like to emphasize: the
Oopt = N - P = 2 (from combining Equations 3 and 4). great potential for excellent graphical models to improve

both teaching and research involving statisticalThe critical value, F(0.95,1,2) --- 18.513; and thus at

0 = 20.513 (2 + 18.513), the black top layer of the LEGO applications and theory.

model, one can calculate 95% confidence intervals for the
parameters via profile likelihood. The usual asymptotic Acknowledgements
95% confidence intervals for V and CL were: 0.263 to 1.53
and 0.0508 to 0.131 respectively. The profile likelihood I would like to thank Dr. John Nash for his
95% confidence intervals for V and CI were 0.015 to 1.68 encouragement and the for awarding the Nash Information
and 0.005 to 0.198 respectively. Services Inc. Prize for Visual Presentation for this work. I

would also like to thank Mr. Peter Eio, President of LEGO
Systems Inc., for a generous gift of LEGO bricks.
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The year-to-year growth in airline passenger The algorithm presented here addresses this
traffic, accompanied by the recent introduction of problem by identifying space- saving solu-
wide-bodied airliners to handle the demand, has tions for airplane parking within loading zones
caused increasingly severe parking problems for air- (Fig. 1). Constraints on geometry can be ac-
liners at terminal gates. An algorithm has been de- counted for by applying simple rules to the two-
veloped to optimize airplane parking configurations. dimensional geometry of airplanes, their clear-
The algorithm is based upon dynamic program- ance requirements, loading zones, and obstruc-
ming, and determines a parking configuration which tions to airplane taxiing and independent ac-
maximizes the utilization of airliners in a given fleet cess to a parking space. Once the constraints
mix. It solves for a string of tokens which rep- are analyzed and converted into simple geo-
resent airplane parking maneuver envelopes. The metric quantities, a dynamic programming al-
envelopes are charac- terized by a discrete collec- gorithm [Gar72] can be applied to find solu-
tion of possible combinations of airplane type, air- tions. The solutions are expressed in terms
line ground footprint, parking angle, and maneuver of the number of airplanes of each of one or
in and out of terminal loading configuration. /The more specified types (Boeing 767-200, 757-100,
maneuvers are predetermined to allow independent McDonnel-Douglas DC-10, etc.) that can be
access to each terminal loading zone. A solution is parked in a given loading zone simultaneously.
constrained to obey width and parking obstacle con- For example, an airline with a fleet mix of
straints in multiple, overlapping loading zones, in- DC-10s and 757s might wish to park as many
cluding corners. The complexity is a low-order poly- DC-10s as possible, and then to park as many
nomial in the linear extent of a contiguous string of 757s as possible within any remaining space.
loading zones. Smaller airliners, such as 737s or DC-9s (de-

pending on the fleet mix of the airline involved)

1 Introduction might then occupy any remaining parcels of
loading zone space if there is sufficient room.

The year-to-year growth in airline passenger In addressing this problem, several factors
traffic, accompanied by the recent introduction must be taken into account. Normally, load-
of wide-bodied airliners to handle the demand, ing zones are constricted on at least one side
has caused increasingly severe parking prob- by the terminal wall, and on another side by
lems for airliners in terminal loading zones. a taxi lane (Fig. 2), from which airliners en-
The competition for limited space within load- ter and leave the loading zone. Entrance and
ing zones, makes it imperative to find solu- egress occurs along a prescribed, well-marked
tions that conserve limited parking space while path in both the taxi lane and the loading zone.
obeying FAA airplane clearance requirements. FAA clearance requirements, such as wingtip
Space-saving solutions that allow more and clearances, must be obeyed at all times. Thus,
larger airliners to occupy a given loading zone as in the case shown for La Guardia Airport in
simultaneously can be of such importance that Fig. 1, an airplane can taxi along a progres-
designers will modify the terminal building sively narrower taxi lane only until the wingtip
structure to acommodate them. clearance points of its clearance envelope touch

the limit lines on either side of the taxi lane.
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This limits the range of parking solutions avail- optimal solution.
able to an airplane of a given type in a given Before the parking algorithm can find solu-
loading zone, quite apart from any restrictions tions, however, the airplane clearances and
imposed by the geometry of the loading zone loading zone geometry must be analyzed to de-
itself. Normally, airliners pivot sharply and en- rive quantities which can be manipulated by
ter the loading zone from the taxi lane at close the dynamic programming algorithm. Hence,
to a 90 degree angle to the limit line, thus ap- the solution method consists of two parts. The
proaching the terminal wall head-on (Fig. 3). first part is a geometric analysis phase, in
For various reasons, however, they may come which a library of simple interaction rectan-
to rest in a loading configuration which forms gles and loading zone limits is created from the
an acute angle with the terminal wall. An ex- complexities of airport geometry, clearance re-
ample of this occurrence is shown in Fig. 2. quirements, independent access, airplane type,

Added to the considerations already presented and airline ground equipment. In creating the
is the variation in airline requirements. These library, it is often prudent to assume several
include airliner ground footprint requirements, different loading configuration angles relative
which are specific to each airline for each air- to the terminal wall, to allow flexibility in find-
plane type in its fleet. These requirements con- ing solutions that allow an optimum mix of air-
sist of the space occupied by baggage handling planes to be parked while accounting for ob-
and other equipment surrounding an airliner in structions and space limitations within a given
loading configuration. loading zone. An intermediate result of the ge-

ometric analysis phase is a library of airplane

2 Analysis maneuver envelopes, each envelope being de-
fined by a particular combination of the ge-

The airplane parking optimization algorithm ometry, clearances, and loading configurations

applies a form of dynamic programming to analyzed (see Figs. 2 and 3).

maximize the value of airplanes parked while In the second part of the solution method, a
obeying limits on total loading zone length. An dynamic programming algorithm derives solu-
example was stated in Section 1, in which the tions by finding linear arrangements of the in-
number of DC-10s parked simultaneously is to teraction rectangles within the extent of a load-
be maximized, followed by 757s. In dynamic ing zone. The loading zone can cansist of mul-
programming, a solution is divided into a se- tiple bands, with corner slots at the corners
quence of stages, and an optimality principle is of a terminal wall (Fig. 4). Each band and
applied at each stage according to a monotonic- corner slot consists of overlapping bands which
ity assumption: If the cumulative value of a define the allowed regions for parking airplanes
partial solution at any stage is a monotonically of different types in different loading configura-
increasing function of value increments at each tions. These allowed regions depend upon taxi
stage, and the cumulative cost of resources to lane obstructions and parking strategy used, as
obtain that value obeys a similar relationship previously discussed. Alternatively, the load-
to the partial cost at each stage, then the opti- ing zone can be curved (Fig. 5).
mality principle allows one to avoid explicitly User-specified fleet mix assumptions can be ap-
examining every possible combination of alter- plied in solving the dynamic program: for ex-
natives for all stages: the alternatives are nar- ample, the number of DC-10s available at a
rowed down at each stage so that in succeeding given time may be limited by scheduling con-
search stages, a relatively small set of ciimu- straints at the airport for which a solution is
lative, partial solutions are maintained. These being sought.
consist of only those whose values (costs) would
contribute toward the total value (cost) in an The individual rules for the geometric analysis
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of airplane parking maneuvers in loading zones ing each maneuver envelope along a selected
are simple, but applying them is complicated "midline", and then deriving the length of each
by their interaction and the need to provide interacting pair of envelopes, measured from
flexibility in solving the optimization scenarios, midline to midline, as shown in Fig. 7. A so-
As mentioned before, alternative loading con- lution string then consists of interaction rect-
figurations must be considered within a given angles, joined so that the maneuver envelopes
loading zone for each airplane that could con- from which they were derived are reconsti-
ceivably park in the zone. A loading zone may tuted. Thus, the interaction rectangles have
have multiple limits because of, among other labelled ends corresponding to the envelopes
things, taxiing constraints as illustrated in Fig. from which they were derived. In Figs. 7 and
2: larger airplanes, or loading configurations of 8, the end-labels are shown as simply A, B, and
even medium-sized airplanes that require per- C. In actuality, they are indexed to indicate the
pendicular entry into the loading zone, do not combinations of airline, airplane, loading con-
apply beyond the point at which the taxi lane figuration, and parking strategy by which their
is too narrow to allow them. constituent maneuver envelopes were derived.

The geometric analysis phase is further com- In any trial solution string, the constraint that

plicated by the following consideration: The end-labels must match is applied, thereby re-

cost associated with a trial parking solution constituting the maneuver envelopes (special
rectangles with labels matching those at theis the amount of space that it occupies in the ed opeeec n ftesrn)

loading zone. Suppose that a trial solution at ends complete each end of the string).

stage N of the dynamic programming algo-
rithm were modeled as a string of N mancu- 3 Solution Method
ver envelopes, beginning at a specified end of
the loading zone under consideration (see Fig. The dynamic programming algorithm solves
6, in which the string is actually the final opti- the following general problem. Let the in-
mum solution derived for a particular loading teraction rectangles derived in the geometric
zone at La Guardia airport). The envelopes are analysis phase be R11 , R 12 , ..., RAIN, where
packed as closely as possible within the string, i and j in Rij are indices denoting the ma-
which obeys the limit constraints of all overlap- neuver envelopes. Recall that each maneuver
ping bands within the loading zone. The com- envelope is defined in terms of airline ground
plication is that if maneuver envelopes define clearance requirements, FAA-specified airplane
the dynamic programming stages, the space- clearances, airplane type, and the geometry
utilization cost of a string cannot be measured of different loading zones, taxi lanes, obstruc-
by summing the partial costs of the N solu- tions, and the possible loading configurations
tion stages (the maneuver envelopes forming and parking maneuvers under consideration.
the string). This is not a well-defined quantity, Also, some of the indices represent the ge-
since the space an envelope occupies really de- ometry of one end of a loading zone, serv-
pends upon its interaction with its neighbors ing as a starting point for solution strings.
in the string. This problem is yet further com- Thus, Al and N differ only in that Al pro-
plicated by the subdivision of the loading zone vides for N maneuver envelopes plus the re-
into overlapping bands, each with its own lim- quired end-geometry configurations, assuming
its on airplane maneuver envelopes (some are solution strings are formed from left to right.
excluded altogether from a given band, as men- Let 1( R2 ) denote the length of the interac-
tioned). tion rectangle Rij. Let A 1 , A 2, ..., AT de-

The quantities that are actually measured are note the sets of indices of maneuver envelopes

the lengths of interaction rectangles (Figs. 7 which correspond to each of the T airplane

and 8). These rectangles are defined by divid- types, and let It (t = 1, 2, .... , T) be the



Optimal Airplane Parking 335

corresponding number of copies of airplanes of string can possess over the other in determin-
type t (Boeing 767-200, for example) available. ing an optimum is lower cost. This follows be-
Finally, let L1 , L2 , ... , LK be sets of ordered cause they possess the same value, and because
pairs (i, j) of indices corresponding to the in- at stage S + 1, both strings are extended by
teraction rectangles that are allowed in each adding interaction rectangles of the form Rp,q
of the K overlapping bands and corner slots for all q such that (2)-(3) are satisfied with S
in the loading zone. These sets are determined replaced by S + 1. That is, both strings of-
from the original maneuver envelope limits dur- fer the same possibilities for adding interaction
ing the geometric analysis phase. Let 1k and rectangles at the next stage. The algorithm
Uk be the lower and upper bounds on interac- exploits this fact by eliminating either X s or
tion rectangles with index pairs in Lk. YS depending on which possesses the higher

LtXs = RiRi 2 ... R where each cost. Elimination on pairs is performed repeat-
Let X s = Rior ... indis 1 each edly until the stage S solution strings con-
Xi.,ik = Rpq for some indices 1 < P < tain no such pairs. Thus, only the lowest-cost
M and 1 < q < N(1 ik-l1ik < S), strings with unique properties to contribute to
denote a trial solution string at stage S of the
algorithm. Let I Xs I denote the number of a final solution are kept.
airplanes of type t in the string X s . The cost If there are Us strings remaining following the
of the string X s is its total length, elimination at stage S, the work involved in

comparing and eliminating pairs at stage S + 1
c(X )  t( Rij i)is at most UsN (recall that there are N ma-

) ) neuver envelopes worthy of consideration: the

i=1 other M - N account for string start geome-
Then at stage S, each partial trial solution try). Normally, the number of different string
string X s must obey the following constraints: values to consider depends upon the number of

at most two airplane types in a string. Thus,
I Xs _ (t = 1, 2, ... , T) (2) U1 < N for a one-rectangle string X 1 

=

and Rioi,, and U2 _5 N . [(2 + 1)(2 + 2)/2] since
there are at most [(2 + 1)(2 + 2)/2] sums of
two values having a maximum of 2 occurrences(is-1 , is) E Lk between them (either airplane type may occur

whenever 0, 1, or 2 times) in a string of length two. Sim-
ilarly, there are [(S + 1)(S + 2)/2] possible

tk < c( X) Uk (k = 1, 2, ... , K). (3) sums of two values having a maximum of S
occurrences between them in a string of length

A final solution string must maximize the de- S. Thus, allowing for N end-labels (maneu-
sired quantities (number of DC-10s and 757s, ver envelope indices at the end rectangle) and
for example) subject to (2)-(3). [(S + 1)(S + 2)/2] possible string values for

The dynamic programming algorithm avoids each end-label, the number of strings that need

enumerating all possible partial strings. At be maintained at stage S is of order N.S 2/2).

stage S, let two trial solution strings be If the number of stages necessary to eliminate

Xs = RioilRili2 ... Risis and ys = all but the highest-payoff solution strings is
R i, i i ... R~__ s . If the two strings Ps P, therefore (at which point no more interac-

tion rectangles will fit within the loading zone),
and YS have the same value (contain the same then the total number of comparisons is upper-
number of airplanes of each type to be maxi- p
mized, for example) and if the end maneuver bounded by N 2 . L ((S + 1)2/2), a polynomialk=2

envelope indices are the same in both strings, in N and P. Assuming that N is fixed for

p = is = i', then the only advantage one
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a wide range of optimization scenarios studied References
following a geometric analysis, and note that
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ANALYSIS FOR CURVED WALLS
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Figure 6. An optimum solution for two airplane types (large and small pentagons)
in a loading zone at La Guardia Airport.
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Abstract Pollen diagrams of percentage data continue to be
Pollen from trees and other plants is preserved annu- the fundamental form of data representation in palynol-
ally in the sediments of bogs, ponds, and lakes, forming ogy. Through radioactive isotope dating, stratigraphic
a record of contemporary vegetation. Geologists sam- comparisons, and other methods, depth can be mapped
pling pollen preserved over the past 20,000 years have to time with a resolution of from 100 to 250 years in most
created large databases whose variables include latitude, cases (Webb, 1982). Pollen collecting at a site originates
longitude, time, abundance, and pollen type. Tradi- with plants in the surrounding sampling basin, which
tional methods of visualizing these data include pollen varies with taxon, site, and time (Birks and Birks, 1980).
diagrams (time series of plant taxa abundances), classifi- Relative rather than absolute frequency is generally the
cation diagrams, and contour maps of pollen abundance, preferred measure of pollen abundance due to robust-
While these are valuable tools, modern computer graph- ness (Mather 1972, 1980; Davis et al., 1973), despite the
ics technologies offer new ways of visualizing continu- negative correlation it introduces between pollen types
ous multidimensional structures. In this paper, we de- in a sample. Thus, as Von Post realized, the pollen di-
scribe the development of an interactive computer graph- agram of a site approximates the vegetation history of
ics package, supported by IRIS-4D workstations, for vi- the surrounding region. Pollen diagrams have become
sualization of higher-dimensional aspects of the pollen important sources of data for paleoecological and paleo-
database covering eastern North America. climatological studies of the late Quaternary (Birks and

rodu ion Birks, 1980; Webb et al., 1987).
nt ducti Pollen data may also be viewed as points in an ab-

New methods of viewing and analyzing data in a given stract pollen space whose cocrdinate variables are lati-
field often lead to theoretical insights. Such have arisen tude, longitude, time, abundance, and pollen type. Since
in late Quaternary palynology, the study of pollen pre- the 1970's, computer-based techniques for exploratory
served in sediments dating to 18,000 years ago or ear- multivariate analysis have provided new ways of visual-
lier. An excellent introduction to existing methods in izing pollen data. Classification methods (scaling meth-
this area is Birks and Gordon (1985). ods, cluster analysis) based on 'dissimilarity' measures

Pollen is deposited annually, accummulating with have been the most popular (Gordon, 1981). These
sediments at sites such as bogs, ponds, and lakes which methods generate a variety of diagrams revealing specific
are favorable to its preservation. The raw data of paly- geometric relationships between point data. An impor-
nology come from vertical cores or sections of such sedi- tant application has been finding modern analogues to
ment, sampled at different levels. Under microscopic ex- fossil pollen assemblages (Overpeck et at., 1985).
amination, individual pollen grains in a sediment sample The spatial resolution of pollen data depends on
are counted and classified taxonomically. both the density of core sites and the size of the sam-

Qualitative descriptions of pollen preserved in peat pling basins for each pollen type and site. Different pro-
bogs date from the latter part of the nineteenth century cesses affecting vegetation are also evident at different
(Manten, 1967). Quantitative work begins with Lennart scales. By interpolating the data to a grid of the apt ro-
von Post (1918, in Swedish; reprinted in English in 1967). priate scales in space and time, vegetation patterns gen-
Von Post recorded the percent relative frequency, rather erated by processes acting at those scales emerge (Pren-
than the absolute frequency, of each taxon of interest tice, 1988). For given times and taxa, maps of isopolls
in the sample. Plotting these percentages versus sample (contours of pollen percentages) can be used to visual-
depth, he collected the graphs for all the taxa to form a ize these patterns. Introduced by Szafer (1935), isopoll
pollen diagram for the site. maps have been used extensively since the 1970's. They

have been especially useful at the subcontinental scale,
Present address: Department of Mathematics, Occi- revealing the influence of climate on vegetation (Webb,

dental Collge, Los Angeles, CA 90041.1988).
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Mapping methods regard data for a given pollen The three coordinate axes for each of the boxes are
type as discrete samples of structures which are essen- selected from the four continous variables in the dataset:
tially continuous. This perspective can be extended to latitude, longitude, time, and abundance. Four distinct
higher dimensions. For example, isopoll maps are tem- boxes of this sort are possible. The variable not chosen
poral cross sections through a 3D space-time box in which as a coordinate determines the contour surface. For ex-
isopolls are 2D surfaces (Webb, 1988). Selected plots of ample, if a value of 40% is chosen for abundance in the
isopoll surfaces were first generated in 1984 by Stead space-time box, the isopoll surface enclosing grid points
and Webb (see Banchoff, 1990, pp. 82-83). Advances with an abundance value >40% is displayed. Since abun-
in computer and exploratory graphics since that time dance is a function of the other variables, contour sur-
now make possible a much richer range of methods along faces in boxes with abundance as a coordinate are also
these lines. In this paper, we report our work on interac- function graphs.
tive graphics programs for visualizing continuous struc- Each type of box is customized to enhance interpre-
tures in pollen space. Our focus is on understanding both tation. Axes are labeled, and maps are drawn on the
the 4D character of a given pollen type and interactions appropriate faces if the box has both space coordinates.
between pollen types. In the space-time box, the ice sheet may be displayed as

either a surface or point cloud.
Data The exploratory graphical principles of linking and

focusing guided our work (see Stuetzle and Buja, 1990).
We worked with twelve taxa from a late Quaternary In visualizing large multivariate data sets, focusing refers
pollen database for eastern North America maintained to the selection of views or subsets of data. Linking
at Brown University. The data had been smoothed and involves visually relating different views or subsets.
interpolated to a space-time grid with increments of 1000 Focusing is accomplished here through choosing the
years in time and about 100 km in space. The number boxes, pollen types, and surfaces to be displayed. Multi-
of original sites increases from less than 100 between 18 pie selections may be displayed simultaneously. Surfaces
and 12,000 years ago to roughly 300 from 10,000 years in 3-space cannot be visually comprehended from a single
ago to the present. 2D view, making the dynamic capabilities of interactive

Some auxilliary data were also provided. Points of graphics essential. A box may be rotated in 3D auto-
the grid covered by the receeding continental ice sheet of matically or under direct control. One can also zoom in
the last ice age were indicated. Continuous coastlines of on specific portions of a box.
the present and 18,000 years ago were included for geo- Linking is used for data comparisons. Within a
graphical orientation. The paleocoastline was digitized given box, multiple surfaces can be selected and dis-
using GSMAP (Seiner and Taylor, 1989). Its northern played simultaneously. Wireframe or Gouraud shaded
part was traced from Dyke and Prest (1987). Since sea solid representations in a variety of colors and simulated
level rose as the ice sheet retreated, the southern part materials can be selected for each surface, facilitating
could be approximated by tracing modern bathymetric discrimination between multiple surfaces. Wireframes
maps. The modern coastline came from a database sup- can also be overlaid on solid surfaces to create a tex-
plied with GSMAP. tured appearance. For a given pollen type and 3D box,

All geographical data had been projected onto the the implicit variable can be stepped through a range of
plane using an Albers equal area projection (see Snyder, values, generating an animated sequence of contour sur-
1987, p. 383). Further details concerning this database faces.
may be found in Webb (1988). Different boxes can also be linked. For example, a

specific time can be highlighted in the space-time box,
Design generating the corresponding surface in the space-abun-

dance box. If an isopoll sequence is then animated in the
Software design is a compromise between functional goals space-time box, a sequence of highlighted cross sections
and technological constraints. While broad goals were at corresponding abundance values will be animated on
clear initially, details were revised continuously during the surface in the space-abundance box.
development. Close collaboration between users and de- Users control the programs interactively via pop-up
velopers contributed greatly to the success of this project. menus and appropriate mouse or keyboard input. There

The central problem was visualizing continuous ob- are several recording options. A given image may be
jects in 4-space. We chose to solve this by linking 3D printed or stored as a snapshot. Entire sessions can also
slices of these objects. This determined the basic visual- be recorded for later playback.
ization structure, a 3D box containing contour surfaces.
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Implementation Discussion
This software was developed for the Silicon Graphics More experience is needed to determine how best to use
IRIS-4D series of workstations with version 3.3 of the features of the existing software. We have found, for
operating system. Of the platforms available to us, this example, that the choice of surface attributes is criti-
one offered the powerful interactive real-time graphics we cal when viewing multiple objects in the same 3D box.
required. The code was written in C using the graph- Interpreting the results of linking boxes will also take
ics library and window manager documented in Silicon practice. We need systematic ways of using these tools
Graphics, Inc. (1990a, 1990b, 1990c). It is highly mod- to develop higher-dimensional intuition.
ular to facilitate continued development and adaptation Refinements and extensions are planned. These in-
to similar data sets. lude improvements in contour surface polygonalization,

In this environment, it easiest to run each 3D box interbox communication, and the user interface. The
as a separate program. Because of customization, sev- most important extension is to Pafhview. The user will
eral different programs are required. Pollen displays the be able to specify a curvilinear geographical transect
space-time box, while Slice runs the space-abundance which will take the place of latitude or longitude. In
box. The boxes with time, abundance, and latitude or this way, it will be possible to visualize the effects of
longitude, respectively, as coordinates are separate op- specific geographical features.
tions in Pathview. While development continues, the current software

Most implementation is standard, using the rich is beginning to be used for both research and teaching.
function libraries provided by Silicon Graphics. It was It has been found that certain contour values for each
necessary, however, to find a way of polygonalizing con- taxon yield distinctive surface forms. In some cases,
tour surfaces. A script language was also developed to these neatly summarize facts which had already been
simultaneously solve the two problems of recording snap- gleaned from map sequences, but new features are also
shots or sessions and linking boxes. emerging. The interesting geometry observed thus far is

For contour surface polygonalization, we used a vari- also motivating the development of mathematical mod-
ant of the marching cubes algorithm (Lorensen and Cline, els which capture this structure.
1987). A contour value partitions vertices in a 3D data Although some of the features of this software are
grid into two sets. Contour surfaces separate these sets. specific to this particular pollen dataset, only slight mod-
Since membership for each vertex can be determined in- ifications would be required to visualize other pollen
dependently, suitably constrained contour surfaces can data. If more extensive changes were made, especially
be constructed locally. Lorensen and Cline construct to the user interface, other multivariate data could be
triangulated surfaces constrained to intersect edge mid- used. Future applications include visualization of rela-
points. Favoring reduced computation at the expense of tionships between pollen and climatalogical data.
a somewhat rougher surface, we opted instead to con-
struct triangulated surfaces contrained to intersect ver- Acknowledgements
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Abstract (2) V(X) = {SUM i: = l..n : [X(i) - Xbarl'} / (n - 1)

The standard deviation (or equivalently the variance) of a and hence the standard deviation is computed as

sample of numbers is one of the most elementary concepts
in statistics. Yet this computation harbours a number of (3) SD(X) = sqrt(V(X))

serious difficulties, especially when the sample is large and
the standard deviation is small relative to the mean. The issues upon which this contribution is based are:

This contribution will describe prototype software for 1) Accuracy -- How large is the deviation, either absolute

both didactic and production use to allow reliable calculation or relative, between the computed variance and the "true"

of sample variances (or equivalently standard deviations), value which would be obtained if we made no error in

for a wide variety of sample sizes and data characteristics, computation? This is especially important when

Several illustrations of the software and its evaluation will SD(X) < < X bar (Chan and Lewis, 1978).

be presented, if appropriate accompanied by a live 2) Efficiency -_ How fast is our calculation? How many

demonstration. basic arithmetic operations are we required to perform, and
is this in some way optimal? In particular, we would like to

1 Introduction avoid two passes through the data if the data set is large.
3) Complexity -- Are the program code and data structures
simple and straightforward, or do we need complicated

Computation of the sample variance, or equivalently the programs which require very careful attention to many
sample standard deviation, is one of the most common and details? Can we exploit parallel computational facilities, or
fundamental tasks in statistical computation. Indeed it is so partition the calculation so that regional offices can partly
common that the difficulties it may present are often carry out the calculations?
overlooked. There is a fairly rich literature on these 4) Education -- How can the concerns and mechanisms for
difficulties and ways to overcome them. (Almost all the responding to them be made available to others? How can
citations at the end of this paper concern this topic, and a greater awareness of the difficulties be achieved?
specific references will be placed in the body of the paper.) The work reported here is part of a long-standing and
Nevertheless, the issue continues to give concern (see, for ongoing project to address these issues. The present
example, Smith, 1991, for a description of multiple contribution is directed primarily toward providing a
complaints with the standard deviation function @STD in prototype computer program which illustrates most of the
different versions of the popular spreadsheet program Lotus algorithms which have been proposed to compute the sample
1-2-3). mean and sample variance. Some ideas are presented on the

The defining formula for the variance (the adjective preparation of "production" codes and design elements of a
"sample" will be dropped where the meaning is clear) also program to prepare specially formatted test data sets are
provides a computational algorithm. Using symbols which discussed briefly.
are suitable for incorporation into a computer program, we
first calculate the (sample) mean as

2 Foundations
(1) X-bar = {SUM i:=l..n : X(i)} / n

then use this information in a second pass through the data For convenience we will define the quantities

to calculate the variance (4) T = {SUM i: = l..n : X(i)} and
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(5) S = {SUM i: = l..n : [X(i) - X-bar]2} VARIANCE has the following features:
a) It has been programmed in Borland's Turbo Pascal,

This mirrors Chan, Golub and LeVeque (1983), who give version 5.0, under the MS-DOS operating system. The
a decision table for selecting an appropriate algorithm. The commented, and hopefully readable, source code occupies
present work could be viewed in part as providing an 47K bytes and the executable form 39K. The author intends
illustration, within a single program, of the ideas contained to distribute it as share-ware or at nominal cost as a self-
within this decision table. They also include a survey of teaching or classroom demonstration, which should interest
various error analyses which have been carried out for the a wide audience. Extended precision accumulation has been
different algorithms used to compute S or V(X); readers avoided to maintain some semblance of conformity to other
may wish to note that there are some minor differences in variants of Pascal.
detail between the formulas which have been published in b) VARIANCE currently includes 5 main algorithms
different reports. For consistency, we have computed error - the Textbook algorithm
measures in our program(s) based on the formulas of Chan - the standard Two-Pass defining algorithm, with
et al. (1983). automatic calculation of the Bj6rck (Chan et al.

From a didactic point of view, error analyses can be dry 1979) correction terms
and tedious enough that the important messages they carry - West's (1979) updating method
may be overlooked. In the present application, some of - the Pairwise algorithm of Chan et al. (1979)
these messages are: - Cotton's (1975) updating method

- that the desire to overcome two passes through the c) Where appropriate, summations may optionally be
data may tempt users to employ calculation methods which performed in a pairwise manner.
throw away information which is present in the data, such d) The program and the data structure described below
as the popular but dangerous "Textbook" algorithm. This is allow a set of data to be partitioned into blocks. This
based on the algebraically equivalent forms for S reflects the possibility of computation in parallel by

multi-processor computing systems. Alternatively, we may
(6) S = {SUM i: = 1..n: X(i)2} - n * Xbar think of data collected and partially processed by separate

= {SUM i: = I..n: X(i) 2} - (T') / n agents. The results for separate blocks may be combined by
direct summation or by an extension of the pairwise

- that loss of information frequently occurs because the updating formula of Chan et al. (1979) discussed below.
difference of two (often large) nearly equal numbers is e) All data may be shifted (or coded), that is, a constant
calculated, causing digit cancellation. The Textbook may be subtracted from each data element within a block of
algorithm can be seen to encourage such a subtraction, data. The strategies allowed for shifting are:
especially when the data elements X(i) are of a comparable - No shift
magnitude. - Fixed shift (for all blocks) entered by the user

- that a large n (large data sets) may cause inaccuracies - Sample the first data block, with a user-supplied
on the computation of T, or equivalently the mean Xbar, sample size, and use the mean of the sample as a
if the accumulation is performed by adding the data (fixed) shift for all blocks
elements one at a time into an accumulator. Similar - Sample each block of data, with a user-supplied
difficulties may occur when updating methods are used to sample size, and use the mean of the sample for
calculate S. This motivates the use of pairwise summation. each block as the shift for that block.

f) Operation counts of real and integer arithmetic,
3 The computer program VARIANCE assignment (storage) operations, and control decisions (IF or

WHILE or CASE or UNTIL) are recorded and displayed at

The working prototype program VARIANCE has been various points in the program.

developed and was demonstrated at Interface '91. The goals g) A number of options for control and information

of its development are: display are included such as:

1) to show how the various approaches to variance - interactive or batch operation

calculation work and - treat a data set as a single block

2) to allow different methods to be applied to different - pause for user response after each data element
test data sets. - display intermediate results

Furthermore, VARIANCE is designed with a unified h) error bounds from the error analyses reported by
program structure so that all variations are included within Chan et al. (1983) and others are reported with the

a single program, with no extra code to include or remove, computed mean and variance
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i) control information may be obtained from a file for Set a Set b
"hands off" operation Number of Elements n. n.

j) results are optionally saved in a file which is in a Shift u,
form suitable for use as an input file above

k) execution is timed. Sum of data from shift ST. sTbSum of deviations2  Sa Sb

4 Trial data sets (Note that the shift is irrelevant to these sums.)

sTe = {SUM i: = 1 .. n,: X(i) - k}

The program VARIANCE takes as input data a simple text
file having the following structure: We now wish to compute the combined, unshifted

a) Comment lines may appear anywhere in the data set values for n, T and S. Clearly

and begin with a special character in the first position of the
line. Currently the exclamation mark (!) is used as the (7) sTe = T - *
comment character. We feel it is important that the number
and position of comments not be restricted so that full (8) T = T, + Tb = sT. + sTb + n. k, + nb kb
documentation of data sets may be provided. For example,
comment lines may contain "exact" results, or give timing The combining formula of Chan et al. (1979) may be cast
or control information for specific computing platforms. in various forms

b) Numerical data is provided in text form, currently 1
number per line for simplicity. (9a) S = S, + Sb + Qb where

c) Blocks (there must always be at least 1) are ended (9b) Qab = (nbT. - nTby)2 / (rnb(n.+nb))
with a line consisting of the word ENDBLOCK = nnb(T,/n. - Tb/nb)2 / (n.+nb)

d) The data file is ended with a line consisting of the = (nln/ b)) (X bar(a)-X bar(b))'
word ENDDATA. Clearly this is not needed, but documents -b-(n+b

the end of the data clearly. = [(sT.+lskS)/n-(STb+nbk)/nb] 2 (nnb/(n.+rlb))
An outline of a program to generate test data, = nnb [sT./n, - sTb/nb + (k.-kb)] 2 / (n,+nb)

VARDATA, has been prepared. The principles behind this
program are that it The last two forms are the generalizations for shifting. Since

a) build data files in the format described above Chan et al. developed the formulae mainly for use in the
b) be easily extended as new requirements are stated pairwise algorithm, they did not need the extension to
c) use both fixed and pseudo-random series, and shifted data. Note that using a common shift for both blocks

different distributions for pseudo-random series allows us to ignore the shifts. However, we may wish not
d) allow different scalings and shifts to be applied, in to do this. As far as the author is aware, a full error

particular to force roundings so that machine internal analysis has not been completed for the pairwise algorithm.
representations of data are inexact In the program VARIANCE, the bounds conjectured by

e) provide exact results information in the form of Chan et al. (1983) have been used. No extra analysis for the
comments in the data sets. extended formula involving shifts has been incorporated to

We believe that there is a need for several classes of date.
data sets: 1) didactic sets to illustrate the difficulties and
peculiarities of variance calculation methods; 2) test data 6 Production codes
sets which permit relatively rapid validation of codes and
checking of details of implementations; 3) very large test The didactic program VARIANCE allows a user to examine
data sets so that production codes can be exercised and the properties of different algorithms acting on various data
timed. The last class may best be generated when needed so sets. This is useful in selecting a method appropriate to a
long as the generation process is reliable, particular class of data sets so that the accuracy of the 4

results may be controlled. The operation counts (and timing
5 A generalized combining formula where user interaction is not required) suggest the relative

efficiencies of algorithms, but do not offer a very precise
Suppose we have two sets of data to which the following measure of the timing which may be obtained under
information applies: real-world operating conditions, where it is likely that data

retrieval will dominate the timing.



Computing Sample Variances 347

Any production version of a mean and variance University, Dept. of Computer Science, see also
calculation program requires attention to the details of Compstat 1982 (H Caussinus et al., eds.), Proceedings
- data transfer from storage to the calculation program and of the 5th Symposium held at Toulouse, pp. 30-41.
intermediate storage of sample data; Chan, Tony F., Golub, Gene H. and LeVeque, Randall J.
- efficient coding of algorithms in the chosen programming (1982) Algorithms for computing the sample variance:
language -- we do not believe that the didactic code is analysis and recommendations, Tech. Report #222, Yale
necessarily appropriate without modification; University, Department of Computer Science, 1982.
- extended length arithmetic for accumulation of sums; Chan, Tony F., Golub, Gene H. and LeVeque, Randall J.
- placement of control and timing functions so that they (1983) Algorithms for computing the sample variance:
interfere as little as possible with the computations; analysis and recommendations, American Statistician,
- handling of missing data; 37(3), pp. 242-247.
- handling of multiple variables at one time; Chan, Tony F. and Lewis, John Gregg, (1978) Computing
- computing covariances (and hence correlations). standard deviations: accuracy, Tech. Rep 288, Dept. of

Mathematical Sciences, The Johns Hopkins University.
7 Ongoing work Chan, Tony F. and Lewis, John Gregg (1979) Computing

standard deviations:accuracy, Comm ACM, 22(9), pp.
Despite the fundamental nature of variance computation, a 526-531.
number of tasks remain to be completed. First, VARIANCE Cotton, Ira W., (1975) Remark on stably updating the mean
needs more thorough validation, improved commentary and and standard deviation of data, Comm ACM, 18(8),
documentation, and careful adaptation to different computing p.458.
platforms. At Interface '91, Rich Heiberger made a number Hanson, Richard J. (1975) Stably updating mean and
of useful suggestions, one of which is that restricted length standard deviation of data, Comm ACM, 18(l), pp.
arithmetic would be helpful in demonstrating the failure of 57-58.
the Textbook algorithm. Second, the data generation Ling R. F., (1974) Comparison of Several Algorithms for
program VARDATA needs flesh on the skeleton. Third, Computing Means and Variances, J Amer Stat Assoc,
some example production codes and applications to 69, pp. 859-866.
real-world data should be prepared. Collaboration in such Miller A.J., 1989, Updating Means and Variances, J Comp
development would be most welcome; indeed it is critical Physics, 85, pp. 500-501.
for the third task for the provision of the applications. Nash, John C. (1981) Fundamental statistical calculations,
Interested parties should contact the author. Interface Age, v. 6, n. 9, pp. 40-42, September 1981.
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KEYFINDER - A Prolog program for generating experimental designs

PETER J. ZEMROCH
Shell Research Ltd

Thornton Research Centre, P.O. Box 1, Chester CHI 3SH
England

Abstract statistician with those parts of experimental design
construction that are difficult or laborious. Only PROC

KEYFINDER is a menu-driven Prolog program that assists FACTEX and PROC OPTEX in SAS® (SAS Institute Inc.,
statisticians in the difficult task of generating blocked and/or Cary, NC) readily spring to mind.
fractional-replicate experimental designs in
highly-constrained situations. Designs are constructed from KEYFNDER (Zemroch, Lunn, Baines and Clithero, 1989;
sets of generators called "design keys". A depth-first search Zemroch, 1990, 1991) is a menu-driven Prolog program for

algorithm builds keys which yield designs matching detailed generating blocked and/or fractional-replicate experimental

user specifications. Design parameters include the number of designs. The program uses general algorithms, not stored

experimental units and the numbers of levels of the various catalogues, to produce designs so that plans can be
block and treatment factors. Block factors may be combined constructed in arbitrary and quite complex situations.

into row-and-column, crossed or nested (split-plot) KEYFINDER's major strength is its ability to generate
arrangements. The user can also specify the orders of designs with user-defined confounding and aliasing patterns.
treatment interactions that must remain (a) unaliased with This makes the program an invaluable aid to statisticians

treatment main effects and (b) unconfounded with blocks; needing to produce designs in the real world of
further options are available to ensure that specific highly-constrained experimentation. Details of

higher-order interactions of interest also remain estimable. KEYFINDER's implementation are given in Section 2.

Keys are used to generate balanced designs in which all the Designs are constructed from sets of generators called
block and treatment factors have numbers of levels which are "design keys" (Patterson, 195; Patterson and Bailey, 1978);
powers of the same prime number. Direct-product facilities these are esscribed in Section 3. The aliasing and

allow the user to combine keys in different primes and thus confounding properties of a design are readily deduced from
produce totally asymmetrical plans. Procedures are provided its key, but the methodology has yet to win widespread
for the correct randomization of all experimental plans acceptance because of the difficulty of reversing the
generated, in accordance with the block structure. deductive process. Writing down sets of generators to yield
KEYFINDER is implemented on IBM PCs and PS/2s and, designs with predefined properties is a non-trivial task in the
more effectively, on SUN 3 and SUN 4 workstations. general case. Indeed this is a search process which is ideally
Executable copies of Version I of the program are available suited to computerization. KEYFINDER finds keys matching
on request from the author, free of charge. detailed user specifications using a depth-first search

algorithm; an outline of this is given in Section 4. The

1. Introduction algorithm is published in Zemroch et al. (1989) and is more
general than its predecessor, the earlier KEYGEN procedure

There are a vast number of computer programs currently on of Zemroch (1986, 1988), and the pioneering algorithm of
the market for the statistical analysis of experimental data, Franklin (1985).
but relatively few for the equally important area of
experimental design. Those design systems that have KEYFINDER uses keys to generate a wide range of designs
appeared in recent years have, in the main, been "expert with a variety of block structures. Direct product facilities
systems" targeted at non-statisticians. Examples include allow sets of keys to be combined together giving greater
CADEMO (Rasch et al., 1987), DESIGN-EASETM and flexibility in design dimensions. Nevertheless not every
DESIGN-EXPERT M  (STAT-EASE Inc., Minneapolis, useful design can be obtained from design keys and the direct
MN), DESIGN EXPERT (Williams, 1991), product method and so the system is currently being

EXPERLIMENTAL DESIGNTM (Statistical Programs, expanded to incorporate other design classes. Full details of

Houston, TX) and SELINA (Baines el al., 1986, 1988). Very the designs covered are given in Section 5.

few programs are available to help the professional Sir R.A. Fisher (1935) first realized the necessity of
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randomizing experimental designs. This must be done in due 3. Design keys
accordanc with block structure. Section 6 describes the
randomization and sorting facilities provided in The most important design construction method inKEYFINDER. The paper concludes with a discussion of KEYFINDER is the "design key", invented by Pauterson
KEYFINDER's performance in practice (Section 7). (1965) and discussed further by Patterson and Bailey (1978),Zeroch (1988) and Zemroch et al. (1989). A design key is a

set of equations, e.g.
2. The KEYFINDER program

P=U, Q=V,...;
The KEYFINDER program has facilities for (i) the A = UV, B = W, C = LW, D = VW.........(1)
construction, storage and retrieval of design keys, (ii) the
subsequent generation and storage of the associated relating the block factors P, Q, ... and treatment factors
experimental plans, (iii) the randomization and sorting of A, B, ... to a set of q p-level "plot factors" U, V, ... indexing
experimental plans*, (iv) the construction of direct-product the pq experimental units (p prime). The levels of the block
designs*, and (v) the execution of DOS or UNIX system and treatment factors for each unit i are generated from the
commands. known levels of the plot factors by the equivalent equations

KEYFINDER is written in Prolog, Prolog being chosen Pi = uj, q = v ... ai = ui + vi, bi = wi, ... (mod p) ...... (2)
because of its pattern matching facilities (via unification),
automatic backtracking, and richness of representation (ists. The aliasing and confounding properties of a design are
structures and a built-in database), combined with its ability readily deduced from its key: if p = 2 in key (1), for example,
to generate and execute code (see Clocksin and Mellish, then
1984, or Bratko, 1986). A menu system has recently been
provided to spare the user the tedium of providing sequences CD = UW.V- UI+0VO+IWI+I(mod2)=UV = A
of complex multi-parameter Prolog queries in order to BC = W.UW = U = P....... (3)
produce designs. The user simply has to select one of a The CD interaction is thus "aliased" with the treatment factor
number of options at each stage, or provide a single piece of A. This means that it will be impossible to disentangle the
information. Sensible defaults are provided as appropriate. effect of treatment A from the CD interaction in the
The Main Menu is illustrated below: subsequent analysis of the experimental data. Therefore the

generated design should only be used when the scientist is
*** KEYFINDER - Version 3.03 - Main Menu *** confident a priori that the CD interaction will not manifest

itself in his experiment. The BC interaction is similarly
. Curent design 7. Design generation. randomization "confounded" with the block factor P.

2. Declare number d un and soring
3. List generators 8. Form direct product design Each generator U, V, UV, ... in the design key (1) represents
4. Contuct design key 9. Execute system command p-I of the available pq-1 available df. (degrees of freedom).
5. Display design key P Exit to Prolog
6. Save/retrieve design key Q Quit KEYFINDER A 4-level factor needs 3 d.f. and thus requires 3 generators,

e.g.

Executable implementations of KEYFINDER have been A = (U V UV),

developed for IBM PCs and PS/2s, using SD Prolog (Quintec these forming a subgroup under multiplication (minus the
Systems Ltd., Oxford), and for SUN 3 and SUN 4 identity I). The 4 combinations of levels of the plot factors U
workstations, using Quintus Prolog (Quintus Computer and V give the 4 levels of A.
Systems Inc., Mountain View, CA). Version 1 ofSysemsInc, w nai released in 1ian Is n The key for a 1/3-replicate 33 design in 9 units might beKEYFINDER was rust released in 1989 and it, and its new

User Manual (Zemroch, 1991), are available from the author, A = , B = V, C = UV2....... (4)
free of charge. The demonstration at Interface '9TM will
include many of the new facilities to appear in the next Here the plot factors U and V each have 3 levels and so the
release and these enhancements are discussed where terms U, V, UV (unused) and UV 2 each represent 2 d.f. The
appropriate in the present paper. design points are computed as

ai =u i , bi =v i, ci=u i +2v i (mod3). ..... (5)

Not available in Version 1.
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4. Search algorithm 1959), with the subscripts, i, j, k,.... indexing the levels of P,
Q, R, ... , respectively. Split-plot designs may be constructed

In KEYFINDER, design keys are tailor-made to the user's with the block factors in a nested structure and the allocation
specification. The user first inputs the dimensions of his of treatments to "error strata" (Nelder, 1965) completely
design, i.e. the number of points, the block structure (see under the user's control. Keys generate the general class of
Section 5) and the numbers of levels of the various block and design in which the number of experimental units and the
treatment factors. If the design is to be a fractional-replicate, numbers of levels of the various block and treatment factors
the "resolution" must then be specified. This determines the are all differing powers of the same prime p.
degree of aliasing which is to be permitted. In a resolution r
design (r 3), treatment main effects are mutually orthogonal The next release, previewed at the present Interface'91T

but may be aliased with interactions of order r-1 and above conference, will offer a much wider range of designs. One

(e.g. A = BCD if r = 4). Higher resolution designs are thus of the most significant enhancements will be facilities for

more robust against unexpected interactions than lower generating "compromise plans" of intermediate resolution.

resolution ones, but generally need more design points to test These designs are particularly useful in situations where cost

the same number of factors. If the design is to be blocked, the constraints force the experimenter to use a resolution-3

user must also specify the "confounding limit" c (c 1). This design in which main effects are aliased with two-factor

determines the permitted degree of confounding: treatment interactions. Whilst the user may feel confident a priori of the

main effects and interactions of order c and below must nonexistence of most of the possible two-factor interactions,

remain unconfounded with blocks, there may be some pairs of treatments which he has nagging
doubts about- KEYFINDER's new compromise-design

The KEYFINDER program searches for a key matching the procedures allow the user to request (say) a resolution-3
user's specification using a depth-first search procedure. First design in which a named subset of important two-factor
the p-level plot factors U, V, W, ... are given values so that interactions must remain unaliased with main effects and/or
each combination of levels of U, V, W. ... uniquely identifies unconfounded with blocks. Design key (1) in Section 3, for
one of the p experimental units (p prime). Then a list of example, protects the AB interaction by not allocating its
candidate generators, U, V, UV, W_..., is set up, and these associated generator UVW to any block or treatment factor.
are allocated, without replacement, to each block factor P, An outline of how the compromise algorithm works is given
Q.... and treatment factor A, B, ... in turn; the actual order of in Section 8 of Zemroch et al. (1989). A compromise
allocation depends on the block structure. Prolog rules ensure resolution-3 design can, in many instances, allow a set of
that the design specification is adhered to at each stage, the factors to be examined in substantially fewer design points
status of the key being monitored by means of a number of than a blanket resolution-4 design.
internal lists. Backtracking occurs if the list of candidates is
exhausted before the key is complete; sub-optimal choices of "Asymmetrical" designs in which the numbers of levels of

generators may thus be discarded and alternatives substituted. the block and treatment factors are free to vary can be

Combinatorial explosion is controlled using symmetry constructed in KEYFINDER by the "direct-product" method.

concepts. A full exposition of the search algorithm may be A resolution-3 36-unit 2 x 32 x 62 design, for example, can

found in Zemroch et al. (1989). easily be formed by combining resolution-3 23 and 34

sub-designs, generated from design keys, with 4 and 9 units
respectively. The 36 rows of the main design matrix are

5. Types of design obtained by juxtaposing the rows of the 4- and 9-unit

Version 1 of KEYFINDER has general procedures for sub-designs in all possible ways. Each 6-level factor is

constructing balanced multiple-, single- and formed from the 6 combinations of levels of a 2-level and a

fractional-replicate factorial designs using design keys. The 3-level sub-factor

experimental units in these designs may be arranged, as The development of KEN TNDER is ongoing, the aim being
necessary, into four basic types of block structure, namely, to produce a comprehensive toolkit capable of generating

P ("simple") almost all existing blocked and/or fractional-replicate designs

P + Q + R + ... ("row and column') of sizes likely to be us4.d in real-world experimentation
P * Q R P + + P.Q +R+...) ("crossed) (under certain constraints of balance). In order to make the

P / Q / R / .. (= P + P.Q + P.Q.R + ... ) ("nested') program as complete as possible, the main effort is presently
being devoted to developing methods for generating balanced

The terms, P, Q, P.Q, R,... in the above "block formulae" designs that cannot be obtained from design keys and/or the
correspond to random terms 8, 1j, 4ij, Wk, ... (say) in the direct-product method. Typically these designs will have
mixed analysis-of-variance model (see, for example, Scheffd, numbers of units that are not prime powers and they will
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include both symmetrical and asymmetrical arrangements. analysis of experiments. In "COMPSTAT 1988 Software
Catalogue", UNI.C, Copenhagen, 13 -14.

6. Randomization Bratko, 1. (1986). Prolog Programming for Artificial
Intelligence. Addison-Wesley, Wokingham.

Randomization of an experimental design reduces the risk of Clocksin, W.F. and Mellish, C.S. (1984). Programming in
certain treatment levels being unfairly favoured or
disfavoured in the experiment by extraneous sources of Prolog. Second Edicion. Sprnger-Verag, Berlin.
variation, for example equipment wear, fertility trends, or Fisher, R.A. (1935). The Design of Experiments. Oliver &
changes in the weather. Most of the design keys generated by Boyd, Edinburgh.
KEYFINDER yield designs with the levels of the treatment Franklin, M.F. (1985). Selecting defining contrasts and
factors in some sort of systematic order. This can increase the confounded effects in pn-m factorial experiments.
chances of systematic external factors introducing bias and Technometrics, 27, 165 - 172.
heightens the importance of correctly randomizing the design Nelder, J.A. (1965). The analysis of randomized experiments
in accordance with the block structure. with orthogonal block structure. I. Block structure and the
Randomization in KEYFINDER is a three-stage process, all null analysis of variance. Proceedings of the Royal Society
stages being optional and under the user's complete control. A, 283, 147 - 162.
First, the levels of each block and treatment factor are Patterson, H.D. (1965). The factorial combination of
randomized by performing a random permutation on the treatments in rotation experiments. Journal of Agricultural
integers 0,1 ..., s-I labelling its s levels; different Science, 65, 171 - 182.
permutations are used for each factor. If a block factor, Q say,
is nested within another block factor P (e.g. fields within Patterson, H.D. and Bailey, R.A. (1978). Design keys for

farms), then the levels of Q are randomized separately for factorial experiments. Applied Statistics, 27, 335 - 343.

each level of P. If the design is blocked, the next stage in the Rasch, D., Guiard, V., NUrnberg, G., Rudolph, E. and
process is to sort the experimental units according to the Teuscher, F. (1987). The expert system CADEMO,
(randomized) levels of the block factor(s). The final step is to computer-aided design of experiments and modelling.
randomize the order of the experimental units. If the design is Statistical Software Newsletter, 13 (No. 3), 107 - 114.
blocked, then the units are randomized separately within each Scheffd, H. (1959). The Analysis of Variance. Wiley, New
block (or block factor combination). York.

Williams, C.L. (1991). A clinical application of expert
7. Performance system methodology. Journal of Applied Statistics, 18, 185

-201.
On a SUN 3 or SUN 4 workstation, KEYFINDER can

generate keys for designs with, say, 250 or fewer points, Zemroch, PJ. (1986). The computerized generation of
without time or storage becoming a problem. Thus the blocked incomplete factorial designs in the conversational
program caters comfortably for most of the design sizes likely experimental design and analysis package SELINA. In
to be used in real-world experimentation. However, storage "COMPSTAT 86 Short communications and posters",
problems are, at present, a constraint on the scope of the PC Dipartimento di Statistica Probabilith e Statistiche
version and this cannot generate keys for designs with more Applicate, Universit "La Sapienza", Rome, 227 - 228.
than about 100 points. Expected software and hardware Zemroch, PJ. (1988). Strategies for generating blocked
developments should ameliorate these problems in the near fractional replicate designs by computer. Computational
future. Statistics Quarterly, 4,43 - 57.

Zemroch, PJ., Lunn, K., Baines, A. and Clithero, D.T.
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Abstract this method to some of our application data, we found
that the estimated process predicts very poorly (Intra-

This paper describes a nonparametric application of tor, 1991a). One reason for this is that the process varies
CART (Breiman et al., 1984) to senii-Markov models, to for different subpopulations. This observation is the mo-
provide a nonparametric regression analysis of transition tivation for this work: We would like to be able to find
data. Modeling data without any assumptions about the processes of different subpopulations within a non-
the nature of the underlying distributions is needed for paranetric framework. The different subpopulations can
initially investigating predictor effects in an exploratory be identified by answering some prognostic type ques-
analysis. The semi-Markov assumption specifies a struc- tions such as: Which are the important variables for
ture for the transition process, which is characterized by prediction? (an these variables be ranked in ord-r of
the one-step transition distributions. The nonparamet- importance? Which questions most likely lead to oth-
ric rcgression is done on these distributions. For each ers so as to determinate a sample more homogeneous in
one-step transition distribution, the recursive partition- term of its waiting time distribution? These questions
ing of the variable space allows greater interpretability naturally lead to decision trees.
of the data by splitting the data into homogeneous sub-
populations, and by providing insight into the relative
importance of the different predictors, and the way in
which they interact. This method is then applied to
modeling payment source changes of nursing home resi- Classification and regression trees (Breitnan et al.,
d-nts. 1984) is a method that recursively partitions the space

of explanatory variables, building a binary decision tree.

1 Introduction Since a full grown tree may be biased towards the train-
ing data, they suggest to prune the full grown tree by

Transition processes occur naturally in miany set- penalizing the relative improvement of a split compared
to the addition of an extra node. In this way a sequence

tings, classical examples are progression between disease of nested trees can be defined, and oie can chose the
states, changes in employment, etc. Probabilistic mod- "best" nested tree in an exploratorv fashion, Or by a
cling of a transition process reqitirs assumptions about
the dependence of the process on its past history. Manyv es 4 iA of aredictinterrtAng t lts b
times a first-order Markov assumption is made, identifv-

providing insight and understanding into the predictiveing this dependence onily on tile current occupied starc.f
st rti r l tei data. It is a variable selection methodA Markov assumption for continuous time processes can w i h llp in rd uin g scn~itiitv to many variables il

be xtended to a senii-Markov assumption which allows wlli I Is rci tiv ity to ting vaale
for non-.xponential waiting tinies in states. l.agakos e a modl. It i relatiely nhiatd to training data, due
al. (197,) proposed nonparaniet i estitnalcs f r a i,,- tie andi 1rnin t re uire ind'il.ving 1otl' as un ptions.
mogenrous semi-Markiv proce:,- i,,wevcr, ill applying lost inp ,rtantlN. it idntities effects within subgroups

* R earch partiall'y s pp,,rted liv a grant fromi the Agnv f,.r in coli st t,, -tanlarI regrs ion met lods which iden-
Health ('are P-,Iv Aid V,",rh &O# .:.32 Iiy ,'ffVOt , ac 'i,,ss t lie ,.1tirt. saul pIe.



CART for Semi-Markov Models 353

2 Methodology 2.2 Survival trees

Gordon and Olshen (1985) presented perhaps the first Any extension of CART inciudes the following ingredi-
extension of regression trees (CART) to survival data. ents that should all be nonparametric: (1) Prediction
Regression trees for survival data are nouparametric rule; (2) Dplitting rule for growing the tree; (3) Pruning
methods for estimating the distribution of a censored mechanism; (4) Method for tree selection.

failure time r.v. T, given regressors x, Pr(T > Ijx). Un- Intrator (1991b) reviews the different extensions of
der a semi-Markov assumption it is possible to reduce CART to survival data in liu of these points and pro-
transition data to a set of conditional one-step survival poses all extension in which all above ingredients are
distributions and apply an extensions of CART to sur- addressed to achieve CART's advantages. The following
vival data to each one-step waiting time distribution. We is a sunnary of that extension.
will first discuss the reduction, and then give the high- (1) Prediction rules are the nonparametrically esti-
lights of an extension of CART to survival data: Survival mated conditional Kaplan-Meier survival distributions
trees (Intrator, 1991b). (which are equivalent to the estimates of Lagakos et al.,

1978 . and Dinse and Larson, 1986).
Reduction to one-step transitions (2) The splitting rule defined is based on between node

separation measures such as extensions to censored data

A finite state space continuous time semi-Markov pro- of rank type tests for the conditional survival distribu-
cess can be defined as: (a) a continuous time process tions.
with a Markov embedded chain of state occupancies- (b) (3) The pruning method is based on the significance
distribution of waiting times that depend only on cur- level values v(t.d) -- Pr(S(t ) $ S(td)), the p-value
rent state and destination state, which are independent of the test d for the split at that node to the left and
between epochs. right branches t and t. The chosen split is (1)

The general likelihood under this model is mind v(td). The risk for every terminating node is de-

N M, fined to be zero. For any decision node I we define the
£= fi 6(z;)1-[ f(:( ' "' ~risk of its branch IT by:

,=1 r,,:l R(tT) -p(t). max_ [(1-( 1)]
for N individual histories, with .11, transitions for each rCtT tT I

individual history , (, P. .. . .. )l z3 denote where p(1) is the proportion of observations at node 1.
sattes, and 1 denote waiting time in state I, -. O(zA) Notice that the maximization is done over all the nodes
are the initial state probabilities, and f(j, I i) the den- of the branch IT and not only over the terminating nodes
sities of transition from state i to state j at time I. If tr, so h'(t I) is ionotonicallv non-increasing when going
censoring is considered an absorbing state we can rewrite from top down in the tree. This definition allows us to
the likelihood by: use the CART niethod for cost complexity pruning in

the usual way. For more information about the pruning
ir rr {see Intrator (199 1b).£0 = 11 r f j(:o) (41) We can choose a tree fron the nested sequence
zETz.TU IA of pruned subtrees in an exploratory fashion by choos-

ing the tree at a prespecified level of o. or by choosing
a tree with a certain number of terminating nodes. Ex-

M_ I ploratorv trees serv as a basis for comparison with other

where A is the set of absorbing states, and T is the set trees, for tlie effects of covariates.
of transient states. ( 1, b: ,', 1) I ifa 1, and , d. An alternative to, exploratorv tree selection is based
and 0 otherwise. O(z- : ) is the transition probabilitv 4 f n collititing all ho tst tsltmai t R'(T ) of the predic-
the embedded Markov chain. ti,n error of the trees {7-, } in the sequence of pruned

Under this framework every particular transition is a Nubtr,.,.s. We pr ,,p( s to use:
separate failure event, with processes at the sane current
state with other destination, Cn, idlered as -cens,red- (" -- ((
Applying survival trees to .(t -. :" ) should indicate the
structure of the variables affectinmg this cn(litinal omi- w her, N.,'OI iN the estimaled survival curve at node I
step transition (list ribution. Ia,,.,l ,i t , stuin ,ta , an .: tt) is that based on
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the learning sample. We estimate the prediction error 4 Nod0

of a node, Pr(St (t) 5 St(t)), by running a test sam- KY M, TN

pie down the tree and comparing survival distributions 2-o

between the training sample and the testing sample, at TN

every terminating node. We can choose the right-sized A

tree as that subtree with the lowest estimate of the risk. G Node 3 7 od.,

<= 8th rd t Grade C M

3 Application A]O_.s

In the following application we look at changes in pay- D E F

ment sources for patients newly admitted to nursing Acute Not Acute

homes. More details about this study can be found in
Mor et al. (1991). The data come from regular assess- B C

ments of patients in the National Health Corporation
(NHC), a chain of 48 for-profit nursing homes operating Figure 1: Full Tree for Transition from Medicare to Med-
in 11 states, mainly in Missouri, Kentucky, South Car- icaid. Squares and capital letters indicate terminating
olina, and Tennessee. Assessment records are collected nodes, number in nodes indicates number of observations
at admission, periodically thereafter, and at discharge in node.
on a standard form. Data on payment source changes is
recorded retroactively with the correct date of change,
thus payment sources are monitored continuously. The Specifically, being in Kentucky increases the hazard of

specific cohort used for this analysis consists of all newly conversion the most. The competition at this node be-

admitted patients to an NHC home in 1982 or in 1984. tween the split on Tennessee and Kentucky is very close,

This analysis is part of a research on characterizing res- (at chi-square of 143 vs. 145), therefore it is not sur-

idents who spend down to Medicaid. In applying the prising that the next split is on Tennessee. Education is

above methods our aim is to find important predictors important only in Tennessee.

for modelling the process of payment source changes till Figure 2 presents a pruned tree for the transition from

patients become Medicaid recipients, go back to the com- Medicare to death. The pruning was done in an ex-

munity, or die. ploratory manner, at a level a = .07.
For this tree, the root split is by most severe functional

3.1 Results impairment ADL=5. Patients who are severely impaired
(ADL=5) are then split according to whether or not their

We defined the following state space for this application: impairment is acute (hip fracture or stroke). Patients
Transient states: Private Payment; Medicare; "Other" who are less severely functionally impaired (node 2) are
Insurance payment; Home; Hospital. Absorbing states: split by sex, with competition of the split from both the
Medicaid; Death; Censoring (usually due to return into next ADL level 4, and from acute. The next split for
the community). Our attention in this paper focuses on both males and females of ADL levels 1-4 is on acute,
the transitions from Medicare to Medicaid and to death. and thereafter on ADL levels.

Discussion of other transitions can be found in Intrator
(1991a) . The variables investigated include activity of 3.2 Cox type regression
daily living (ADL), a heirarchical scale from I (best) to
5 (worst), sex, education, marital status, living arrange- In Intrator (1991a) a Cox type regression method for
ment prior to entrance into nursing home, diagnoses of transition data was developed, and applied to this data
acute or chronic illness, state (KY, MO, SC, TN), age, as well. Here we would like to compare the results of
and initial payment source. that method (Table I). after variable selection at a 95%

Figure 1 presents the full grown tree (without pruning) level, with the tree results.
for the transition from Medicare to Medicaid For the transition to death both methods reveal that

A first level pruning would eliminate terminating ADL is a most prominent predictor. Sex is also pre-
nodes E and F, and a second level pruning would elim- dictive in both analyses. Kentucky, or any other state
inate all subnodes of node 2. State participation seems participation is not present in the trees at all, although
to be the most important predictor for this transition. it is present in the regression analysis.



CART for Semi-Markov Models 355

Nods 0 4 Conclusions
ADL:-5 (: ADL.5

The importance of the tree analysis in this context was
1371 Node 1 2629 Node2 to highlight the structure of the interactions between the

Acute Not Acute Male Female variables affecting the one-step transition distributions.

7 Node 4 1845 Nodo 6 The Cox-type regression model could only identify ef-
A Male IFemale /fects across the sample, thus leading to identification of

287 39 Acute Not Acute meaningful predictors that were perhaps only correlated

B C 804 Node 13 1 Node 14 with other important predictors. The interpretability of
the tree results is self evident. It is easy to point out the

ADL] ,3,( AD _ 2 prognostic variables affecting the process. The regression

Node model, on the other hand, can provide easier predictions

=4 ADL=1 3 G of summary statistics, as total probability of transition
at different times, and expected number of transitions.

H I

Figure 2: Pruned Tree for Transition from Medicare to References

Death. Squares and capital letters indicate terminating Breiman, L., Freidman, J., Olshen. R., and Stone, C.
nodes, number in nodes indicates number of observations (1984). Classification and Regression Trees. The

in node. Wadsworth Statistics/Probability Series, Califor-
nia.

For the transitions to Medicaid, the trees emphasize Dinse, G. and Larson, M. L. (1986). A note on

the effect of state participation, and education in Ten- seii-markov models for aprtially censored data.

nessee. In the regression model we have Tennessee and B2onefrika, 73(2):379-386.

more education variables, but also ADL levels which do Gordon, L. .nd Olshen, R. A. (1985). Tree-structured
not appear in the trees. This may reflect either cor- survivai analysis. Cancer Treatnint Rcports,

related covariates, or effects across samples, which are 69:1065-1069.

eliminated with interactions. Intrator, 0. (1991a). Methods for Exploring Surz-ial

Further analysis of this data, concentrating on those Data. PhD thesis, Brown University.

residents initially admitted as private paying individuals,
under a Cox model, with comparison to results of the Intrator, 0. (1991b). Survival trees: Exploratory cart

for survival analysis. Technical report, ('enter for
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Lancaster, and Vincent Mor. versity. Submitted to Biometrics.

Lagakos, S., Sommer, C. J., and Zellen, M. (1978). Semi-

From Medicare Variable &(0) markov models for partially censored data. Bomntt-

To Medicaid ADL = 2 -0.472 0.228 ,cs, 65:311-317.

N = 637 1-8 Grades -0.449 0.186
9-12 Grades -0.920 0.201
> 12 Grades -1.465 0.249
Tennessee -0.900 0.201

Home Days -. 994e-2 .140e-2

To Death ADL = 3 0.903 0.230
N = 1420 ADL = 4 1.231 0.230

ADL = 5 1.825 0.225
South Carolina -0.330 0.132

Kentucky -0.366 0.134

Male 0.462 0.060

Table 1: Coefficients for one-step transition from Medi-
care
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Abstract j(x) K
Methodology is described for constructing kernels for the h (Xh__

purpose of identifying and separating the components of a where K is the kernel function and h is called the
mixture of densities. One such kernel has the property of smoothing parameter or bandwidth. K is often chosen a
reducing the variance of the individual subcomponents of a priori from a class of nonnegative, symmetric functions,
mixture thereby making them more visible. A second for example the family of Gaussian densities with scale
method based on a weighted version of the Mean parameter h (Rudemo, 1982).
Integrated Square Error metric takes advantage of the Another popular class of density estimators is based on
properties of mixtures comprised of densities with differing orthogonal series expansions. In particular, the Fourier
location parameters. The resulting kernel focuses ortiogonalmseries exinsa
alternatively on either the right or the left side of the
variate support region. Combined with the variance- f(x)= "bk/kexp{2,rikx}
reducing kernel, this procedures enhances the estimation of
either the leftmost or rightmost mixture subcomponent. where

Ak= _'jYexpt-21rfkX,
1. Introduction B =-

As detailed by Titterington, Smith and Makov (1985), i = FIand {bk}, the multiplier sequence, is a sequence of
mixture distributions have had a long and rich history. The real numbers chosen to optimize the estimator in some
methodology outlined below is a kernel-based curve respect. For example, (bk} may be used to truncate above
estimation approach to mixture decomposition which expansion at some optimal point. The main focus of this
incorporates two novel elements. The first is that a kernel paper is the choice of particular multipliers for the purpose
is constructed which has the property of reducing the of identifying and separating the components of a mixture
variance of the individual subcomponents of the mixture. distribution.
The second relies on modifying the kernel to enhance the
estimation of a particuiar subregion of the density. One of the advantages of Fourier series estimators is their

fundamental near identity with kernel methods; that is, with few
Thsseconhoere inmxtaes dva ig ohve coexceptions, a particular estimate may be expressed as
asymmetry inherent in mixtures which have components either a Fourier series estimator or a kernel estimator,

with unequal location parameters. Since by definition wiher nterre tiis or onvene tiaobe
ther exstssom reionof te dnsiy wereone whichever interpretation is more convenient. This can be

there exists some region of the density where one se hog iperarneeto h bv

subpopulation is more prevalent than another, the

estimation of individual subcomponents can be improved expression for the Fourier series estimator:

by using different kernels for different subregions. In this !(x) = b n -' ex-2, 1 ' epikx
way the method outlined below is similar to the variable 1--= expj 4 jexptrj

kernel method described by Breiman, Meisel and Purcell
(1977). The combination of a variable kernel with a =n-' x jbexp{2nik(x-Xj
variance-reducing kernel has the potential to greatly )-I L--

enhance mixture decomposition methodology. If b, = b, and 7__;-_ < -, then Ibk} is the sequence of

Given an independent sample X ..... X. from the density f, Fourier coefficients of the kernel defined by the Fourier

the kernel estimator off is defined by Silverman (1986) as series density estimator. Alternatively, many kernel
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Figure 1. Dirichlet kernel with the truncation point, m,
equal to 6. 4 0: 2. 4.'

estimates can be expressed as Fourier series by using the Figure 2. Estimate of a mixture of two Gaussian densities:
expressions for the characteristic functions of truncated f(x) = .6N(O,1) + .4N(2.5,1).
densities given by Kronmal and Tarter (1968).

As an illustration, consider the estimator determined by the by Tarter and Kronmal (1976), Hart (1985) and Diggle and
multiplier sequence bk = 1, jk1 -m; bk = 0, Jkl > m, where Hall (1986). More general multiplier sequences have been

m, the truncation point, is some positive integer. This suggested by Watson (1969), Fellner (1974), Brunk (1978)

leads to what Wahba (1981) calls the raw Fourier series and Wahba (1981).

estimator: By minimizing the MISE, these methods all strive to
produce density estimates which are optimal in an overall

i(x)= Lk exp{2xikx}. sense, that is, accurate throughout the entire range of the

The kernel defined by this multiplier sequence is the estimate. Thus, these multiplier sequences are designed to
Dirichlet kernel, shown in Figure 1. provide an overall view of the density function. Other

choices of multipliers, however, may be more suitable for
The close correspondence between kernel and Fourier more specialized purposes. Two such alternatives
estimators means that theoretical results derived for one described below are designed to help identify and separate
method are often applicable to the other method as well. the individual components of a mixture of densities.
In addition, the kernel form the estimator is often quite Consider the density estimate shown in Figure 2. Here
helpful in conceptualizing the series estimation process.
Thus, in the following exposition we will interchange b} was chosen to minimize the MISE according to a
kernel and series terminology and concepts where one is procedure outlined in Tarter and Kronmal (1976). The true
more appropriate than the other. In particular, a mixture density is a mixture of two Gaussian curves, although the
decomposition process will be developed from the series substantial overlap between the components has made this
point of view but will also be presented in terms of the structure difficult to see. To enhance the distinction
kernel defined by the procedure. between the subcomponents, a density estimate could be

constructed which reduced the overlap between them.
2. Variance-reducing Kernels Such an estimate is shown in Figure 3; here the two

As noted above, the multiplier sequence, and thus the subpopulations are clearly visible. Although certainly not
optimal in an overall sense, the estimate shown in Figure 3

kernel, is usually chosen to optimize the estimator with is certainly more useful than the estimate in Figure 2 for

respect to some global measure of accuracy, that is, with

respect to some metric. For example, an extensively searching for hidden subcomponents.

studied metric is the Mean Integrated Square Error, MISE: The procedure used to create the estimate shown in Figure
J(f ) =Ef (x)_f(x)'dx 3 is described in Chapter 4 of Titterington, Smith and

Makov (1985) and relies on a particular choice of
where the integral is taken over the entire range of the
density's support. Methods for choosing an MISE-optimal multiplier sequence. Specifically, let / be the mutiplier
multiplier sequence based on selecting a truncation point, sequence chosen for an initial estimate of the density, like
m, for the raw Fourier series estimator have been proposed
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depicted in Figure 4 both incorporated the initial sequence

bk = 1, lkl -6; bk = 0, 1k > 6 but used different values of
* Note that for a very small value of A the kernel looks
very much like the Dirichlet kernel shown in Figure 1 and

thus the process has little effect. The larger value of A
results in a more extreme kernel; in particular, the amount

of negativity increases as A increases. Since as noted in
Jones (1991), a nonnegative kernel inflates the variance of
an estimate, it is not surprising that variance is reduced by
increasing A and hence increasing kernel negativity.

Once the overlap between components has been reduced, a
procedure outlined in Tarter (1979) can be used to

-2. 0. 2. 4. eliminate the contribution of one of the now distinct
subcomponents. The variance-reduction process can then

Figure 3. Estimate of the density described in Figure 2 be reversed resulting in an estimate of the remaining

after application of the variance reduction process. component. (The process also extends easily to any
number of distributional subcomponents.) Once isolated

that shown in Figure 2. Usually /, will be chosen to be the remaining component can be analyzed by the model

optimal in some global sense such as minimal MISE. A identification techniques described in Tarter and Lock

reduced-overlap estimate of the density can then be (1988).

obtained by selecting the sequencebk / exp{2(TtkA) 2 }, k : +l,+ 2,.... 3. Locally-enhanced kernels
In the previous section it was suggested that a globally

where A is a user-selected, positive number. Although optimal estimate of the density should be constructed prior
used on a mixture of Gaussian components here, this to decomposing a mixture distribution. However, the
process has been shown by Tarter (1979) to be applicable ultimate goal of the above example was to produce and
to a broad class of mixtures. analyze an estimate of only the left component of the

mixture. With this in mind it is clearly advantageous to
The application of {bk } reduces the variance of the estimate the left side of the distribution as accurately as
estimated subcomponents while leaving the other moments possible, even at the expense of losing some resolution in
of the distribution unaffected. The degree of variance the right side of the estimate. This can be accomplished by
eeduction is determined by the magnitude of the constant selecting a multiplier sequence which minimizes the
A. The effect of A can be seen by graphing the kernel weighted MISE:

determined by the multiplier sequence {b'}. The kernels J(f,f,w):=E {f (x)f(x)}w(x)dx.

30. 30.

20. 20.

Figure 4. Kernels determined by the {b, } multiplier sequence. On the left, A =.001; at right A =.001.
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Abstract Types of Learning

Neural network learning systems can be grouped
Neurl Ntwok Lernig Sstem ar moels into three categories: supervised learning, unsuper-

which are loosely inspired by notions of how self- it he aeois uevsdlannuspr
l y vised learning, and reinforcement learning. Super-

organization and learning in biological systems vised and unsupervised learning systems include a
might occur. These models are closely related to number of standard statistical methods, while rein-
many established pattern recognition, classification, forcement learning systems are more similar to the
and regression techniques. Many exciting applica-
tions of these methods are being pursued, including Supervised learning systems are analogous to sta-
nervous system modeling, robotics, signal process- tistical classification and regression techniques. Un-
ing, zipcode and speech recognition, speech produc- supervised learning systems are analogous to such
tion, computer backgammon, and financial analysis. established statistical methods as density estima-
This short paper is intended as a pointer to some tion, cluster analysis, principal components, multi-
of the vast literature covering this field. dimensional scaling, and so on. Neural network

models often differ from their statistical analogs,
however, in that they are usually nonlinear and are
often real-time or adaptive.

Introduction Reinforcement learning differs from classification
and regression in two ways. First, the system is not
provided with explicit target values during training,

Statistics and neural network learning systems have but is simply given reward or penalty signals based
much in common. Since neural network learning upon performance. These reward/penalty signals

systems are being developed in a wide variety of may berdela e. The e avioreoflth system
conext, satiticansarelielyto indtha th fild may be delayed. Second, the behavior of the system

contexts, statisticians are likely to find a the field has a random component which allows it to explore
offers many relevant and exciting avenues to ex- via trail and error.
plore. Furthermore, statisticians are well equipped Of these three types of learning, supervised learn-
to make significant contributions to this field. ing algorithms have received the greatest amount

As many excellent sources on neural networks are of theoretical analysis and have enjoyed the widest
available, I will not attempt to provide a complete ranging practical application. Unsupervised learn-
and detailed introduction to and overview of this ing systems are also widely used. Reinforcement
field in the short amount of space available here. learning algorithms are the least widely applied and
Rather, I shall make a few brief comments and pro- the most poorly understood. However, they are per-
vide some pointers to the literature. haps the most interesting.
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Some Active Areas of Research A Short Bibliography

The range of active research topics in neural net- Textbooks and Reprint Collections

works covers many disciplines. The following list is James A. Anderson and E. Rosenfeld (1988). Neurocom-

adapted from the list of oral sessions of the 1990 puting: Foundations of Research. MIT Press. A tasteful
Neural Information Processing Systems conference and authoritative collection of classic papers.
program (see Lippmann, Moody, and Touretzky
1991): John Hertz, A. Krogh, and R. Palmer (1991). Intro-

duction to the Theory of Neural Computation. Addison
Wesley. Excellent and comprehensive textbook writtenLearning and Memory: Associative Memory, by physicists.

Classical Conditioning, Memory Organization

and Indexing, Biophysics of Synaptic Change, S.Y. Kung (1991). Digital Neurocomputing. Prentice-
etc. Hall. Excellent textbook with an engineering orienta-

tion, forthcoming.
Navigation and Planning: Animal Behavior,

Robotics Carver Mead (1989). Analog VLSI and Neural Systems.
Addison Wesley. Beautifully written and accessible in-

Temporal and Real Time Processing: troduction to electronic neural circuit design.

Timeseries Prediction, Music, Architectures for David E. Rumelhart and J. McClelland (1986). Parallel
Real Time Adaptive Signal Processing and Distributed Processing: Explorations in the Microstruc-

Control. ture of Cognition, Vols 1 and 2. MIT Press. A classic,
psychologically-oriented.

Learning and Generalization: Learning Algo-
rithms & Architectures, Data Representations, David E. Rumelhart and J. McClelland (1988). Explo-

Theory. rations in Parallel Distributed Processing. MIT Press.
Includes software for Unix and MS/DOS.

Visual Processing:
Motion Processing, Color Constancy, Percep- Some Journals
tual Grouping, Psychophysics, Organization of Biological Cybernetics, Springer-Verlag, New York,
Visual Cortex, etc. Berlin. IEEE Trarsactions on Neural Networks, IEEE

Press, Piscataway NJ. International Journal of Neural
Speech Processing: Speech Recognition, Lan- Systems, World Scientific Press, Teaneck NJ, Singapore.

guage Understanding Journal of Neural Network Computing, Auerbach Pub-
lishers, Boston MA. Network: Computation in Neural

Signal Processing: Nonlinear Adaptive SP; Ani- Systems, Institute of Physics Publishing, Bristol Eng-

mal Perception, eg. Bat Echo Location; Signal land. Neural Computation, MIT Press, Cambridge MA.

Pattern Classification, eg. Dolphins Speech Neural Networks, Pergamon Press, Elmsford NY, Ox-
ford.

Control: Animal Motor Control, eg. VOR; Robot,
Vehicle, and Engine Control; Chemical Process NIPS Conference Proceedings

Control, etc. Advances in Neural Information Processing Systems,
Vol. 3. R. Lippmann, J. Moody, and D. Touretzky,

Unsupervised Learning: Competitive Learning, eds., Morgan Kaufmann, San Mateo CA, 1991.
Hebb Rules, Clustering, Exploratory Projec-
tion Pursuit. Advances in Neural Information Processing Systcm.s,

Vols. I and 2. David Touretzky, ed., Morgan Kauf-

Self Organization: Development of Cortical and mann, San Mateo CA, 1989-90.

Dendritic Organization.
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Generalization through Minimal Networks

with Application to Forecasting

ANDREAS S. WEIGEND* and DAVID E. RUMELHART

Stanford University

Inspired by the information theoretic idea of minimum A priori, it is not clear what network size is required to solve
description length, we add a term to the usual back- a given problem. If the network is too small, it will not be
propagation cost function that penalizes network corn- flexible enough to emulate the dynamics of the system that
plexity. From a Bayesian perspective, the complexity term produced the time series ("underfitting"). If it is too large,
can be usefully interpreted as an assumption about prior the excess freedom will allow the network to fit not only the
distribution of the weights. This method, called weight- signal but also the noise ("overfitting'). Both too small and
elimination, is contrasted to ridge regression and to cross- too large networks thus give poor predictions in the presence
validation. We apply weight-elimination to time series pre- of noise.
diction. On the sunspot series, the network outperforms The key idea of weight-elimination is to add a penalty term
traditional statistical approaches and shows the same pre- accounting for network complexity to the usual cost func-
dictive power as multivariate adaptive regression splines. tion. The trade-off between performance and complexity

We show how the effective number of parameters changes is reflected in the sum of a performance and a complexity
during training by analyzing the eigenvalue spectra of the term. There is a u-shaped minimum between the extremes
covariance matrix of hidden unit activations and of the of having a too simple network that produces horrendous er-
matrix of weights between inputs and hidden units. We rors and a network with small errors on the training data that
find that the effective ranks of these matrices are equal to has enormous complexity. This sum is minimized through
each other when a solution is reached, and interestingly back-propagation (Rumelhart et al., 1986).
also equal to the number of hidden units of the minimal
network obtained with weight-elimination. 1.1 ARCHITECTURE

Fig. I shows the architecture (the pattern of connectivity or
1 INTRODUCTION topology) of a feed-forward network with one hidden layer.

(For the time series we analyzed, one hidden layer sufficed.)
Connectionist networks, also called brain-style computation The abbreviation d-n-1 denotes the following network:
or artificial neural networks, are ensembles of interconnected,
usually nonlinear, units. The values of the connections be- 9 The dinputunitsaregiven thepastvalues xt- 1 ,.., t-d
tween the units are estimated by a learning algorithm. This ap- of the time series { x1 .
proach differs from traditional statistics both by the ubiquitous * The input units are fully connected to n nonlinear hidden
use of nonlinearitics and by the sheer number of parameters. units.

Connectionist networks were first applied to time series pre- * All hidden units are connected to a linear output unit.
diction by Lapedes and Farber (1987). Whereas many re-
searchers in the dynamical systems community only deal with * Output and hidden units have adjustable biases b.
noise free, computer generated time series, we focus on noisy, e The weights can be positive, negative or zero.
real world data of limited record length. In this case, the
problem of overfting can become serious. The nonlinearities are located in the activation function (or

* Present address of the first author: transfer function) of the hidden units. The output (or response)

Xerox Pad Alto Research Center of a hidden unit is called its activation. It is a composition
3333 Coyote Hill Road of two operators: an affine mapping, followed by a nonlinear
Palo Alto, CA 94304, USA transformation. First, the inputs into a hidden unit h are



Generalization through Minimal Networks 363

x output Viewed from the perspective of statistics, the network esti-
t (Ioo mates the conditional mean,

bicses b ,.tTE [p(xIx,-t, x:-2, ..., Xt-d, parameters)]
where p is the probability of an output value xt for a given

n hidden input vector. Note that this probability distribution p of the
b units model, given inputs and parameters, is not to be confused

(slgmold with the probability distribution of the observed output given

or tonh) the predicted output, i.e., the error model. Whereas the prior
hi assumptions about measurement noise and model misspecifi-

cation are reflected in a usually simple error model (we here
d. Inpts assume the errors to be Gaussian distributed), the conditional

mean depends on the data and can be fairly complicated.

X X X X
t-d t-3 t-2 t-1 1.2 EVALUATION

Figure 1: Architecture of a simple feed-forward network. To evaluate and compare the predictive power of different
algorithms, we use the relative mean squared error or average

linearly combined, and a bias bh (or offset) is added, relative variance t of a set S, arv(S), defined as

d
h w Z Z~hixi + - bh = 1Vh " X q bh E- kCS (targetk - predictionk) 1 1 (

i=E zkEs (targetk - mean) 2  T N kES
x1 stands for .,t-i, the value of input i, and Whi is the weight (1)
between input unit i and hidden unit h. The sum extends over the set S of pairs of the actual values

(or targets, xk) and predicted values (2k). The averaging
Before turning to the second step, we give a geometric inter- (division by N, the number of data points in a set S) makes the
pretation Of .. A hidden unit only reponds to tig - ;F, the measure independent of the size of the set. The normalization
projection of the input vector i = (XI, x2, ... , Xd) onto the (division by &2, the estimated variance of the data) removes
weight vector WVh = (whl, wh2, ... , Whd). Changes in the in- the dependence on the dynamic range of the data.
put that are orthogonal to the direction of the weight vector
have no effect on the activation of the hidden unit. The "equi- This quantity corresponds to the fraction cf !he squared error
activation surfaces" (on which a hidden unit's activation is of the data that is not "explained" by the model. The symbol
constant) are hyperplanes orthogonal to the direction of th. S in Eq. 1 indicates the data set used to compute the errors:
The parameters of a hidden unit h can be characterized by STraining set. This part of the data is used to estimate

* a direction, Vh / I I, the parameters. The fitting error (or approximation error

* a scale parameter, 0Iwh I, and or in-sample performance) describes the fidelity to the
data. If the model also needs to be determined, this set

* a location parameter, bh/IZiuh I, is further split into two sets. The first set, still called
training set, is used for direct parameter estimation. The

The symbol II • II denotes the (Euclidean) length of the vctor, second set is referred to as cross-validation set and is used
The second step can be viewed as "piping" h through a to determine the stopping point of the training process.2

nonlinear activation function. We here choose sigmoid (or * Prediction set. A certain part of the available data is
logistic) units whose activations Sh are given by strictly kept apart and only used to quote the expected

h performance in the future as prediction error or out-of-1h = S1)( + tanh hsample performance.Sh=S; ) -i + 2- 2

The gain a can be absorbed into weights and biases without 'In this paper, the term variance refers to sums of squared errors.
loss of generality and is set to unity. The sigmoid performs a In the statistics community, there also exists a narrower meaning, as
smooth mapping (-oo, +oo) -- (0, 1). in bias-variance tradeoft. We use the term variance to denote the

sum of both the squared bias and the variance in the narrowcr sense.
Theoutputofthenetworkyieldstheprediction tasaweighted Incidentally, in the conncctionist community, the term bias simrlv
sum of the activations of the hidden units. To summarize, con- denotes an additive constant to the input of a unit.2Our use of the term cross-validation diffcrs from rcpeatcd Ica% c -nectionist networks globally superimpose nonlinear functions k-out procedures in that we often pick only one cross-validation sct.
to produce an output that can be viewed as a surface above Since our emphasis is on the training process, %e use the validation
the (Xl, X2, ..., Xd)-plane of the inputs, set to monitor the progress during training.
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Ultimately, we are interested in good performance for future it performs on the training examples, but how it performs on
predictions. Can we simply use the performance on the train- cases it has not yet seen, i.e., its out-of-sample performance.
ing set as an estimate of the predictive performance? Do we Too many weights of high precision make it easy for a net-
really need to set some data apart as prediction set? work to fit the noise of the training data. In this case, when

It is well known that the in-sample performance can be a the network picks out the idiosyncrasies of the training sam-
poor estimate of the out-of-sample performance, particularly ple, the generalization to new cases is poor. This overfitting
in the presence of noise. For linear regression, it is sometimes problem is familiar in inductive inference, such as polynomial
possible to correct for the usually over-optimistic estimate. An curve fitting. In the extreme, the polynomial fits the training
example is to multiply the fitting error with (N + k)/(N - k), points exactly and merely interpolates between them.
where N is the number of data points and k is the number There are several potential solutions to this problem. We focus
of parameters of the model (Akaike, 1970). It is not at all here on the so-called minimal network strategy. The under-
clear to what degree such approximations hold for nonlinear lying hypothesis is: if several networks fit the data almost
models, such as conriectionist networks. equally well, the simplest one will on the average provide the

Now, even if we decided to ignore the issue of nonlinearities best generalization. Evaluating this hypothesis requires (1)
completely, what value should we use for k? Although the some way of measuring simplicity, and (2) a search procedure
number of available parameters of the network is fixed, the for finding the desired network.
number of effective parameters increases during training. Al- The complexity of an algorithm can be measured by the length
though all parameters are already present at the beginning of of its minimal description in some language. The old but
the training process, the number of parameters that are effec- of iti tion of someaan be ormal-
tive for solving the task is zero since they were just randomly ized as the Minimum Description Length Criterion: Given
initialized. We show in Section 3.1.2 how the number of ef-
fective parameters increases during training. This focus on some data, the most probable model is the model that mini-

learning is different from the typical assumption in statistics mizes the sum

that the parameters are fully estimated at the time of model description lcngth(d& a given model)
selection. + description length(model).

Up to now, we have ignored the question of how to determine This sum represents the trade-off between residual error and
the values of the weights and biases. In the next section, we model complexity. The goal is to find a network that has
turn to this question of parameter estimation and also to the the lowest complexity while fitting the data adequately. The
problem of model selection in the presence of noise, complexity of a network is dominated by the number of bits

needed to encode the weights. It is roughly proportional to the
number of weights times the number of bits per weight. We
focus here on the procedure of weight-elimination that tries
to find a network with the smallest number of weights.2 LEARNING______ ____

In Section 3.1.1, we compare weight-elimination to cross-

2.1 BACK-PROPAGATION validation: in that case, the cost function only consists of the
error term. Overfitting is prevented by stopping the training

We use the error back-propagation algorithm by Rumelhart early, i.e., before the error reaches its asymptotic minimum.
et al. (1986) to train the network: the parameters are changed This leads to a network with fewer effective parameters than
by gradient descent on the cost surface over the weights and the total number of weights and biases (Section 3.1.2).
biases. On the whole, the problem of building a network that
readily memorizes a set of training data has proven easier than
expected. However, the problem of good generalization has
proven more difficult. 2.3 WEIGHT-ELINIINATION

In 1987, Rumelhart proposed several methods for finding
2.2 GENERALIZATION minimal networks within the framework of back-propagation

learning. A natural description of the complexity of a network
Connectionist networks are in essence statistical devices for uses quantities such as the size of the weights, the number of
inductive inference. There is a trade-off between two goals. connections, the number of hidden units, the number of layers
On the one hand, we want such devices to be as general as of hidden units, or the symmetries of the network. We focus
possible so that they can learn a broad range of problems. on the method of weight-elimination that considers the size
This recommends large and flexible networks. On the other of the weights and the number of weights, and interpret the
hand, the true measure of an inductive device is not how well complexity term as a prior distribution of the weights.
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2.3.1 Method respect to the scale wo. It is a free parameter of the weight-
elimination procedure. In our experience, choosing wo ofThe idea is indeed simple in conception: add to the error a order unity is good for activations of order unity. The effects

term which counts the number of parameters. We are looking of the choice for wo are discussed further in Section 2.3.3.
for a differentiable function that is zero for zero weights and
approaches a constant for large weights. We choose A is dynamically adjusted in uaining. This dynamic increase,

2 2 2described in detail in Weigend et al. (1991), is related to the
w/W concept of iterated training as opposed to one-shot parameter

I + w?/u,2 estimation. At the beginning of the training, the weights are
not useful yet, since they were just initialized rar.domly. Anywo is the scale for the weights. The subscript i in wi simply significant cost for complexity would devour the whole net-

enumerates the weights. The sum extends over all connec- work. Hence, A starts at zero. The usual subsequent increase
tions C. Note that the biases do not enter the cost function: corresponds to attaching more importance to the complexity
all offsets are a priori equally probable. (In the framework term or, from the perspective developed in the next section,
developed below, this corresponds to a non-informative prior: to sharpening the peak around zero of the prior distribution of
the probability density for the location parameter is flat.) the probability density function of the weights.

The performance term depends on the model for measure-
ment errors. Since we assume that the errors are Gaussian 2.3.2 Interpretation as Prior Probability
distributed, the complete cost function is given by In a Bayesian framework, the complexity cost can be viewed

2 ? 2 as the negative logarithm of the prior probability of a weight.Z (target, - outputk) + A , + 2/0o (2
kET iEC -0.8

The first term, summed over the set of training examples T, [ pror -- X=probality
measures the performance of the network. The second term ri I
measures the size of the network. A represents the relative X=0.5 . =2
importance of the complexity term with respect to the perfor- X = I
mance term. . X = 0.5
The learning rule is to change the weights and biases according [0.2 °

to the gradient of the entire cost function, continuously doing --.- -..-
justice to the trade-off between error and complexity. This -----------
is different from the methods mentioned in Section 1.2 that I ' '
consider a set of fixed models, estimate the parameters for -4 -3 -2 -1 0 1 2 3 4
each of them, and then compare between the models. Figure 3: Prior probability of a weight as function of the size of the

weight (in units of 'o), plotied for different values of A.

0.8 costl In Fig. 3, we show the prior probability density function irom
which single weights of size w,, are drawn,

0.5 prior ~x [xp ( 1,+u'/1g0

0. It is a mixture of a flat distribution and a bump around zero.
0.2w Relevant weights are drawn from the flat distribution. Weights
weigh that are merely the result of noise are drawn from the bump

-4 - -2 -1 0 ' 2 'centered on zero; they are expected to be small.-4 -3 -2S -1 0 1 oaa4
So far, we have only described our choice of the prior for a

Figure 2: Complexity cost (in units of A) of a weight as function of single weight. How do we get to the whole network? Assum-

the size of the weight (in units of wo). ing that the weights can be treated as independent, we simply
sum over the connections in Equation 2.

The complexity cost is shown in Fig. 2 as function of u',/uo.

For Iw, > w0 , the cost of a weight approaches unity (time, 2.3.3 Ridge Regresssion as Special Case
A). This justifies the interpretation of the complexity term as
a counter of significantly sized weights. For Iwi[ I< wo, the We here discuss the relationship of our method of weight-
cost is close to zero. "Large" and "small" are defined with elimination to weight-decay, proposed by Hinton and by

0
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Le Cun in 1987. In weight-decay, a small percentage of determine a stopping point when there is no complexity term
the weight is subtracted at each weight update, in the cost function), then with weight-elimination. The out-

Awi = (weight change due to error back-prop.) -awi of-sample performance will be analyzed in Section 3.2.

This can be viewed as an exponential decay of the weight. It
corresponds to a quadratic complexity cr'st (oc w?), known in 3.1.1 Internal Validation (Early Stopping)
the statistics community as ridge regression. It is contained The learning of the sunspot series of a 12-8-1 network is
in the weight-elimination scheme as the special case of large shown in Fig. 4 as a function of epochs. An epoch is one
wo. Weight-decay always prefers networks with many small iteration of gradient descent in which the network sees each
weights. Weight-elimination prefers few large weights over point from the training set once. Training with standard back-
many medium sized weights in the region where it acts as propagation (no weight-elimination) is displayed in the left
a counter. The scale parameter wo allows us to express a panel. (The panel on the right hand side is discussed in
preference for many small weights (wo large) versus a few Section 3.1.3.)
large weights (Uwo small). Depending on the dynamic range
and the number of the units of the preceding layer, wo might 0.60 1 F I I .............
be given different values for different layers of the network. 0.50 A B a b 0.5

Expressing the cost of a weight as a prior can make it easier A prediction ( 956-1979) 0
to interpret distributions that are not intuitive when viewed as 0.40
penalty costs. Nowlan (1991) proposes a mixture of a few
Gaussians as prior. This prior assumes that networks with 0.30- without 0.31
weights around a few centers are more likely than networks weight- weight-
with weights of many different values. :elimination elimination

0.20- validation 0.2-
We now apply these methods to time series prediction. : o d on

arv
3 SUNSPOTS _-__ _5_

prediction 1921-1955)

The sunspot series has served as a benchmark in the statistics 0 r .. 1-

literature. Within the paradigm of autoregression, different 0.09- --. 1

models differ in the specific choice of the primitives for the 0.08- troainin training
0.07surface above the input space. In the simplest case, a sin- 1000 2000 3000 0 3000 7000 11000

gle hyperplane approximates the data points. Such a linear epochs epochs
autoregressive model is a linear superposition of past values. Figure 4: Learning curves of a 12-8-1 network. The average relative
The evaluation of the network model, however, is carried single-step prediction variances are given for the training sets, and
out by comparison to a nonlinear model, the threshold au- early and late prediction sets (as well as for the cross-validation set
toregressive model (TAR) by Tong and Lim (1980), see also for the network train t without weight-elimination on the left side).
Tong (1990). It has served as a benchmark for Subba Rao The vertical lines (A, B, a, b) indicate different stopping points. The

average relative variance is normalized by the variance of the entireand Gabr (1984), for Priestley (1988), for Lewis and Stevens reod,2=15.
(1991), for Stokbro (1991), and for others. record, = 1535.

The TAR model is globally nonlinear: it consists of two local The success in mastering the training set is indicated by the
linear autoregressive models. Tong and Lim found optimal monotonic decrease of the lowest curve, indicating the in-
performance for input dimension d = 12. They used yearly sample-performance (orfitting error). To get a feeling for the
sunspot data from 1700 through 1920 for training, and the non-stationarity of the time series, the prediction set was split
data from 1921 to 1979 to evaluation the predictions. in two parts, 1921-1955 and 1956-1979. On both prediction

sets, the error first decreases, but then starts to increase: the
To make the comparison between network and TAR perfor- network begins to use its resources to fit the noise of the
mance as close as possible, we use their exact data for training training set. It starts to pick out properties that are specific to
and evaluation, their choice for the input dimension, their er- the training set, but not present in the prediction sets. This is
ror model and their evaluation criterion. The only remaining an indication of overfitting.
difference is the choice of the primitives for the surface.

When should the training should be stopped? Since prediction
3.1 LEARNING THE SERIES sets should not be used for this decision, a validation set is

required to determine the end of the training process. To get
In this section we analyze the in-sample learning behavior a feeling for the effect of the sampling error by picking a spe-
of the networks: first with a cross-validation set (needed to cific training set-validation set combination, we investigated
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several training set-validation set pairs. I I I I I

The validation sets consisted of 22 years chosen at random plncool components analysis

from the time before 1920. Those points were removed in the 0.3 ofactvatons of hidden units"

corresponding training sets, reducing their size by 10%. The
variations in performance due to different pairs of training and .
validation sets are larger than the variations due to different " 02
sets of random initial weights.3 In the example given in . .
Fig. 4, the validation set error approaches an asymptotic value. ,"
Since it does not increase, it is not entirely clear which set of ""
weights should be taken. We thus compare in Section 3.2 the "0o1 "

performance for two stopping points, A and B.

Some of the problems with early stopping through cross- -
validation are that (1) a part of the available training data 0.0 -

cannot be used directly for parameter estimation, (2) the mon- 0 2000 4000 600 8000 10000
itored validation set error often shows multiple minima as a epochs
function of training time (even in the simple linear case ana- Figure 5: Eigenvalue spectrum of the covariance matrix of the hid-
lyzed by Baldi and Chauvin, 1991), (3) the specific solution dcn unit activations. The double line represents the fourth largest
at the stopping points depends strongly on the specific pair of eigenvalue.
training set and validation set, and (4) the results are sensitive
to the initial parameters. Fig. 5 shows the eigenvalue spectrum as a function of training
Before comparing cross-validation with weight-elimination, time.4 The eigenvalues correspond to the variances captured
we turn in the next section to the question how the effective by the corresponding eigenvectors. In the figure, we plot the
number of parameters changes with training. We first focus square root of the eigenvalues. They correspond to the stan-
on the activations of the hidden units, then on the weights dard deviations "explained" by the corresponding principal
between inputs and hidden units, components. The figure shows that gradient descent extracts

one component after another. This provides some justifica-
3.1.2 Effective Dimension of Hidden Units tion for the whole strategy of oversized networks and early

Still within the framework of standard back-propagation, we stopping: the dimension of the hidden unit space starts essen-

analyze the change of the effective dimension of the hidden tially at zero and then increases in training. The goal is to stop

unit space during training by computing the spectrum of the at just the right dimension.

eigenvalues of the covariance matrix of the hidden unit So far, we have focused on eigenvalues derived from hidden
activations. The covariance Ci. corresponds to the two-point unit activations. We now turn to eigenvalues derived from
correlation between the activations of the two hidden units i weights. We analyze the singular value decomposition of
and j, computed over the training set, the weight matrix between inputs and hidden units. We de-

Cij = E [(si - i)(Sj - 3)]compose the 12 x 8 weight-matrix (inputs x hidden units)
( )(into two orthogonal matrices and one diagonal matrix and dis-

where Si = E [Si] is the mean activation of hidden unit i, play the square root of the eigenvalues of that diagonal matrix
taken over the set of training points. Since the covariance inFig.6. Atthebeginningofthetraining, theeigenvaluesjust
matrix is symmetric, Ci, = Cji, its eigenvalues are real. reflect the initialization of the weights. 5 As training proceeds,

Linear correlation is appropriate, since the output linearly the dimension spanned by the weight space increases.

combines the hidden unit activations. The number of signifi- Both Fig. 5 and Fig. 6 only contain information from the
cantly sized eigenvalues is a measure of the effective dimen- training set. We now compare this information with the per-
sion of the hidden unit space. It can be viewed as the effective formance on the prediction set. In the run used for the eigen-
rank of the covariance matrix. For linear networks, Baldi and value calculations, the out-of-sample error reached its mini-
Homik (1992) use similar concepts. 4The activations of the eight hidden units for each of the 209

3We chose the years for the validation sets randomly. An im- points of the training set were recorded after every 50 epochs of
provement might be to only consider random splits where the first training with learning rate 0.03. The overshooting of the largest
and second moments (mean and variance) of the validation set match principal component disappears if the hidden unit activations are
the training set. Another idea is to first train, stop and save several multiplied with their corresponding output weights prior to comput-
networks on different training-validation pairs, and then combine ing the covariance matrix.
their individual predictions. The combination is done by freezing sWe started the training with weights drawn from a uniform
the weights and biases of the sub-nets, and only letting the few new distribution over the interval [-0.03,0.03], corresponding to almost
combination weights adapt to the entire training set. linear hidden units.
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I I I from xt-2, and to the third hidden unit from x- 1. In contrast
singular value decompositlon to the output weights, only very few of the weights from

Of Weghtsthe input units to the active hidden units disappeared. (The
parameters of the network are given in Weigend et al., 1990.)

---- Predictions are obtained by adding the values of these three
------- hidden units. The main encoding is performed by the nonlin-

0 - ear projection from the twelve dimensional input space onto
the three dimensional hidden unit space.

3.2 PREDICTIONS AND COMPARISONS

So far, we have concentrated on the learning behavior of the
-f- ... network. Just obtaining a small network, however, is not an

0 4end in itself: the ultimate goal is to predict future values. In
0 2000 4000 6000 8000 10000 this section, we assess the predictive power of the network and

epochs compare it to other approaches. We first analyze single-step
Figure 6: Eigenvalue spectrum of the singular value decomposed predictions and then turn to multi-step predictions.
matrix of weights between input and hidden units.

3.2.1 Single-Step Prediction

mum around epoch 1000. At that point in training, the hidden The term single-step prediction (or one-step-ahead predic-
units span an effectively three dimensional space. Extracting tion) is used when all input units are given the actual values
the fourth and subsequent eigenvalues hence corresponds to of the time series (as opposed to the predicted values). To
overfitting. assess the single-step prediction performance, we use the rel-

In the next section, we turn to training with weight-elimination. ative mean squared error (or average relative variance, arv),
Interestingly, weight-elimination yields networks with three defined in Equation 1.
hidden units. This agreement between the effective dimen- The weight-eliminated network gives
sion of hidden units at the onset of overfitting and the number
of hidden units after weight-elimination is encouraging. arv(train) = 0.082, arv(predict) 1921 1955 = 0.086

The corresponding values for the TAR model are3.1.3 Weight-elimination
arv(train) = 0.097, arv(predict) 1921 _19 55 = 0.097

As in back-propagation without weight-elimination, we start

with a network sufficiently large for the task. The training Comparing these numbers, we see that the single-step predic-
curve for back-propagation with weight-elimination is shown tions of the network and the benchmark model are comparable.
in the right panel of Fig. 4. Significant overfitting is avoided, Despite this similarity, significant differences will appear for
even for training times four times as long. Since the entire predictions further than one step into the future.
training set is used, we are relieved from the uncertainty of a
specific choice for a validation set. But we still have to decide 3.2.2 Multi-Step Prediction
when the asymptotic state is reached. The pcrformance of
two solutions (a and b) is compared in Section 3.2. It turns There are two ways to predict further than one step into the
out that the exact stopping point is not important. In the first future. We first present the results of iterated single-step pre-
5000 epochs, the procedure eliminated the weights between dictions and subsequently turn to direct multi-step predictions.
the output unit and five of the eight hidden units. Only three Most of the analysis so far applies to regression in general.
hidden units survived. Iterated predictions, however, are specific to time series.

Weights from inputs to dead hidden units have no effect on In iterated single-step predictions, the predicted output is
the output. Since there is no reason for the network to pay a fed back as input for the next prediction and all other input
price for these weights, they subsequently get also eliminated, units are shifted back one unit. Hence, the inputs consist of
For time series prediction, weight-elimination acts as hidden predicted values as opposed to observations of the original
unit elimination. time series. The predicted value for time t, obtained after I

We analyzed the specific solution of the network that was iterations, is denoted by i,,

stopped at point b and subsequently trained with a very small The prediction error will not only depend on I but also on
learning rate for a few epochs. The main contribution to the the time (t - I) when the iteration was started. We wish to
first hidden unit comes from xt-9, to the second hidden unit obtain a performance measure as a function of the number
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of iterations I that averages over the starting times. Since cludes the comparison with the benchmark model.6
we want to fully exploit the standard prediction set range for Subba Rao and Gabr (1984) apply a bilinear model7 to the
the sunspot data from t BEGIN = 1921 to t END = 1955, we sunspot data and find an improvement of about 15% over the

cmuefor each I the average snptdt n ida mrvmn faot1%oe hcompute fTAR model, both for single-step and iterated predictions. On

1 1 io predictions further than one step into the future, the networks

- tEND - (tlEGIN - 1 + I) Et outperform the bilinear model on average by 35% in mean
tBGN- I +I squared error.

This (average relative) prediction variance after I iterations Stokbro (1991) uses a weighted linear predictor (WLP). In
a WLP, each primitive is the product of a first order polyno-is shown in Fig. 7. Only to indicate the spread of network miladanrlzeGusanailbssfnco.Th

performances,mial and a normalized Gaussian radial basis function. The
Arforan, fertote iffserntongrko son Te Fpredictor is the linear superposition of these primitives. Stok-A, B,a, b refer to the different stopping points, shown in Fig. 4. bro compares WLP with the network solution on the on the

The differences between the different network solutions are 192 o1preditio n s nn ien e n (90
not sgnifiant.1921 to 1946 prediction set given in Weigend et al. (1990).

nt significant. For one and two iterations, both methods have similar errors.

When iterated more than twice, the network outperforms the
WLP model.

1.0- relative multi-step prediction variance .. -1i Recently, Lewis and Stevens (1991) applied multivariate adap-

0.9. tive regression splines (MARS) by Friedman (1991) to the
sunspot series. We find that the performance of MARS is

0.8- very similar to the performance of the network. Given that
0.7... ::the primitives of both schemes (sigmoids and splines) are0.7-'€ "'"" -

smooth, and given that both approaches employ a regular-
.... 'r TAR',m.d". ization scheme that penalizes complexity, the similar perfor-

0.6-: TA-model -
. .mance is not astonishing but rather encouraging.

0.5- .. B.- , -

b0.4- 1, 3.3 VARYING THE INPUT DIMENSION

0.3- -. Up to now, all predictions were based on information of the
.. a- preceding twelve years. What happens if we vary the input

0.2- -BB B B. dimension? When the number of input units is reduced, we
expect the error to increase, at least at some stage. But when

0.1 . AB B. a. b network solutions the number of input units is increased, two effects compete.

0.0 1 1 1 , On the one hand, more information becomes available, pos-
2 4 6 8 10 12 14 16 18 210 212 sibly allowing for better predictions. On the other hand, the

I (number of iterations) higher the input dimension, the more sparsely distributed the
training data. Will the networks be robust if more input units

Figure 7: Relative prediction error after I iterations for the sunspot than necessary are present?

series. Gray T's give the performance of the TAR model. Black tanesryrpeet

squares show the performance of the weight-eliminated network 6 The discrepancy between a negligible difference in single-step
with three hidden units. The other curves indicate the performance prediction accuracy and a factor of two for iterated predictions is
of the network solutions from Fig. 4. interesting. A conjecture (from a discussion with Jerry Friedman) is

the following:
An alternative to this multi-step prediction by iterated single- Consider the single-step squared error decomposed into a squared
step prediction is direct multi-step prediction: the network is bias and a variance. In this footnote-in contrast to the rest of the
trained to predict directly several steps ahead. On the sunspot paper-the term variance refers to the spread of network solutions,

see Geman, Bienenstock and Doursat (1991). Since a network is a
data set, th,., prediction error for direct multi-step prediction more flexible model than a TAR models, the bias of the network is
was worse than the error for iterated single-step prediction. smaller than the bias of TAR. If iterating amplifies the squared bias

more than the variance, the observed effect is explained.
In summary, although we took extreme care not to gain any 7 In addition to linear autoregression (terms proportional to r-,),
unfair advantage over Tong and Lim (1980) (by taking the Subba Rao and Gabr allow terms proportional to the forecasting
same input dimension, using identical data sets, minimizing errors t, as well as terms proportional to the product rt-...t_
the same sum of squared errors, etc.), the multi-step predic- (bilinear interactions). In the framework of connectioniot networks,
tions were found to be significantly better: on average, the arbitrary J~ter..,:Jrs twcen laggedinputs rt-k andpastpediction

errors (,-i are modeled by enhancing the usual input with a set of
iterated prediction variances of the network were about half units representing (,_-. Such a network can learn to extract possibly
the iterated prediction variances of the TAR model. This con- nonlinear responses to outside shocks.
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Abstract
2 1

The analysis of complex familial traits requires the com-
putation of likelihoods for complex genetic models on
extended and/or complex pedigrees. This challenge has
defeated conventional computational algorithms, but
the pedigree Gibbs sampler provides an effective method 34 9 101 4

of Monte Carlo evaluation of the required probabilities
and likelihood ratio functions. 3 3

KEY WORDS: Genetic models; Complex pedigrees;
Conditional independence structure. Monte Carlo sum-
mation; Importance sampling; Gibbs sampler;

1 Introduction

The objective is to compute the probability of trait data

observed on some subset of the related members of a
specified pedigree structure, or the probability of un-
derlying genotypic configurations on the pedigree con-
ditional upon trait data, in either case under some spec-
ified genetic model for the trait. Often in the analysis
of complex familial traits the genetic models required Figure 1: An example pedigree; from Thompson (1986).
will be complex, with several genetic and non-genetic
factors contributing to the observed trait. On the other
hand, the pedigrees on which such traits are analysed marriage node graph: an arc joins each individual to his

are not necessarily complex, even when extended pedi- parents' marriage (or mating) and to each of his own

grees of several hundred individuals are used to help marriages. Figure 1 shows a small example pedigree

to ensure genetic homogeneity of the trait in question. in marriage node graph form. The pedigrees on which

However, the pedigrees of genetically isolated popula- we require probabilities and likelihoods are far larger

tions are complex, and in this paper we shall address the and more complex than that of figure 1: one example

question of likelihood computations on complex pedi- is discussed in section 6. A general characteristic of the

grees. By contrast, we shall restrict attention to simple extended complex multi-generation pedigrees of genetic

genetic models, mainly for expository convenience, isolates is that data are available normally only for cur-

For computational purposes a pedigree is most easily rent individuals, the lower fringe of the pedigree, and

specified by giving, for every individual, the unique indi- often not even for all such individuals. Although prob-

vidual identifiers of his/her mother and father. Graphi- lems of graph-theoretic type arise in the development of

cally, a complex pedigree is represented most easily as a algorithms for computations on pedigrees, pedigrees are
not arbitrary graphs. Chronology and marriage prefer-

*Research supported in part by NSF grant BSR-8921839. ences often result in substantial ordering and regularity
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(figure 2). Note that throughout this paper it is assumed for simple Mendelian traits do not provide any addi-
that the pedigree itself is known correctly. tional unknown parameters of the model. However, as

There are two main classes of purpose in computing described below, one of the most important parameters
the probability of trait data observed on a specified pedi- of modern genetic analyses is a segregation parameter.
gree structure under a specified genetic model. The first c) Genes influence traits: For the purposes of this
is where the genetic model for the trait is known. In paper, we assume such influences can be summarised by
this case, of interest are genetic counselling probabili- probabilities Pe(yilGi) where yi is the observed (quali-
ties: probabilities that specified individuals carry genes tative or quantitative) trait value of individual i. Such
that cause them to be at risk of developing a certain probabilities are known as penetrance probabilities, and
disease, or, jointly with a specified partner, have off- their specification may involve unknown parameters.
spring at risk of developing the disease. Related to these We shall subsume all the parameters of the genetic
probabilities are ancestral inference probabilities: pos- model into the parameter vector 0, and use Pe(-) to de-
terior probabilities, given the trait data, that the genes note probabilities under the model. The total set of
now exhibiting effects in current individuals entered the genotypes on a pedigree will be denoted G, and of ob-
pedigree through certain founder individuals, and/or de- served phenotypes y.
scended via certain ancestral paths. The second purpose Many genetic analyses are concerned with linkage
of probability computation is where the genetic model is analysis, the objective being inference of the location
not known, and the probability of trait data under some within the genome of genes controlling a trait of interest,
model is required as the likelihood of that model, to aid by observing cosegregation with DNA markers whose
in likelihood inference of the true genetic model under- position in the genome is known. The recombination
lying the trait. Examples of each of these two classes of frequency between trait genes and genes determining a
problem will be given in section 6. marker trait is the frequency with which genes for the

two traits passed on by an individual, i, to an offspring
derive from the two different parents of i. If the genes

2 Genetic models determining the two traits are located close together in
the genome, this frequency is close to 0, while if they are

The elements of genetic models are straightforward: far apart, or on different chromosomes, the frequency is
genes exist, gencs segregate (are copied) from parents 1/2. Thus the recombination frequency, or linkage pa-

to offspring, and the types of genes carried by an indi- raTete resom0nto 1/2 , n d ine the
vidual influence observable trait characteristics. rameter, r, ranges from 0 to 1/2, and determines the

vidul iflunceobsevabe taitcharcteistcssegregation probability PG(GsIGM,, Gp,), where now the
a) Genes exist: For the simplest genetically deter- sergtopobilyPe( GGF)whenwte
a)m enedtrts, exchidivist:l Fort iestw genel d - genotypes refer to the combined genotypes for both trait

mined traits, each individual carries two genes, which and marker. Estimation of r, or testing of the hypothe-
many be of any of a number of types. The simplest pos- n r ,
sibility is that there are two types, say A and B, and ex2am s a fequen objectiof ga

in this case an individual has three possible combina- example will be given in section 6.

tions of types of genes, or genotypes, AA, AB or BB.
The frequencies, or prior probabilities, for the types of 3 Exact likelihood computation
genes are parameters of the model. Genotypes for an
individual i will be denoted Gi. Individuals whose par- The probability of data observed on the pedigree, com-

ents are not pedigree members, founders, have genotype puted under a specified genetic model, or the likelihood

probabilities Pa(Gi), under a genetic model indexed by of that model, can be written as

parameters 0. L(O) = Pe(y) - P(yIG)P(G) (3.1)
b) Genes segregate: in modern terminology, (

Mendel's first law (1866) states that one of the two G
genes that an individual carries for a trait is a copy For simple genetic models
of a random (equiprobably chosen) one of the two in
his father, the other a copy of a random one of the P0(yIG) = [ Pe(yilGi) (3.2)
two in his mother, and that a random one of the two
he carries will be copied to each child, independently where the penetrance probability is interpreted as unity
for each child. For any individual i with parents Mi for individuals i for whom no trait data are observed,
and F, Mendel's law provides the segregation probabil- and
ities P(GIGM,, GF,). For example, P(Gi = AAIGM, = Pe(G) = U Pe(GIGM,, GF.) (3.3)
AA,G,. = AB) = 1/2. Thus, segregation of the genes
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where Mi and Fi are the parents of i, and for founders it is possible to work through an entire complex pedi-
i the segregation probability is to be interpreted as gree, accomplishing finally the summation (3.1).
the population probability Pa(Gi). Thus neither term This method has proved successful in analysing traits
within the sum (3.1) is difficult to compute. The difi- on a number of large and complex pedigrees, but it is
culty lies only in the summation over all genotypic con- severely bounded in a way that seems unlikely to be
figurations G on the pedigree. much relieved by increased computing capacity. For the

The most successful algorithms previously developed simplest genetic models, an individual has three possi-

for evaluating (3.1) were first described by ltilden ble genotypes; for the simplest linkage model there are

(1970), Elston and Stewart (1971), and Ileuch and Li ten. Where there are k possible genotypes, for a cutset

(1972). The approach was generalised by Cannings, of n individuals, there are k possible genotypic con-

Thompson and Skolnick (1978). In quite other contexts, figurations; the R-function has k' discrete values. Nor

similar approaches have more recently been developed can the problem be resolved by including more indi-

by Lauritzen and Spiegelhalter (1988). The method viduals in each sequential summation; if N cutset and

rests on the conditional independence structure of ge- non-cutset individuals are involved in a given step, there

netic models: given the types of the genes carried by are (at least in principle) kN terms to be considered in

the spouses, parents and offspring of an individual, the the summation. Since 1978 the increase in computing

genotype and data observation on that individual are power has enabled us to extend from the initial pro-

independent of all other data and genotypes in the pedi- grams with cutsets of size 8 (38 = 6561) to cutsets of

gree. This conditional independence, guaranteed by the size 14 (or 13 with double precision; 313 = 1,594,323).
model specifications of section 2, is fundamental also to But large complex pedigrees cannot always be resolved

the Gibbs sampling approach of section 5. with cutsets of size no more than 13, and for a genetic
model with ten genotypes even cutsets of size 8 remainAnother expression of the same fact is that, con- imosbeditional on the types of the genes carried by indi- impossible.

ditinalon he tpesof he gnescaried y i I- For more details of the peeling approach, Cannings,viduals who constitute a cutset, dividing the pedigree Fomon dkaick of the ery, andings
into two or more disjoint components, the trait data ahompson and Skolnick (1978) give the theory, and ex-observed on the each component, and on the cutset, amples are discussed by Thompson (1986). We have
are onthe ndeachndent. nt, usad exame pedi- given here only a sufficient description to demonstrate
are jointly independent. In our small example pedi- the need for other approaches and to provide a basis
gree (figure 1), {31,25,231 is a cutset; conditional on for the discussion of section 7. One later requirement
the cutset genotypes, data observed on the three sets, will be the probabilistic interpretation of an R-function.
{22,24,26,27,28,29,30}, {31,25,23} and the remain- Where the component for which summation has been
der, are independent. The pair f13,21) is also a cutset, W he d he p et Q c on harendividing 43, 4, 14, 15, 19,20) from the remainder of the accomplished (the peeled set, Q) contains no parents
pdigreeing le 1 1 individual (e.g. 12) can be a cutset, of cutset individuals, the interpretation is straightfor-
pedigree. A single iward; each term is simply the probability of data ob-

The conditional independence exhibits itself in served on Q conditional on that particular genotypic
(3.1) through the fact that terms involving mem- configuration on the cutset C. For example, in figure
bers of one component of a pedigree, for example 1, with Q = {22,24,26,27,28,29,30} each term of
(3, 4,14,15,19,201 involve additionally only the rele- R(G3 1 , G25 , G23 ) is the probability of data observed on
vant cutset members-the spouses, parents or offspring Q given the particular configuration of genotypes on
of some member of the component (in this example C = 131,25,23}. Where parents of i E C are in Q, the
{13, 21)). Thus the summation (3.1) can be accom- probability is joint with the relevant genotype of i, and
plished sequentially through the pedigree, considering it is further important to recognise that the R-function
only a few individuals at each stage and producing at incorporates only probabilities resulting from genealog-
each stage a real-valued function defined on the possible ical relationships within Q. Thus
genotypic configurations of a cutset. These functions
were called R-functions by Cannings, Thompson and R(G13 , G2 )
Skolnick (1978). Specifically, summation of all terms in- = prob*(data on {3,4, 14, 15, 19, 20, G13 IG2 1i)
volving individuals 3 and 4 can be accomplished for each (3.4)
genotypic configuration of the cutset f13, 14). Then this where prob* denotes the fact that this probability is
R-function can be incorporated into summation over the computed only on the subpedigree consisting of Q and
possibilities for individuals 14 and 15, producing a new C-that is, it incorporates that 13 is the great aunt of
R-function on 413, 19), and thirdly summation over 19 21's offspring 20, but not that she is also the spouse of
and 20 produces an R-function on f13, 21). In this way 21's father, 12, through whom there is also dependence
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by virtue of any data on their joint descendants 16 and latter question, consider first the form that the estimate
18. Note also that Jtfone parent of a cutset individual is would take. The likelihood (3.1) or (4.2) is also
in Q the other must either be in Q or else in C. GPG)L(9)= (y'IG)~Pe(Gjy" ) (4.4)

4 A Monte Carlo approach G Pp(Gly)
and thence, by Bayes theorem,

An alternative approach to the summation (3.1) is a

Monte Carlo one. Simulation from P6 (G) is straight- L(0) = 1 P(yIG) P (G) P e (y )P e (G ly )  (4.5)
forward, by assigning genes to the founders of the pedi- P9 0(yIG) Ps(G)
gree, with appropriate probabilities, and simulating the G
Mendelian segregation of those genes. A set of At reali- Now Peo(y) is also unknown; again an evaluation equiv-
sations { G(') : i = 1,..., M} provides a simple Monte alent to (3.1) is required. However, by definition, this
Carlo estimate probability is the likelihood L(9o). In likelihood in-

ference, likelihood ratios are sufficient. Thus rewriting
1 Z Pe(yIG(')). (4.1) (4.5) as

L(O) _ Pe(yIG) Pe(G)
However, this estimate is useless on a large or complex L(o) " P 0 (yIG) Pa0 (G)Poo(G y) (4.6)
pedigree, particularly where data are confined to the
lower part of the pedigree. There are huge numbers of we can obtain a Monte Carlo estimate of the likelihood
genotypic configurations on a pedigree. Normally only ratio L(O)/L(Oo),
a minute proportion are even compatible with the data
(give a non-zero value of(3.2)), and even these are likely 1 - P(yJG(i)) Po(G(())
to give negligible contribution to the likelihood (3.1). AT (4.7)

Another proposal was made by K. Lange in Ott
(1979): namely, to rewrite (3.1) as where now the G() are realisations from Peo(Giy).

Moreover, from a single set of realisations at 00 we can
L(O) = Pe(yIG) Pe G) Pao(G) (4.2) obtain estimates of L(O)/L(Oo) for many different values

GP 0 G) of 0.
Note also that if the (0 : 0o) difference lies only in the

and to simulate { G( : i = 1.... M} from Pa0 (G), segregation probabilities, it is not even necessary to be
giving a Monte Carlo estimate able to compute Pe(ylG). If Pe(yJG(W)) = P6o(yJG()),

M Pe(ylG('))____(. (4.7) reduces to M
1 ,,, .(iP(G(0)I aG0

_ = E ((G30) (4.8)

This is likewise not effective on a large pedigree for
Peo(G) will generate realisations even less related to where the data y now enter only through the sampling
Pe(yIG) than does Pe(G), but it contains the seeds of of the GO) from Peo(Gly). Thus, in particular, linkage
two key ideas. The first is that of sampling according to analysis for complex traits is possible (Guo and Thomp-
some other distribution and reweighting the summand son, 1991b); an example is given in section 6.
accordingly-that is, of importance sampling. The sec- The development of this section presupposes the avail-
ond is that by simulation at a single 0o, Monte Carlo ability of realisations from the global posterior condi-
estimates of an entire function L(O) are, in principle, tional distribution of genotypic configurations on the
obtainable. pedigree, conditional on the observed data. The next

Pursuing the idea of importance sampling, what section will complete the picture by describing how the
would be the optimal simulation distribution? Since pedigree Gibbs sampler provides such realisations. Ob-
Pe(yIG)Pe(G) is, as a function of G, proportional taining such realisations we solve also the problem of es-
to Pe(Gly), we require something of similar form to timation of risk probabilities on pedigrees, for such prob-
Pe(Gly), for example P9o(Gly) for some 0o similar to abilities are precisely specified marginals of this condi-
9. Unfortunately, Pe0(Gly) cannot be written down ex- tional distribution. Estimates are thus provided by rel-
plicitly; evaluation is eo--alent to that of (3.1). And ative frequency counts in the realisations. An example
how do we sample from tnis distribution? Deferring the is given in section 6.
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5 The pedigree Gibbs sampler likely to be slow, such as the Hutterite example below,

Thus the remaining task is to obtain the realisations we have used an initial period of 4000 scans. Where the

from Pern(yiG) required for (4.7) above. This can be convergence in distribution of the chain realisations can

achieved by a Gibbs sampler (Hastings, 1970) on the be shown to be faster, as in the linkage example below.

genotypes of the individuals of the pedigree. The Gibbs an initial period of 400 scans suffices.

sampler has recently become widely used in image anal- Thereafter the chain should be sampled at a frequency

ysis (Geman and Geman, 1984), a situation in which that depends on the trade-off between the autocorrela-
tion between successive scans, and the amount of corn-

the global conditional distribution of true image con- tion be pessive with ah amount of com-

ditional on data observations cannot be computed nor putation to be performed with each sampled realisation

directly simulated from, but in which the local condi- (Geyer, this volume). For the lutterite example be-

tionai distributions are easily specified and easy to sim- low, we sample every scan, since we are merely counting
ulate from. This is the situation in pedigree analysis. aspects of each realisation. Nonetheless, long runs will
Although Pei(Gly) cannot be evaluated, still be needed, to ensure the space is well sampled; high

autocorrelation on a large pedigree means that many

Peo(Gily, G.i) = Peo(Gilyi,GN.) (5.1) scans are needed to traverse the space. For the linkage
example, where more computation is needed from each

where G.i denotes the genotypes of all individuals other sample, we sample only every 20 scans. For this par-
than i, and GN, the genotypes on the neighbours N of ticular example, more frequent sampling might well be
i, which, from section 3, comprise his parents, spouses justified, but for likelihood analysis of complex genetic
and offspring. Moreover, the probability (5.1) is propor- models is has been found that such an interval between
tional, as a function of Gi, to the product of penetrance samples may be necessary (Guo and Thompson, 1991a).
probability Po(y, IJGi) and the segregation (or founder)
probabilities for triplets (j, Mj, F) for i = j, and for
i= Mj or F. 6 Two examples

Thus one possible implementation of the Gibbs sam-
pier is as follows: In this section, two examples are given. The first is of

Start from a genotypic configuration on the pedigree the performance of the Gibbs sampler itself, through its
for which Po(Gly) > 0. use in providing posterior probabilit;-s on a 583-member

Take a random permutation of the individuals in the section of the lutterite genealogy. The second example
pedigree. For each individual, according to this per- shows the use of Gibbs sampler realisations in providing
mutation, update Gi in the current configuration G by Monte Carlo estimates of likelihood curves for a genetic
sampling from the local conditional distribution (5.1). linkage model. Each example is only a preliminary so-
We refer to this procedure as one random scan of the lution to the problem it addresses.
pedigree. The Itutterite population is a North American reli-

We now perform repeated random scans, taking a new gious and genetic isolate, now numbering over 25,000
permutation of the pedigree members each time. This but descerdted from only about 77 founders some 10
process defines a Markov chain on the space of genotypic generations ago. Cystic fibrosis, a simple recessive ge-
configurations for which Pe0(Gly) > 0, and Poo(Gly) is netic disease, has a high frequency in this population,
an equilibrium distribution of this Markov ain. Pro- and the ancestry of the haplotypes carrying the cystic
vided the Markov chain is irreducible, the configuration fibrosis (CF) gene is of some interest (Fujiwara et al.,
after successive scans converges in distribution to the 1989). The pedigree of 11 current cystic fibrosis cases is
required global conditional distribution, and dependent shown in figure 2 (see also Fujiwara et al. 1989) these
realisations G() can be obtained by sampling the chain 11 individuals trace to 62 founders. This pedigree of
after a sufficient initial period for the convergence in 583 individuals is far too complex to peel, but is well
distribution to be approximately accomplished, suited to Gibbs sampling. The data consist, of the 11

There are many details of the above procedure not individuals known to carry two copies of the CF gene;
fully detailed here. First a feasible initial configuration additionally, since cystic fibrosis is lethal, no ancestor
must be found; this is usually not hard. Second, the can carry two copies of the CF gene. Here we consider
chain must be irreducible; in general this is a problem, only estimation of the marginal probability that each
but irreducibility does obtain for the examples of this of the 62 founders carries the gene. This is achieved
paper (among many others). Third, decisions rw.. be by running the Gibbs sampler, starting from an initial
made as to the sampling of the chain; here our guidelines configuration in which all ancestors carry one CF gene,
are very preliminary. In cases where the convergence is and ennumerating, after every scan, the founders who
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Figure 3: CF-carrier count Gibbs sampler results for 62
Figure 2: The Hutterite Cystic Fibrosis pedigree. Hutterite founders.

-arry the gene. The excess of carriers is very quickly
liminated from the configuration, particularly when a couples; only one of these shows substantial discrepancy

rounder allele frequency of 0.025 (a typical European between the estimates for the two members, even for the

value) is assumed for the CF gene. single run of only 50,000 scans. Figure 3b shows the his-

The results displayed here are preliminary, and illus- togram of counts for the 62 founders. The three couples

Irative of the method only. We have considered only with CF-carrier probability estimates greater than 0.15
Lhe ancestors of CF cases, and not the information also (30,000/200,000) stand as outliers. Although these re-

provided by many unaffected lateral relatives. Second, suits are preliminary, this is a particularly encouraging

hese 11 cases are not the only identified CF cases in result; there are good population genetic reasons (Fu-

,he Hutterite population. Third, we have not made use jiwara et al., 1989) for assuming that there must have

)f information (Fujiwara et al., 1989) on closely linked been at least 3 original CF genes in this population.

DNA markers. Additionally, we have not made use of Our second example shows the estimation of link-
.he symmetry between members of a founder couple, age likelihood curves from single runs of a Gibbs sam-
)refering to use this as a partial check on the results pier, as described in section 4. The quantitative data
)btained, rather than as a constraint. y were simulated on an extended pedigree of 230 in-

Four runs each of 50,000 sampled random scans were dividuals, according to a complex genetic model (that
)btained, and the count of the number of times each is, Po(yIG) is not as straightforward as described in
)f the 62 founders was exhibited as a CF carrier were section 2, and in fact is not easily evaluated). However,
,abulated. Figure 3a shows a plot of the counts for the feature primarily of interest is linkage with a marker
)ne of the runs against the total for the other three, locus, also simulated, and estimation of the LOD score
;howing broad agreement, but also considerable varia- og 1o(L(r)/L(1/2)) was achieved as in equation (4.8),
.ion. In the 3-run totals couples were generally in good estimating L(r)/L(ro) and L(1/2)/L(ro), where r0 is
tgreement. The 6 extreme points constitute 3 founder the recombination frequency used in running the Gibbs
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Gibbs sampler can often be quite easily implemented
and effectively employed.

There is considerable scope for the combination of
exact computational algorithms with Monte Carlo ap-
proaches; specifically, to combine the Gibbs sampler
and peeling. One such approach has been developed
by Kong (this volume), and permits multilocus linkage

eanalysis, which is another important area of modern ge-
bnetic analysis in which exact computations have proved
o intractable or impossible. Peeling and Gibbs sampling

can also be combined to provide likelihoods for other
complex genetic models. Consider, for example, the
mixed model of statistical genetics, in which there are
both heritable random effects (say z) and the effects
of Mendelian genes (G). While it is pessible to gener-
alise (4.7) and use a Gibbs sampler to obtain realisa-
tions from Pe0(z, Gly), this would not be an effective

0 1 0 0 method of estimation (Thompson and Guo, 1991). In0.0 0.1 0.2 0.3 0.4 0.5
fact, for random effects models on pedigrees Pe(yIG)

recombination frequency, r can be evaluated for any specified major-genotypic con-

figuration G by a rather different form of the peeling

Figure 4: LOD score curves for genetic linkage example. algorithm. That is, for models with both heritable ran-
dom effects and major genotypic effects, (4.7) can be

sampler. The simulation value of the recombination fre- used to estimate likelihood ratios (Thompson and Guo,
quency, r, is 0.1. The maximum likelihood estimate, 1991; Guo and Thompson, 1991a).

under the best fitting complex model within the class A third way of combining the Gibbs sampler and p -el-
considered is 0.04. Two Gibbs sampler runs were there- ing is by dividing the pedigree rather than the m d
fore made; one at the maximum likelihood estimates, On a large complex pedigrec, it will often be the ca.
and the other with all other parameters at the maxi- that some portions can be peeled, providing R-functions
mum likelihood estimates, but with r = 0.1. The two on cutsets, each of several individuals who are members
curves are shown in figure 4. of a core pedigree too complex to be peeled. As a simple

Again, these are preliminary results, but demonstrate example, we might peel the right-hand segment of the
the feasibility of obtaining an entire likelihood curve pedigree of figure 1, providing an R-function on individ-
from a single run of the Gibbs sampler. The similar- uals 13 and 21, but wish to use the Gibbs sampler on
ity of shape of the two curves is encouraging. The small the remainder
discrepancy in height is to be expected, since the curves We wish to combine the R-functions into the Gibbs
are best estimated in the neighbourhood of r0 , and the sampling to provide realisations on the core pedigree
normalisation relative to r = 1/2 will be more uncertain, that are from the posterior distribution of core geno-
In view of this, tbi small magnitude of the difference in types conditional on trait data on the entire pedigree.
the estimated maximum LOD score (the goal of so many In fact the implementation is straightforward, if we re-
applied analyses!), is very encouraging also. call the interpretations of the R-funct ions given by (3.4).

The cutset, C, consists of individuals whose parents are
7 Discussion not in the peeled set, say Cu (e.g. 21), and others with

at least one parent peeled, say Cd (e.g. 13). Let the
There is clearly considerable scope for Monte Carlo peeled set be Q and the remainder of the pedigree T.
methods using the Gibbs sampler to address many ques- For i E C, let, Ki denote the offspring of i in T, and for j
tions of statistical genetics arising in the analysis of in Ki let Sj denote the other parent of j. Normally, Sj is
large and complex pedigrees. Although, where peeling r: relationships through i's spouses in Q are already
is possible, there may be no good reason for resorting to peeled. For individuals in T but not in C, the Gibbs
Monte Carlo estimates, there are many cases where due sampling is unaffected. For cutset individuals, the re-
to the complexity of the pedigree, of the model, or of quired Gibbs sampling of Gi should be conditional on
both, an ,.xact result is unobtainable. In such cases the data yQ and y, and genotypes GT-i, that is in the set,

I Ml i n l l
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T less the individual i. For i in C,: Fujiwara, T. M., Morgan, K., Schwartz, R. H., Doherty,
, R. A., Miller, S. R., Klinger, K., Stanislotovitis, P.,prob (Y,Gc IGcJP IIG, () Stuart N. and Watkins, P. C. (1989) Genealogical
xP(GiGM,, GFK jEKS _ET P(Gu IG, Gsj) analysis of cystic fibrosis families and chromosome 7q

- P(yQ, Gc,, ,yi, GK,[Gc,_i, GM, GF, {Gs }) RFLP haplotypes in the Hutterite Brethren. Am. J.
(x P(GI yQ, G, y', GK, , Gc -, GM,, GF,, {Gs, }) Hum. Genet., 44, 327-337.
= P(GifyQ, yi,GT-i) Geman, S. and Geman, D. (1984) Stochastic relaxation,

and for i in Cd we have similarly, without the segrega- Gibbs distributions, and the Bayesian restoration of
tion from i's parents, images. IEEE Trans. Pattern Anal. Machine Intel).,

prob*(yq, Gc IGc,.)P(yiGi) 6,721-741.

X FJ jEK,,SET P(Gj Gi, Gs) Guo, S-W. and Thompson, E. A. (1991a). Monte-Carlo

= P(yq, Gc,-i, Gyi, GK,IGc., {Gs, }) estimation of mixed models on large and complex
cc P(GIYQ, Gc-., Yi, GK,, Gc., {Gs,}) pedigrees. In preparation.

= P(GiIyQ, yi, GT-i) Guo, S-W and Thompson, E. A. (1991b). Monte-Carlo

Thus Gibbs sampling for members of the cutset involves methods for the linkage analysis of complex genetic

only extracting the currently appropriate term from any traits. In preparation.

R-function on any cutset of which the individual is a Hastings, W. K. (1970) Monte Carlo sampling meth-
member. This is not a final solution; questions of ir- ods using Markov chains and their applications.
reducibility of the Markov chain on the core pedigree Biometrika, 57, 97-109.
arise, and would have to be resolved in any specific ex- Hleuch I. and Li F. M. F. (1972). PEDIG-A computer
ample, just as they must in any case be resolved for any program for calculation of genotype probabilities us-
genetic model. However, given such irreducibility, the ing phenotypic information. Clin. Genet., 3, 501-504.
Gibbs sampler provides realisations for risk assessmentor likelihood evaluation, just as before. Hlilden, J. (1970). GENEX-An algebraic approach to

pedigree probability calculus. Clin. Genet., 1, 319-

Acknowledgement 348.

Lauritzen, S. L. and Spiegelhalter D. J. (1988). Local
I am grateful to former students Charles J. Geyer and computations with probabilities on graphical struc-
Nuala A. Sheehan and to current student Sun Wei Guo. tures and their application to expert systems (with
Discussions with them have been a major contribution Discussion). J.R.S.S. (BI) 50, 157-224.
to the development of this work. The pedigree diagrams Ott, J. (1979). Maximum likelihood likelihood estima-
used software by Alun Thomas and by Charles Geyer. tion by counting methods under polygenic and mixed
The computer programs used to obtain the Hutterite models in human pedigrees. Amer. J. Hum. Genet.,
results in section 6 were based on previous programs by 31 161-175.
Nuala Sheehan. The programming and computing for
the linkage example were done by Sun Wei Guo. Thompson, E. A. (1986) Pedigree Analysis in Human

I am grateful to Ken Morgan for access to the Hut- Genetics. The Johns Hopkins University Press, Bal-
terite pedigree data base, and for many discussions timore, MD.
about the medical genetics of the Hutterite population. Thompson E. A and Guo, S.-W. (1991). Monte Carlo
Thanks also to Ken Morgan and Mary Fujiwara for per- evaluation of likelihood ratios. Submitted
mission to modify, and use for figure 2, the pedigree
graphics file for figure 1 of Fujiwara et al. (1989).

References
Cannings, C., Thompson, E. A., and Skolnick, M. 11.

(1978) Probability functions on complex pedigrees.
Adv. Appl. Prob., 10, 26-61.

Elston, R. C. and Stewart, J. (1971). A general model
for the genetic analysis of pedigree data. Human
Heredity, 21, 523-542.



AD-P007 172 9ling 37911111II 11 lllll l 1l111111l111n1111l

Analysis of Pedigree Data Using Methods Combining Peeling

and Gibbs Sampling
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Abstract izations of the unobserved data (and sometimes param-
eters in a Bayesian setting) conditioned on the observed

Peeling and Gibbs sampling are two computational tools data. When applied to pedigree analysis, the drawn
for genetic pedigree analysis. While both are powerful samples can be used to get estimates of likelihood ratios
methods, each has its limitations. There are problems and, in a Bayesian setting, posterior distributions and
where the application of either one technique alone will posterior odds. A potential weakness of the Gibbs sam-
not lead to satisfactory results. For some of these prob- pler is that the samples it generated can be too highly
lems, we propose methods which combine peeling and correlated so that the resulting Monte Carlo estimates
Gibbs sampling. The key idea is to take full advantage can be very far from the actual values without the user
of the strengths of each method and eliminate the weak- noticing it. For a large class of problems which cannot
nesses. be handled very well by either peeling or Gibbs sampling

KEY WORDS: Pedigree analysis, Peeling, Gibbs sam- alone, we propose combining the two two techniques to
pling, Monte Carlo, Markov chain, Likelihoods, Lod achieve a satisfactory result.
score, Bayesian inference. In section 2 we will give a brief review of peeling and

highlight its limitations. Section 3 gives a brief descrip-
tion of Gibbs sampling and also discusses the problem

1 Introduction of convergence. Section 4 and 5 contain two examples

which illustrate how peeling and Gibbs sampling can be
Peeling is a standard computational tool geneticists used combined. Section 6 has some final remarks.

for pedigree analysis (Elston and Stewart 1971, Lange

and Elston 1975, Cannings et al 1978). While it is a pow-
erful method. there are also limitations. For example, 2 Pedigree Analysis and Peeling
for problems which involve multiple loci or complicated
genetic models with many parameters, simple applica- Pedigree analysis belongs to a class of problems in stat is-
tion of the peeling algorithm can be infeasible or im- tics common known as missing dala problems. Consider
practical due to the limitations of memory and speed of a pedigree with n individuals. For i = 1 .... n. let gi
computations. Another technique, the Gibbs sampler, denote the genotype of person i and y, the observed
which had been used extensively in statistical physics phenotype. Depending on the problem, both gi and yi
and image reconstruction (see Geman and Geman 1984 may involve a single locus or multiple loci on the chro-
and Gelfand and Smith 1990), has recently found it; mosomes. The joint, distribution of the gs's and yi can
way into the genetics literature (Thompson and Wijs usually be written as
man 1990). The Gibbs sampler is an iterative technique
which allows us to draw multiple, but dependent, real- nP

*Research supported in part by NSF grant DMS-89-02667. i=i

Computations for this document were performed using computer
facilities supported in part by the National Science Foundation where 0 is the recombination fraction(s) between loci
under grants DMS 89-05292, DMS 87-03942, DMS 86-01732, and and Y1 is the parameter vector associated with the genetic
DMS 84-04941 awarded to the Department of Statistics at The
University of Chicago, and by The University of Chicago Block model relating yi and gi. (Thompson 1986 is a good
Fund. reference for standard terminology.) When both g and
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y are given, (1), interpreted as a function of 0 and q, the composite (involving all the loci) genotype of an in-
is called the complete data likelihood. However, usually dividual can have is approximately
only y is observed and g is referred to as the missing
data. The likelihood function based on the observed k

data only can be written as 2 mn. (4)
n

'(0, 17; y) = PO,1(y) = [Po(g) 1 P,7 (Y Igi)]. (2) It can be easily seen that even if there is no inbreeding so
s that we only have to handle three people at a time, the

amount of computations required, which is proportional
The sum is over all genotype vectors that are compat- aon fcmuain eurd hc spootoa

The um s oer ll enoype ectrs hatarecomat- to the cube of (4), will quickly exceed our capability as
ible with the observed data. For any fixed values of the nube of loci icses. e roposeit a

0 an rl eah trm n te su istriialto ompte. the number of loci increases. We propose in Section 4 a0 and aq, each term in the sum is trivial to compute. ehdt adetiscaso rbes

However, since in general there will be many genotype method to handle this class of problems.

vectors g which are compatible with the observed data, C. MODELS WITH MANY PARAMETERS. Some-

summing by brute force is computationally infeasible ex- times the genetics models can be very complicated and

cept for very small pedigrees. Let V = 11.,n} and involve many parameters. Even if it is possible to peel

V' = {ilperson i has no parents in the pedigree}, the the pedigree for any given set of parameter values, which

later usually referred to as the set of founders. The sometimes is not the case, this only gives you one point

joint distribution of the gi's has the factorization of the likelihood function defined on a high dimensional
space. It may require many of these point by point eval-

pa(g) = T P(g ) T Pe(glgj,,gmf.) (3) uations for us to get the maximum likelihood estimate
iEV iV and other inference tools such as lod scores (basically

generalized likelihood ratios). This can become imprac-

where fi and mi denote the father and mother of per- tical, if not infeasible, for problems with many parame-
son i respectively. This factorization reflects the fact ters. For problems of this type, peeling has to be coupled
that the genetic material of a person is inherited from with other techniques such as the EM algorithm (Lan-
his/her parents. By taking advantage of (3), for pedi- der and Green 1987) or the Gibbs sampler. An example
grees without loops, peeling breaks down the global sum of the later is presented in Section 5.
(2), which involves the joint outcome space of all the
gi's, into a sequence of local sums, each one involving at
most the genotypes of three persons (two parents and 3 Monte Carlo Approximations
an offspring). The basic idea is to sum out (peel) one
person at a time. Peeling is related to the Kalman filter of Likehood Ratios and Gibbs
and has applications other than genetics (Lauritzen and Sampling
Spiegelhalter 1988).

The method of peeling works very well for many prob- Instead of evaluating likelihoods exactly using methods
lems, but can face difficulties in the following situations: such as peeling, for many problems, it is often ade-

A. PEDIGREES WITH MANY LOOPS. Pedigrees quate if multiple realizations of the unobserved geno-
with many loops due to inbreeding can be found in stud- types can be drawn jointly conditioned on the observed
ies of rare recessive diseases. Loops create problems be- data. For example, as suggested by Thompson and Wi-
cause it complicates the dependencies among relatives. jsman (1990), suppose we can simulate realizations of g
Peeling can still be used, but instead of local computa- from the the conditional distribution
tions involving three people at a time, sometimes com-
putations have to be done on four or more people simul- P9.0, (gfY) (5)
taneously. When there are too many inbreeding loops,
the memory and computations requirements can reach where 00 and 770 are some chosen values of the param-
a stage where peeling is either infeasible or at the least, eters. Let g(t),t = 1,...,T, be T simulated values of
impractical. g. For any other parameter vector (0, 17), the likelihood

B. MULTIPLE LOCI. There are problems in genet- ratio 1(0, ri)/l(9o, i7o) = pe,,(y)/pe0 1 1 0 (y) can be approx-
ics, such as multi-point linkage analysis, where many imated by
linked loci have to be handled simultaneously. Suppose T

we are dealing with loci 1 to k which have respectively I pa,1 (g(t), y)
m, M 2 , mk number of alleles. The number of states T " PO.,.O(g(t)I Y ) "  (6)

• = u m I(6)I I
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This approximation is justified because of the identity A natural way of applying Gibbs sampling to pedi-

P8,7(y) _(grees 
is what I will refer to as person by person Gibbs

= Z Pp, (g,Y) (gly). (7) sampling. In this case, each component of the partition
Po0 (Y) - P60 ,70(g,Y) OO is the composite genotype of an individual. This par-

tition satisfies criterion (1) mainly because each person
Expression (6) is essentially a Monte Carlo estimate is related to all the other people in the pedigree only
based on importance sampling. Note that (6) is easy to through his/her parents, spouse and children. This ap-
compute because each of the complete data likelihoods proach however can run into serious trouble as far as
are suppose to be simple. For other situations where we criterion (II) is concerned. The reason is that, in or-
will like to simulate the missing genotypes conditioned der for the Gibbs sampler to work, the induced Markov
on the observed data, see Kong (1991) and Lange and chain has to be irreducible, i.e. each point in the state
Sobel (1990). If the pedigree can be peeled, the peeling space can be reached from another point through the
algorithm can be modified for the simulations described Markov chain. A sufficient condition for irreducibility is
here (Ploughman and Boehnke 1989, Ott 1989 and Kong the posilivity condition introduced by Besag(1974). Ba-
1991). Now suppose the pedigree cannot be peeled be- sically, positivity means that although the variables are
cause of reasons given in Section 2. Here is where Gibbs dependent in a probabilistic fashion, any joint configu-
sampling comes into play. ration of the variables are logically possible. The later

Gibbs sampling is a very general technique for simu- is clearly violated in our setting because given the geno-
lating joint realizations of dependent variables. The idea types of the parents, some genotypes for the offspring are
is very simple. Suppose there is set of variables which we logically eliminated. Because of this, for general genetic
want to simulate jointly, possibly conditioned on some problems, a naive application of person by person Gibbs
observed data. This set of variables is partitioned into a sampling can fail completely. While there are tricks (see
number of components so that each component consists for example Sheehan and Thomas 1991) which can turn
of one or more variables. We start with some configu- a non-irreducible chain into an irreducible one, the effi-
ration of all the variables which is compatible with the ciencies of such approaches are still in question. More
observed data. Individual components are then visited investigation in this direction is warranted.
based on some systematic or random scheme. When a
component is visited, a realization of it is drawn con-
ditioned on the current configuration of all the other 4 Locus by Locus Gibbs Sam-
components. The iterations set up a stationary Markov
chain whose equilibrium distribution is the same as the pling
joint distribution we want to simulate from. This im-
plies that, after many iterations, which means that each In this section, we consider a multiple loci problem
component has been visited many times, the joint re- where peeling is infeasible. The task here is to simu-
alization of all the components can be considered as a late the unobserved genotypes, jointly for all the loci
draw from the desired distribution (conditioned on the and all the individuals in the pedigree, conditioned on
observed data and given parameter values). A key point the observed data and possibly some fixed values of the
to note is that the Gibbs sampler itself does not specify parameters. Instead of doing person by person Gibbs
exactly how the variables should be partitioned. The sampling, we propose an alternative method which will
later is a decision that the user has to make. There are be called locus by locus Gibbs sampling.
two criteria for choosing an optimal partition: For each locus and each non-founder, we define two

(I) Drawing one component conditioned on the others identity by decent (IBD) variables, one on the mother
is computationally simple. side and one on the father side. Each IBD variable is

(II) The Markov chain induced by the Gibbs sampler binary and indicates whether the allele at a particular
applied to this partition has to converge reasonably fast locus is inherited from the grandfather or grandmother.
to its equilibrium distribution. In a pedigree, the main reason that the genotypes at

It is not difficult to see that (I) and (II) are usually different loci are dependent is because the IBD's are
conflicting criteria. For example, not partitioning the correlated. In particular, for the same individual , two
variables at all and just drawing them jointly is best IBD variables corresponding to a single parent, and two
under (II), but it is in general impossible to implement linked loci are positively correlated. As pointed out. by
and is the reason that the Gibbs sampler was invented Lander and Green (1987) and Kong (1991), under the
in the first place. In general, some compromise has to assumption of no interference, these IBD variables form
be made. a Markov chain. For example, suppose we have five or-
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dered loci A,B,C,D and E, then given the states of the level j of the covariate, 03 is the genetic effect, G is the
IBD variables associated with C, the IBD variables asso- indicator for whether an individual carries the disease
ciated with loci A and B are independent of those IBD allele and the ci's are assumed to be noise which are iid
variables associated with loci D and E. However, even N(0, a 2 ). Following the notations established in Section
if interference is allowed so that the IBD variables do 2, 0 denotes the recombination fraction between the gene
not form a Markov chain, the conditional distribution locus and the marker locus, and ri denotes the vector
of the IBD variables of a particular locus given the IBD (a, 3, 71, 72, a). Here gi denotes the composite genotype
variables of the other loci can still be easily computed. which includes both the gene locus and marker locus.
Noting this key fact, instead of simulating all the com- The observed data yi will include zi, the X's and the
posite genotypes jointly, we can construct a Gibbs sam- single locus genotype of the marker. (For some individ-
pling scheme which simulates the genotypes and IBD uals in the pedigree, even yi may be missing.)
variables one locus at a time. When a locus is "visited", Instead of simply computing likelihoods, we set up a
we draw a sample of its genotypes and IBD variables, Bayesian model where the parameters are also treated
jointly for all individuals, conditioned on the observed as random variables. Standard conjugate priors (Box
data of that locus and the current imputed values of the and Tiao 1973) are assigned to the parameters. This
IBD variables of the other loci. Computationally, each implies that if both the missing data g and the observed
simulation step requires peeling. However, since only a data y are given, the complete data posterior distribu-
single locus is handled each time, peeling is usually pos- tion p(O, r/[g, y) can be obtained in closed form and is
sible. As long as the loci are not right on top of each easy to draw from. With this setup, we do Gibbs sam-
other, it is trivial to show that locus by locus Gibbs sam- piing by iterating between the parameters (0, 1) and the
pling always lead to an irreducible Markov chain. This unobserved genotype vector g. Starting with some ini-
method is similar in spirit to one proposed by Lange and tial configuration g(0) which is compatible with y, we
Sobel (1990), but their approach has the limitation that draw a realization (0(1), 7(l)) of the parameters from the
each locus must have only two alleles. The strength of conditional distribution p(O, i7tg(0), y). We then draw a
our approach is that it does not require no interference, realization g(1) conditioned on (0(1), 1)(1)). In general,
a condition that is crucial for the method proposed by at time t, we draw a sample (O(t), rl(t)) from the condi-
Lander and Green (1987), and has no restrictions on tional distribution
the number of alleles a marker may have. The imple-
mentation of locus by locus Gibbs sampling is currently A0, q/g(t - 1) y) (9)
underway. and then draw a sample g(t) from

5 A Model with Many Parame- p(giy,O(t), 1(t)) (10)

ters Drawing from (9) is simple because of the conjugate
setup. Drawing from (10) requires a modification of

As discussed earlier, for genetic models which have many peeling which was mentioned in Section 3. Based on

parameters, point by point evaluation of likelihoods can the theory described in Section 2, for t large, (O(t), q(t))

be highly inefficient. Here we consider one model of this and g(t) can be considered as draws from the desired

type. Suppose we are doing a linkage analysis with the conditional distributions

gene locus of a quantitative trait and a single marker P(, (Y) (11)
locus. Apart from the genetic effect, suppose there is an

observed categorical covariate with three levels (0,1,2) and
which may also has an effect on the observable trait. p(gly). (12)
Following Bonney et al (1988), we consider a regression
model for the quantitative trait: where (11) is the posterior distribution of the parameters

and (12) is the predictive distribution of the missing data
zi = a + 13G, + y1Xil + 72Xi2 + +Ci. (8) g. Because of that, histograms of the drawn parameter

values can be used as approximations of the posterior
Here z is the quantitative trait, i is the indicator for distribution (11).
individuals, a is the mean for individuals who does not Using a particular pedigree structure (see Kong et al
carry the disease allele and whose covariate belongs to 1991 for details), we simulated one set of data based on
level 0, -1j,j = 1,2, is the difference between level j 0 = 0.005 and (a,3,l,7 2 ,() = (10, 1, 1,2, 1). We then
and level 0, Xijj = 1,2, is the indicator variable for apply the Gibbs sampler to the simulated data. In the
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analysis, flat prior distributions are used for the param- IBD's jointly using peeling. However, for the gene lo-
eters (a,-3, 71, 72, a). For the prior distribution of the cus, we may be forced to apply person by person Gibbs
recombination fraction 0, we use a probabilistic mixture sampling.
of a delta function at 9 = 1/2 and a uniform distri- Computational issues aside, there is also the question
bution between 0 and 1/2. The delta function at 1/2 of statistical inference. Bayesian inference provides an
has weight .957 to reflect the 1 : 22 prior odds against alternative to traditional inference which is based mainly
the marker and disease gene being located on the same on profile likelihoods and lod scores. The relative merits
chromosome. A total of 5000 iterations were run. The of these different approaches warrant further research.
histograms displayed in Figure 1 are constructed based
on the last 4000 samples of the drawn parameter values.
The posterior probability supporting linkage (0 < 1/2) References
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aims at estimating the recombination fraction. In order to

Summary measure recombination between a disease locus and a neutral

Human geneticists have been extremely successful marker locus, there must be an explicit model for the

in the past decade in mapping rare disease genes. For phenotypic expression of the disease locus. Such a model

common diseases with a substantial genetic component, the permits the inference of underlying disease genotypes from

payoff for human health is larger, but the mapping problems observed disease phenotypes. For rare Mendelian diseases,

are harder. There is a need for robust statistical techniques the model is usually clear, and linkage analysis has proved

that require minimal assumptions about the mode of to be an extremely powerful tool for mapping these diseases

inheritance of the disease studied. The affected-pedigree- (e.g., Kerem et al. 1989; Riordan et al. 1989: Rommens et

member (APM) of linkage analysis makes virtually no al. 1989).

assumptions about disease transmission except that it is For more complex, common diseases such as

independent of marker transmission in a pedigree. We schizophrenia (Weeks et al. 1990), no one knows the correct

discuss here an extension of the APM method from single genetic model. This quandary is hardly resolved by selecting

markers to multiple closely linked markers. This extension a simple model inconsistent with the known pedigree data.

should improve the power of the APM method to detect In fact, if the genetic model is misspecified, then this may

linkage, mask the evidence for linkage (Baron 1990; Clerget-Darpoux
et al. 1990; Martinez et al. 1989; Weeks et al. 1990a). For

Introduction example, Figure 1 displays a pedigree in which the

Chromosomes are not passed intact from generation unaffected daughter is almost certainly a recombinant under

to generation. During the formation of gametes (eggs and an incorrect model but more likely a nonrecombinant under

sperm), homologous chromosomes align and recombine, the correct model. Incorrect inferences about recombination

This produces gamete chromosomes that alternate between events are disastrous for Iod scores.

maternal and paternal sources. The further apart two loci In the current paper we present an alternative to

are, the more likely it is that recombination will occur computing lod scores under questionable models. The APM

between them. Recombination has the effect of separating method, which uses all the affected individuals in a pedigree,

an allele at one locus from an allele at the second locus. The was preceded and inspired by the earlier affected-sib-pair

frequency of this reshuffling, whether directly observable or methods, which used only affected siblings (Day and Simons

not in the offspring of a parent, is termed the recombination 1976; de Vries et al. 1976: Fishman et al. 1978. Green and

fraction between the loci. Conventional linkage analysis Woodrow 1977; Haseman and Elston 1972; Lange 1986a;
Lange 1986b; Lange and Weeks 1990; Penrose 1935; Suarez

§ This work supported in part by: the University of and Hodge 1979; Suarez c al. 1978: Thomson and Bodmer

California, Los Angeles; Harvard University; the University 1977; Weeks and Lange 1988: Weeks and Lange 1991).

of Pittsburgh; and USPHS grant CA 16042. These methods are motivated by the fact that affected
individuals will tend to be alike at markers closely linked to
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a disease locus. Marker similarity between unaffected between two common alleles is less striking than a match
individuals is less predictable and is therefore ignored. The between two rare alleles. Thus, we modify our measure of
APM method seeks to answer in a model-free way the marker similarity so that each match in state contributes a
simple question: Are the affected individuals more similar fourth times f(p), where f is a weighting function of the
than expected by chance at the marker locus (or at a group of marker allele frequency p. For example, if f(p)= 1/p and the
markers closely linked to each other)? To answer this allele frequencies of allele A and allele B are 0.10 and 0.90,
question, we need a measure of marker similarity among the respectively, then two individuals i and j who are both A/B
affecteds of a pedigree and some idea of the statistical at the marker locus would have a similarity measure Zij =
distribution of the measure. (1/4)(10) + (1/4)(1.11) = 2.78. Since the magnitude of this

similarity measure is meaningless by itself, we now turn
our attention to the calculation of the mean and variance of

Ztj under the null hypothesis of independent segregation of

disease and markers.
Dsease locus

Marker locus Table 1: Possible values of the unweighted similarity
statistic ZiJ for a pair of affected individuals.

Marker Genotypes

r r r r r A/A A/A I
a A/B A/A 1/2

A/B A/B 1/2

t~ .lTDieae ocsA/B AC1/
t t t T Second A/B C/D 0Ill I1 11 Disease locus

Mean of the similarity measure
Figure 1: If a single-locus recessive model is postulated. First, let us rewrite the similarity measure as

then at least one recombination event must be invoked to t itnl expett

explain the sib phenotypes. If a two-locus doubly recessive t e U i aere no

model is postulated, then the sib phenotypes are consistent ZiJ = E Uij I marker genotypes of i and j (1)

with no recombination. Note that parental phases are, in To define the random variable Uij appearing on the right of
fact, unknown. (1), imagine sampling random gametes from i and j. If the

two sampled gametes bear the same allele ar at the current
A similarity measure marker locus, then set Uij = f(Pr)" where pr is the population

We will first discuss how to define marker frequency of ar. If the two alleles do not match in state, set

similarity at a single marker locus. One natural measure of Uij = 0. As a consequence of (I), E(Zij) = E(Uij).
marker similarity is simply to count the number of matches To better understand the random variable Ui, it is
of marker alleles between two affected individuals i and j, helpful to introduce the notion of identity-by-descent. Two
letting each match contribute a fourth to the statistic Zij genes are identical-by-descent if one is a copy of the other or
(Table 1). In other words, we look at the identity-by-state they are both copies of the same ancestral gene. Identity-by-
status of the marker alleles. Two alleles are identical-by- descent obviously implies identity-by-state, but not
state if they are the same allele, regardless of ancestral conversely. It is quite easy to calculate the probability that
origin. Note that our measure ignores the common sense a gene drawn at random from one person is identical-by-
notion that, given two distantly related affecteds, a match descent to a gene at the same locus drawn at random from

another person. This probability 4)ij, known as the kinship
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oefficient, depends only on the relationship between the 1Wt
wo individuals i and j, i.e., on the graphical structure of the T t

weigree connecting them. Yt(rt- 1)
The mean of Uj may be calculated by conditioning

)n the identity-by-descent status of the alleles being The statistic T is asymptotically standard normal, provided

:ompared. If the alleles are identical-by-descent (with the number of pedigrees is large. A one-sided test based on
,robability Oij), then Uij takes on the value f(Pr) with the observed T is appropriate since linkage acts to increase

robability Pr- If the alleles are not identical-by-descent marker sharing among affecteds.

,with probability I-Oij), then Uij takes on the value f(Pr)
with probability P since the two alleles enter the pedigree Extension to multiple marker loci
Afi and j independently. These considerations lead to As marker maps of the human genome become

E(Zi) =iXprf(Pr) + (l.ij)ypf(pr). denser, investigators are more likely to type disease

r r pedigrees at several closely linked marker loci. A set of

closely linked markers might, collectively, provide a moreWe define the similarity measure Z for a pedigree to

be the sum of the similarity measures Z between all accurate measure of marker similarity than any one marker
alone. Thus, we have extended the APM method to usepossible affected pairs. In other words,

Z = Zij. simultaneously information from several marker loci (Lange

i<j and Weeks 1990). For clarity, we will consider only two

The expectation of Z is simply the sum of the expectations marker loci A and B below. The results easily generalize to

of the Zij's. To calculate the variance of Z, it is necessary several marker loci. The most obvious definition of

to compute terms such as E(ZijZkl), involving up to four similarity at several marker loci is to take the sum of the

distinct individuals. Fortunately. E(ZijZkl) may be individual marker similarities. That is, for marker loci A

calculated by a conditioning approach very similar to that and B,

used to calculate the mean of Zij. Instead of conditioning on N = Z i + Z

whether two genes are identical-by-descent, we now

condition on the identity-by-descent relationships among the For a pedigree, we then define
Z i A + '1 Z

genes drawn from the four individuals i, j. k, and 1. The Z 2 ij = j+ j
probability of each of the 15 possible identity-by-descent i<j i<j i<j

partitions of these four genes can be easily calculated using zA + ZB"

the generalized kinship coefficients of Karigl (1981; 1982). T ma + eBd
as extended by Weeks and Lange (1988). In short, it is The mean is easily computed as

possible to calculate exactly the theoretical mean and E(Z t vaZac p e dfueibut the variance poses more difficulties since
variance of the similarity measure Z for any pedigree. We Var(Z) = Var(ZA) + Var(ZB) + 2 Cov( ZA , ZB).

then standardize Z by subtracting off its mean. dividing by Because of the single locus results it suffices to compute

its standard deviation, and weighting by 4r-l, where r is the Cov(ZAZB) = E(ZAZB) - E(ZA)E(ZB).

number of affected individuals in the pedigree: Notice that since

W =-! Z- E(Z)

For several pedigrees, we form a grand APM

statistic T with mean zero and variance I by dividing the A B

sum of the standardized measures Wt from each pedigree t by we must evaluate terms such as E(Zij Zkm).

the appropriate sum of weights: A As before.

Z = E[uA I marker genotypes of i and j].
B B

and similarly for Zkm and Ukm.

.... ~ ~ ~ ~ ~ k km*m,,...,i unmunmnmn
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Since U A and U are conditionally independent given the and kurtosis of the APM statistic increase, as the influence
marker genotypes of i, j. k, and m, of allele frequency increases. Figure 2 provides a histogram

km -- E UB I marker genotypes1 of the APM statistic for the intermediate weight f(p)=
[ik jk of ij, k, and m]' irfP.

Thu B B ifuB 1 Table 2: Application of the single locus and multilocus
Thus, E(Z mkm) = U jk • APM statistics to simulated tuberous sclerosis data: 0

The only way in which UA and UB can influence 0.0296 between the flankin markers.
Function Ml M2 Multilocus

one another is for identity-by-descent sharing at one locus to (P-value)
increase the chance of identity-by-descent sharing at the other f(p)= 1 2.99356 -0.01646 2.27595
locus. Thus, we can compute the expectation E[UiU km] by (0.0114)
conditioning on the combined identity-by-descent states of f(p) = I/.p 2.22309 1.13318 2.26211
the i and j sampled gametes at locus A and the k and m (0.0118)

sampled gametes at locus B. The probabilities of the four f(p) = I/p 0.22274 1.83509 1.62172
1_ _ (0. 0524)

possible combined identity-by-descent states can be found
using the two-locus kinship coefficients of Thompson Table 3: Simulation results for the multilocus test statistic,
(1988). For details, see Weeks and Lange (1991). based on 5,000 trials.

Function Mean Skewnessa Empirical
Application to Simulated Data (Variance) (Kurtosisa) P-value

Using the simulation program SLINK (Ott 1989; f(p) = 1 0.01390 0.17897 0.01620
Weeks et al. 1990b), we simulated two markers flanking the (0.99221) (-0.05648)

tuberous sclerosis disease locus, conditional on the structure f(p) = 1 0.01232 025233 0.01840
_______(1.00957) (0.20503) _____

and affection status of the nine tuberous sclerosis pedigrees f(p) = l/p -0.00577 1. 05786 0 06280

from Janssen et al. (1990). The recombination fraction _ _ (1.00060) (2.38970)
between the left marker MI (3 alleles, heterozygosity = aFor 5,000 trials, a skewness of 0.057 is significant at the
0.53) and the disease locus was taken as 0.01, and the 0.05 level, a skewness of 0.081 is significant at the 0.01
recombination fraction between the right marker M2 (4 level. A kurtosis of 0.114 is significant at the 0.05 level,
alleles, heterozygosity = 0.65) ana .e disease locus was and a kurtosis of 0.161 is significant at the 0.01 level.
taken as 0.02. While the maximum multipoint lod score
using marker data on the affecteds alone was only about Upper Fifth Upper First
0.90, the APM method detected significant linkage (Table Function Percentileb Percentileb

2). When the intermediate weighting function f(p) = 1/4p f(p) = 1 1.711 2.448

is used, the multilocus statistic is slightly more significant f(P) = l/ ,p 1.714 2.622

than either of the single locus statistics. In the two f(p)= I/p 1.754 3.073

examples given in Weeks and Lange (1991), the superiority bThese are empirical percentiles. For a standard normal

of the multilocus statistic is much more evident, variate, the theoretical upper fifth and first percentiles are

In order to investigate the distribution of the 1.645 and 2.326.

multilocus APM statistic under the null hypothesis of no
linkage, we simulated the segregation of the two markers
MI and M2, independently of disease status. Assuming no
interference, the recombination fraction between the markers

is 0.0296. Table 3 summarizes results for the multilocus
APM statistics. As we observed previously with the single
locus statistic (Weeks and Lange 1988). the tails. skewness,
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I. INTRODUCTION possible using such a method (in fact, for any j there are at
In 1965, A.W.F. Edwards and L.L. Cavalli-Sforza most (n-1) of them).

introduced a method for cluster analysis based on a recursive
partitioning strategy over a minimum-variance clustering 2. The "Goodness-of-Split" Criterion
criterion. Although this method has been called "intuitively Of course, some measure of the effectiveness of a split is
appealing", it was dismissed by Gower (1967) and others needed in order to choose one of these p(n-1) (at most)
because of its computational infeasibility. It has been partitions as best. As in the original Edwards & Cavalli-
suggested on numerous occasions that some computationally Sforza algorithm, the minimum-variance criterion was
efficient method be found to search an intelligently-chosen selected. Although this measure can be somewhat sensitive to
subset of the set of all possible partitions for a (hopefully) outliers, it has been tested by a number of researchers and
near-optimal solution. In this paper, one such method is shown to be effective in a wide range of clustering situations
introduced which borrows from the Clagsification (Blashfield 1976, Milligan 1983).
Rgeession Trees (CART) classification paradigm of More explicitly, from the standard set of splits generated
Breiman, Friedman, Olshen and Stone (1984). as above, the "optimal" split is chosen to be that which

maximizes the quantity
II. THE CLUSTERING ALGORITHM
1. Building the Clustering Tree VAR (S) - [VAR (S1 ) + VAR (S2)]

Consider a set S of n observations in p variables and
represent any arbitrary observation by the vector x = (x1, x2 ,
.... xp). As a first step, we would like to partition this set of After the best split has been selected the algorithm
n p-dimensional vectors into two subsets based !olely on the proceeds recursively, splitting S1 and S2 , then the best splits
observations given. The method used by this algorithm is an of these subsets, and so on.

application of the standard split found in the CART
classification scheme. In order to define the splitting rules, we 3. Finding the "Optimal" Subtree
generate all sets of the form Certainly, if we allow the partitioning process to continue

to completion, we will have an overspecification of the data
j c}, j = .... p. structure, with each terminal node of the clustering tree

containing a very few data points. A method must be found,
therefore, to select the subtree of this complete tree that most

Geometrically, sets of this type are regions bounded by accurately represents the gross structural characteristics of
(n-I)-dimensional hyperplanes parallel to the co-ordinate the data. This problem is exactly the "number of clusters"
axes which are selectively passed through n-space precisely question that has been addressed repeatedly in the literature
in the center (with respect to variable j) of every pair of data since the mid-1960s. Although no general analytic method
points. Each of these hyperplanes will specify a partition of S has yet been found, a number of statistical or heuristic
into two new sets, S, and S2. stopping rules have been employed with varying degrees of

The cs can be easily determined by sorting the j th success (see Milligan 1985 for a comprehensive review and
component of all the observations, then selecting values analysis).
halfway between each successive pair of x j s. In this fashion, As a hierarchical clustering method, recursive
the algorithm is guaranteed to create the least number of partitioning is amenable to the application of many of these
hyperplanes that will still produce every partition of S stopping rules. Following a thorough search of the literature
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and testing on constructed data sets, two such rules were Of course, the performance of the Duda-Hart rule will be
found that seem to perform quite well in tandem with the directly related to the agreement of the data with the
recursive partitioning algorithm. These stopping rules are due underlying assumptions of normality and form of the
to Calinski & Harabasz and Duda & Hart. covariance matrix, and therefore some care should be

The approach of Calinski and Harabasz is to find that exercised when using it with data with a wildly asymmetric
clustering of the data which maximizes the Variance Ratio or otherwise unusual distribution.
Criterion (VRC) These two stopping rules were also found to work well in

concert with each other. Although use of the Duda-Hart rule
V BGSS WGSS does require specification of the control parameter a, this

VRC = (k- 1) /n -k requirement makes it useful for interactive examination of the
stability of clustering solutions. In addition, the Duda-Hart

criterion is able to test the one-cluster hypothesis while the
where BGSS and WGSS are the between- and within-cluster Calinski-Harabasz VRC is not.
sums of squares, n is the number of data points in the set, and
k is the number of clusters in the current partition. This IlI. ALGORITHM PERFORMANCE
method was implemented by ordering all splits in the
clustering tree according to the splitting criterion and 1. Experimental Design and Data Generation

computing the VRC for all subtrees of the complete tree In order to analyze the performance of this algorithm and
created by recursively pruning away the lowest-rated compare it with other clustering methods, a series of Monte
remaining split. The subtree with the maximum VRC is then Carlo tests were undertaken. The structure of these tests
selected to represent the optimal clustering of the data. followed very closely that used by Milligan (1983, 1985).

The method of Duda and Hart is statistical in nature, and Data sets containing 50 points each were generated in
is applied during the initial "growing" of the clustering tree. accordance with a structured experimental design. The design
The best split at each node (as defined in Section 11.2) is was defined by three factors: number of clusters,
examined and the ratio dimensionality of the data, and distribution of data points

across clusters. The number of clusters in each data set ranged
Je (2) from two to five and each set was embedded in either four, six,

or eight dimensions. In order to ensure testing over disparate
Je (1) cluster sizes, the distribution of points across clusters was

varied according to the following schemes : Type A - points
where 4¢(1) is the WGSS of the node prior to the split and evenly distributed across clusters; Type B - 60% of points in
Je(2 ) is the WGSS over the pair of subsets resulting from the one cluster; or Type C - 10% of points in one cluster.
application of the split, is used as a test of the null hypothesis The experimental design thus contained 36 cells, each of
that the initial set of samples was drawn from a normal which were replicated three times for a total of 108 data sets.
population with mean a and covariance matrix b21 . A rough The method of cluster generation was chosen to produce
estimate of the sampling distribution of the Je s may be the characteristics of internal cohesion and external isolation
formulated, yielding the final test: Reject the null hypothesis noted (Milligan 1983, Everitt 1980) as being indicative of
(i.e., split the node) at the p-percent level of significance if natural cluster structure. In order to satisfy the internal

cohesion requirement, all clusters were composed of points

Je (2) 2 2 (1 - 8/ (n 2d)) drawn from truncated (at 1.5 standard deviations)
< - - - -multivariate normal distributions with standard deviations on

e (1d nd each dimension chosen randomly from the range (0.25, 2.00).
To ensure external isolation, clusters were not allowed to
overlap in the first dimension; in fact, the separation between

where d is the dimensionality of the data, n is the number of the means of two adjacent clusters in this dimension was
data points in the node, and a is determined as usual by defined by a function of the form u (a, + 02 ), where a1, and

Ca2 were the standard deviations (in the first dimension) of the

p= 100 e- (1/2) u'du two clusters, and u was a constant drawn from a uniform (1.75
f -_ , 2.25) distribution. The positions of cluster centers in the
a -' 2irremaining dimensions were selected randomly from within a

range 2/3 as large as that of the first dimension, so cluster
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overlap was possible and frequently did occur in these means, with overall recovery means of 0.987, 0.986, 0.985,
dimensions. 0.955 and 0.909 respectively. There were strong similarity in

This method of cluster generation, when shaped by the the recovery means for RPCLUS, complete linkage and

factors comprising the experimental design, produced a body group average across almost all factors. The notable
of data containing a wide variety of cluster shapes, sizes, and exceptions were the five-cluster and Type C distribution
relative orientations that was felt to be a fair test of an results, where RPCLUS paid the price for its minimum-
algorithm's ability to discern true cluster structure, variance characteristic of seeking evenly-sized partitions.

However, even these differences were quite small; in fact, it
2. Results ! - Recovery of Cluster Membership was often one misclustered point that accounted for the

Each of the 108 data sets was analyzed for cluster discrepancies in the corrected Rand means.
structure with five different algorithms: single linkage,
complete linkage, group average, k-means, and the author's 3. Results H - Number of Clusters

implementation of the algorithm described in the previous Testing was also undertaken in order to measure the
section (henceforth called RPCLUS). For the k-means accuracy of the two stopping rules described in Section 11.3
method, an average of results from three different runs was when used as constraints on the recursive partitioning
used for each data set, with a random ordering of the data for algorithm. The same 108 data sets were used and for each of
each run. The output of each of the methods was examined at these sets a record was kept of the number of clusters
the level of the correct number of clusters and this output was indicated by each of the two rules. Overall, the Calinski-
compared to the (known) true structure of the data by the use Harabasz rule exactly determined the number of clusters
of the corrected Rand statistic (Rand 1971, Milligan 1983). present in 91 data sets (84.2%), while it was within one
This measure of similarity is defined as cluster in either direction 105 times (97.2%). In the case of

the Duda-Hart rule, experimentation revealed that optimum
performance was obtained when a was set to 3.00

2 _ (2N 2  2 (corresponding to a 99.865% level of significance), and using
YEN 1 .N J /N this value the statistical rule produced the correct number of

R- 2 /N 2  clusters 90 times (83.3%) and was within one cluster in 103
. J .. of the data sets (95.4%). Clearly both rules, when used in

conjunction with the recursive partitioning algorithm,
provide reliable information as to the number of clusters

where NU1 is the number of data points placed in cluster i by present in data with true cluster structure.

the algorithm that are in clusterj of the actual solution, Ni. and IV. ADVANTAGES
Nj are the marginal totals and N is the total number of data
points. Monte Carlo testing thus has shown this new algorithm to

The corrected Rand index assumes a value of 1.00 when be equivalent in performance to commonly-used techniques
such as complete-linkage and the group average method.

the two clusterings are in total agreement. Its lower bound
depends on the actual partition of the data, but is usually 0.00 Why then should we be interested in another cluster analysis
depvendsloghetl parow.Tiinofte data, buthsn fotool? Two reasons are readily apparent. First, cluster analysisor very slightly below. This index was chosen for reasons isuhannectsecehtitaneeruttoava

made clear in other studies (Milligan 1983): its high is Such an inexact science that it can never hurt to have amadecler inothr stdie (M~iga 193): ts igh number of different approaches to use when beginning the

variability as compared to similar measures, as well as its

consistency across different cluster scenarios. On the advice analysis of a set of data. This is important because each type

of such studies, a second index (Jaccard) was also used to of algorithm is best suited to certain types of data. For
evaluate the clusterings, but as it was in complete agreement example, the linkage methods used above are not likely to be
with the corrected Rand statistic in regards to the relative effective for less spatially separated data, due to their
performance of the algorithms, it was not felt necessary to tendency to string together adjacent clusters. Also, being a
include those values in the current report. divisive method, RPCLUS would tend to yield different

include thoe va in the urenuts ofthe compresults from the agglomerative algorithms, results that may be

A table summarizing the results of the complete Mot more accurate at recognizing low-level cluster structure
Carlo testing with respect to each of the three design factors because the algorithm has had fewer steps in which to make
(number of clusters, dimensionality, and point distribution) is irreversible mistakes. Another important consideration is that
available from the author. For the data in this study, the RPCLUS lends itself to very efficient implementation. The
complete linkage, RPCLUS and group average methods construction of standard splits boils down to a sorting
were clearly in a separate class from single linkage and k- operation which can be done very cheaply, and in addition,
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the algorithm seems to be a natural for parallel processing. for cluster analysis. Communications in Statistics,
Other hierarchical clustering methods require comparisons 3, 1-27.
across all data points at each step. RPCLUS, due to its Duda, R.O. & Hart, P.E. (1973). Pattern Classification
recursive partitioning strategy, needs only to keep track of one and Scene Analysis. New York: Wiley.
portion of the data at a time and a parallel machine can readily Edwards, A.W.F. & Cavalli-Sforza, L.L. (1965). A
farm out parts of the work to subsets of its computational method for cluster analysis. Biometrics, 21, 362-
resources. 375.

Everitt, B.S. (1980). Cluster Analysis (2nd ed.). Wiley
V. SUMMARY : New York.

A new algorithm for cluster analysis has been introduced Gower, J.C. (1967). A comparison of some methods

which draws both from earlier clustering efforts and recent of cluster analysis. Biometrics, 23, 623-637.

techniques developed for use in classification problems. The Harding, E.F. (1967). The number of partitions of a set
algorithm makes good intuitive sense and has been shown in of N points in k dimensions induced by
Monte Carlo tests to perform equally as well as many other hyperplanes. Proceedings of the Edinburgh
methods used frequently in multivariate data analysis both for Mathematical Society, 15, 285-289.
the recovery of cluster membership and for determining the Kaufman, L. & Rousseeuw, P.J. (1990). Finding
number of clusters in a data set. Just as important, the Groups in Data : An Introduction to Cluster
analyses produced by this method are representable in a Analysis. Wiley: New York.
simple format that makes understanding of data structure Milligan, G.W. & Cooper, M.C. (1985). An
easy and intuitive. In addition to its value as an alternative examination of procedures for determining the
tool for the data analyst, this new algorithm also possesses number of clusters in a data set. Psychometrika,
computational advantages over some other popular methods 50, 159-179.
that may make it more suitable for parallel implementations Milligan, G.W. & Isaac, P.D. (1980). The validation of
on very large data sets. four ultrametric clustering algorithms. Pattern

Recognition, 12, 41-50.
TECHNICAL NOTE : All data sets were created Milligan,G.W., Soon, S.C. & Sokol, L.M. (1983). The

using random number generation routines contained in the effect of cluster size, dimensionality, and the
S-PLUS data analysis software package (Statistical Sciences, number of clusters on recovery of true cluster
Inc. - P.O. Box 85625 - Seattle, WA 98145). The complete structure. IEEE Transactions on Pattern Analysis
linkage, single linkage and group average calculations were and Machine Intelligence, 5, 40-47.
performed with subroutines also found in the S-PLUS Mojena, R. (1977). Hierarchical grouping methods
package. K-means tests were run using software developed and stopping rules: An evaluation. The Computer
under DoD contract at Los Alamos National Laboratories. Journal, 20, 359-363.
Recursive partitioning was done using an implementation Rand, W.M. (1971). Objective criteria for the
developed by the author. evaluation of clustering methods. Journal of the
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Improving Classification Trees with Simulated Annealing

Clifton D. Sutton*
George Mason University

Abstract sets. Successive splits can be similarly made until it is
Classification trees produced by a recursive partitioning deemed that any further partitioning of X could not pos-

scheme such as CART are not guaranteed to be the best sibly result in a more accurate classifier. At each step,
tree structured classifiers possible, partly because the the selection of the splitting hyperplane results from an
sequential manner by which they are formed does not attempt to minimize overall tree impurity.
allow for "looking ahead". In some cases, altering trees It is clear that after I - I splits have been made, the
produced by CART by shifting the partition boundaries measurement space, as well as the learning sample, has
results in improved prediction rules. Simulated anneal- been separated into I disjoint sets. Letting A,, . . ., A1
ing can be used to efficiently search for trees which may be the subsets making up the partition of X, these sets
perform better than those produced by CART. can be used in the following way to construct a classifier.

Introduction If the value of (Z1,. ., K) for an object to be classified
belongs to the set A, then the predicted class for this ob-

In the general classification problem, it is known that ject is the dominant class of the members of the learning
each case in a sample belongs to one of a finite num- sample which belong to A,. That is, once the measure-
ber of possible classes, and given a set of measurements ment space has been partitioned into sets A 1 ,... , A,, a
for a case, it is desired to correctly predict to which classifier can be created by using a simple plurality rule
class the case belongs. A classifier is a rule which as- to determine a mapping from {A1,..., Al} to C.
signs a predicted class membership based on a set of One of the crucial issues that is addressed by the
related measurements, X1 , T2 , -, X. Taking the mea- CART method is the decision of how finely X should
surement space X to be the set of all possible values of be partitioned into a collection of disjoint subsets, since
(XI,.. - , XK), and letting C ={Jc1, C2.... ,ej } be the set too few or too many subsets will result in a loss of class
of possible classes, a classifier is just a function with do- prediction accuracy. On one hand, if too small ofa tree is
main X and range C. It is normally desirable to use past chosen, not all of the information present in the learning
experience as a basis for making new predictions, and so sample will be fully utilized. Thus, the misclassification
it follows that classifiers are usually constructed from a rate will be higher than the rate for a larger tree having
learning sample consisting of cases for which the correct a finer partitioning of X. On the other hand, if a tree has
class membership is known in addition to the associated too many terminal nodes, it may be "paying too muchvalue Ofn (Xrin, noes it may be"pyigtovalues of ( r, • a e ae Z). attention " to the specific features of the learning sample

Tree structured classifiers are constructed by making and may not accurately reflect the structure of the larger
repetitive splits of X and the subsequently created sub- population from which the sample was taken. Although
sets of X so that a hierarchical structure is formed, and the resubstitution misclassification rate decreases as the
a plurality rule can be used to assign a predicted class complexity of the tree increases, it is not necessarily true
to each final subdivision of X. The CART method of that the probability of misclassification becomes smaller.
Breiman et a]. [2] creates binary tree structured classi- For instance, it is possible that a tree with a large enough
fiers by recursively partitioning the measurement space number of nodes can have a resubstitution misclassifica-
X into disjoint subsets Al, A 2,.•., Al as follows. The tion rate of zero, but such a tree may do a very poor job
measurement space X is first divided into two disjoint of predicting class membership for new observations.
sets by splitting it along a hyperplane. Next, one of the CART carefully selects a good value for the number of
sets obtained from the first split is cut with a second hy- sets in the partition of X using either cross validation or
perplane, resulting in the division of X into three disjoint the test sample method. To do this, CART first "grows"

a tree having too many sets in the partition and then
*The author gratefully acknowledges support from NSF Grant

DMS-9002237. He would also like to thank Sarah Rosenblum, R. successively "prunes" this tree by recombining subsets
Duane King, and Kelly J. Buchanan for their assistance. of X that were previously split until the right sized tree
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is obtained, using either cross validation or a test sample each split defined using the same variables that CART
(which is a subset of the original learning sample that is used, but possibly different locations for the cutting hy-
not used to construct the tree, but is solely used to assess perplanes. For example, if the first decision point in the
the accuracy of the various candidates) to select the best CART produced tree happens to be "Is X2 < 98.6?",
classifier from the sequence of candidates encountered, then only trees having an initial decision of the form "Is
In other words, CART is a stepwise procedure which X2 < Y?" will be considered as possible candidates for
initially considers all of the variables present and creates improvement. Although limiting the search for a better
a tree which is too complex. Then, the choice of which tree to the set of trees having the same general struc-
variable splits will be used in the final tree is based upon ture as the CART produced tree decreases the size of
the tree encountered in the pruning process which has the candidate pool from the number that would result
the smallest estimated misclassification rate. if all partitions having the same number of sets as the

Even though the CART method carefully selects the CART partition were considered, for large data sets it

right sized tree, the classifier obtained isn't necessarily may still be infeasible to do an exhaustive search for the

the best classification tree possible. This is partly due to best such partition of X.

the fact that CART employs a "greedy" algorithm which As an alternative to a brute force search, one could
prescribes a sequence of stepwise optimal moves and does begin with CART's tree and then gradually shift the lo-
not allow for "looking ahead" in order to examine the ef- cations of the partition boundaries in order to search
fects that a current decision will have on the ability to for an improved tree. One way to do this would be to
create subsequent splits leading to a good classification randomly shift the locations of the partition boundaries
rule. This means that if the CART method yields a and then determine if the new partitioning of X reduces
classification rule based on a partition of X having four the resubstitution misclassification rate. If so, then the
sets, then that rule is the best one that can be obtained associated rule can be adopted as the best rule so far.
by CART's recursive partitioning and pruning scheme, If the random shifting does not yield improvement, then
but it is not necessarily the globally optimal solution the new partition can be discarded and another attempt
if all ways of partitioning X into four sets are consid- at shifting the boundaries can be done starting from the
ered. That is, CART's reliance on a descent algorithm same configuration as before. Repeated attempts to de-
employing a sequential decision process which doesn't crease the resubstitution misclassification rate by shift-
allow for "looking ahead" results in the fact that the ing the partition boundaries belonging to the best rule
classification rule that it produces may not be the best so far may result in iterative improvement.
tree structured classifier possible. However, it should be Using Simulated Annealing
noted that if the CART method is altered to allow it An undesirable feature )f the preceding scheme is that
to consider one or more succedent moves at each step, it may yield a solution which is locally optimal without
then the required computation time would be vastly in- being globally optimal as well. That is, the overall best
creased, making this way of altering CART to search for partition (having the same general form as the CART
improved tree structured rules not very practical. produced partition) may be separated from the initial

A procedure that could use CART's output to search CART partition by a "ridge", and it may not be possible
for an improved tree structured rule would be to let to reach the globally optimal tree from the initial tree if
CART's tree stipulate how many subsets the partition only downhill moves are allowed.
of X should include, and then do an exhaustive search Simulated annealing is an iterative method of opti-
for the best classification rule amongst all sensible par- mization which makes use of a random number genera-
titions having that same number of subsets. However, tor. If the method of simulated annealing is combined
unless the learning sample is rather small and simple with the idea of randomly shifting the partition bound-
there can be far too many competitors to examine, and aries to search for a better tree, then it may be possible
the required computation time could be excessive, to avoid getting stuck at a solution which is only locally

Another way to possibly improve a classification tree optimal. This is due to the fact that simulated anneal-
that is produced by a recursive method such as CART is ing allows for an occasi,,nal uphill move. It is hoped that
to shift the locations of the partition boundaries while re- if the parameters associated with a simulated annealing
taining the overall nested partitioned structure resulting algorithm are properly selected, then successive random
from the recursive partitioning algorithm. For instance, pertubations of the partition boundaries will eventually
if CART produces a tree having X partitioned into four result in a classification tree which may perform better
subsets, then one could search for a better tree from than the CART tree.
among the class of four subset partitions of X that have The general scheme for the basic version of simulated
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annealing employed for this project can be described in decreasing sequence of positive real values T 1, T 2 , T3 ,.
the following way. At the start of each new iteration, the The temperature T is kept constant while a sequence
current configuration of a system is slightly altered in a of L trial configurations are considered. Then T is de-
random way to obtain a neighboring trial configuration. creased by multiplying its value by the cooling ratio r
If the trial configuration is better than the current con- (T+, = rT), and L additional iterations are done with
figuration (the configuration that existed at the start of the resulting lower temperature. This procedure contin-
the iteration step prior to the random altering), then the ues until it is deemed that significant further improve-
trial configuration is automatically accepted and taken ment is unlikely, at which point the process is terminated
to be the current configuration for the next step. How- according to an appropriate stopping rule. It is hoped
ever, if the trial configuration is not better than the cur- that when the process reaches the "frozen state" (the
rent configuration for the iteration step, then the trial point at which the temperature is not lowered and no
configuration is neither automatically accepted nor re- additional shifts are tried), the current solution is close
jected as being the new current configuration for the to being globally optimal.
next iteration step. Instead, a pseudo random number In summary, the temperature is a control parame-
generator will be used to randomly decide whether or not ter which determines the likelihood of uphill moves be-
to accept the uphill move. The probability with which a ing accepted. At the start of the annealing process,
less favorable configuration is accepted depends upon a the temperature is high so that hopefully enough uphill
couple of factors: the degree to which the trial configu- moves will be made so that the configuration will not be
ration is worse and the position of the iteration step in trapped at a local minimum. As the annealing process
the whole sequence of steps which make up the anneal- continues, the temperature is lowered so that the series
ing process. The more unfavorable a trial configuration of trial configurations can move more efficiently towards
is, the less likely it is to be accepted. Also, a less fa- a final configuration having low energy. In many appli-
vorable configuration is more likely to be accepted in an cations of the simulated annealing algorithm, key" issues
uphill move if it occurs near the beginning of the anneal- are the determination of good choices for the initial tem-
ing process than it would if it occurs after the process perature T 1, the temperature length L, and the cooling
has been run through many iterations. If an uphill move ratio r, along with developing a good method with which
is rejected, then the current configuration remains the to randomly shift to new trial configurations.
same for the next iteration. In the classification tree problem, the members of the

The simulated annealing approach was originally de- learning sample can play the role of the N particles, and
veloped by Metropolis et al. [5] as a way of minimizing E can be the resubstitution estimate of the misclassifi-
complex energy functions associated with N particle sys- cation rate, which is just the proportion of the learning

tems, and both the general scheme and the associated sample that would be misclassified by the classification
terminology are related to statistical mechanics and the tree. It should be noted that while the resubstitution es-
behavior of N particle systems which are acted upon by timate of the misclassification rate is not a good criteria
a heat bath. Although the approach has been success- to use in the selection of the right sized tree, there seems

fully applied to many problems having little to do with to be nothing wrong with minimizing the resubstitution
physics (see (1, 3, 4]), it is common practice to retain estimate of the misclassification rate when an attempt is
the physicists' terminology of energy and temperature. made to find the best tree structured classification rule

Basically, the energy E is some function of an N particle from among all those having the same number of subsets

system that one desires to minimize, and the tempera- in the partition of X and the same nested structure of
ture T is a control parameter that effects the probability partition subsets.

e
-

6E/T of an uphill move being accepted. Here AE is Description of the Experiment
the increase in the energy function associated with the A waveform recognition problem due to Breinman et al.
uphill shift under consideration. [2] is employed as a test bed for the improvement scheme.

It is common practice to lower the temperature (thus The data was constructed using random number gener-
decreasing the probabilities of accepting uphill moves) ators so that a sufficiently large amount of independent
as the annealing process continues. As typically imple- observations could be made available for a satisfactory
mented, this "cooling" is carried out using two additional assessment of the performance of the simulated anneal-
parameters, the temperature length L and the cooling ing technique.
ratio r, along with the temperature T. Here L is a fixed The data points used are 21-dimensional vectors of the
positive integer, r is a fixed real number belonging to form x, = (,,i, ,,2, .. x,, 2 1 ). Each data point. con-
(0, 1), and T is a variable parameter which takes on a sists of a random convex combination of two fixed wave-
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forms, to which Gaussian noise has been added. The to be examined. For each of the thirteen classification
fixed waveforms used were selected from a, b, and c, trees considered, numerous variations of the simulated
where annealing technique were investigated. One source of

variation was due to using different values for tht cool-
a (0, 1,2,3,4,5,6,5,4,3,2,1,0,0,0,0,0,0,0,0,0), ing schedule control parameters TI, L, and r. Values

tried for T, were 0.000625, 0.00125, 0.0025, and 0.005.
b (0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,5,4,3,2,1,0), The cooling ratio r was assigned the values 0.25, 0.5,

and 0.75, and 0.875, and 100, 150, and 200 were used for the
temperature length L.

c (0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0). Various methods for obtaining trial configurations

were also considered. One way to produce a trial con-
Data points belonging to Class 1 are of the form figuration from the current one is to shift only a single

xI Z ua + (1 - ui)b + ej, where u is a uniform (0,1) boundary of the partition. Alternatively, more than one
random deviate and ej = (ei, 1 , ej, 2, • •. , ei, 21) is a vector partition boundary could be shifted to create a new tree.
of observed values for 21 i.i.d. Gaussian random vari- Both the single shift approach and the multiple shifts ap-
ables. Similarly, data points belonging to Class 2 are of proach were investigated. With the single shift method,
the form x, = ua + (1 -ui)c + ej, and members of Class a boundary is randomly selected to be moved, and each
3 are of the form x, = uib + (1 - ui)c + e,. time a shift is to be made, each boundary in the tree is

The task of identifying the proper class associated given an equal chance of being selected. Alternatively,
with one of the random vectors described above is made for every perturbation in the multiple shifts scheme, each
difficult due to two primary reasons. First, whenever ui boundary is shifted with probability 0.5, independent of
is close to either 0 or 1, it is not easy to distinguish be- what occurs with the other boundaries. If no boundaries
tween two possible classes. For instance, a Class 1 vector are selected for movement, additional attempts are made
with u, close to 0 may look very much like a Class 3 ob- until at least one boundary shift occurs.
servation having u, close to 1 - the general shape of Another issue connected with the shifting procedure
both will resemble waveform b. The identification of the concerns the magnitude of the shifts. If it is decided
correct class is further hindered by the additive Gaussian that a boundary will be shifted, the shift could be slight
noise. It should be noted that the standard deviation as- so that only a small number of data points fall into a
sociated with the noise is rather large compared to the node different from the one that they were in previously,
average magnitude of the waveform coordinates. or the size of the shift could be much larger so that an

A total of twenty data sets consisting of 300 waveforms appreciable proportion of the data points change their
each were generated. The class for each observation node membership.
was randomly selected, with the three possible classes
all having the same likelihood of being chosen. CART In the algorithm used to perform the annealing, a pa-
was then applied to construct tree structured classifiers. rameter K is used to specify the greatest number of data
Both the Gini and the twoing splitting criteria were used points that can change node membership when a bound-
with each data set, and so altogether CART was used ary shift is performed. When a boundary is selected to
to produce forty classification trees. In all cases, linear be shifted, the direction of the shift is first determined
combination splits using more than one variable were dis- and then the number of points to change node member-
allowed. By using only single variable splits, all of the ship is randomly chosen from {1, 2,..., K}. Values tried
decisions associated with the tree structured rules are of for K were 5, 10, 20, and 30.
the form "Is x,, j < y?". This restriction on tree forma- Another option that was explored deals with the ini-
tion greatly simplified the programming of the annealing tial configuration for the annealing process. The use of
algorithm, and also led to decreased running times. CART's tree as a starting point was investigated, as was

The number of nodes in the classification trees pro- using a randomly selected configuration having the same
duced by CART ranged from 3 to 17. Since the level general structure as the CART partitioning.
of difficulty of writing a program to perform the simu- A very basic version of the general simulated anneal-
lated annealing improvement scheme increases with the ing algorithm was used in order to attempt to produce
complexity of the tree, it was decided to only investigate more accurate classification rules. It was hoped that
the performance of the method on tree structured rules shifting the boundary locations to configurations hay-
possessing three, four, or five nodes. ing a lower resubstitution misclassification rates would

Of the fifteen trees having five or fewer nodes, some produce tree structured rules for which the misclassi-
were identical, and there were only thirteen distinct trees fication rates would be lower when new, independent
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data was applied, and this led to using the resubsti- scheme, eight annealing trials were performed (and so
tution misclassification rate as the energy function to for each tree, a total of 6144 attempts were made to
be minimized. That is, the energy was taken to be minimize the resubstitution misclassification rate using
E = (no. obs. misclassified)/300. simulated annealing). Each of the eight trials used differ-

A geometric cooling schedule having fixed length was ent seeds for the pseudo random number generator, and

employed. This means that the temperature levels in the so the trials did not always result in the same tree config-

sequence T1 , T 2 , T3 ,... were related through the equality uration at the frozen state. Each trial was performed on

T+1 = rT, and a fixed number, L, of trial configura- a different node of the Hypercube, and the results from

tions were considered at each temperature level in the each of the eight trials were then sent to a host program

sequence. The stopping rule utilized was as follows: the where they were compared and summarized.

annealing process was terminated whenever none of the Results
L trial configurations generated at a given temperature A vast amount of computer time was required in order to
level resulted in an accepted shift and a new value of E. carry out the experiment. Some jobs in which 6144 an-

The following description is a short summary of the nealing trials were performed on a single tree took nearly
algorithm. At each temperature level encountered, L half a day to complete. After all of the runs were made,
trial configurations are generated by shifting one or more the results from this experiment were closely examined
partition boundaries. For each trial configuration, the to determine which combination of parameter values and
energy E (which is just the resubstitution misclassifica- which of the four variations of the annealing algorithm
tion rate) is determined. If E is reduced, the shift is performed best. Also, the degree of improvement was
accepted and another trial configuration is obtained by assessed for the new trees produced.
jiggling the boundaries of this newly accepted partition. The algorithm performance results will now be sum-
If E is not lower for a trial configuration, then the con- marized by first considering each of the four variations
figuration is accepted in an uphill move with probability of the annealing algorithm separately. For the varia-
e- AE/T and rejected otherwise. Here AE is the increase tion which has the annealing process beginning with ran-
in energy associated with the trial configuration, and T domly chosen boundary locations and allows for only a
is the current temperature. If a trial configuration is not single boundary to be shifted with each random per-
accepted, then the next trial configuration is obtained turbation, it turned out that for each tree the overall
starting from the same tree that was altered previously; minimum misclassification rate was obtained on at least
and a new random perturbation of the boundaries is pro- one trial for numerous combinations of parameter values.
duced. If one or more of the trial configurations at a However, the following set of parameter values seemed
given temperature T results in an accepted shift with a to work best overall: T = 0.005, r = 0.875, L = 150,
change in E, then the temperature T is lowered to rT, and K = 20.
and L additional trial configurations are produced. Oth- The second annealing scheme investigated in the
erwise, the process is terminated and the current config- search for optimal algorithm performance also used the
uration is taken to be the classification rule. single shift approach, but instead of a randomly chosen

The search for improved classification rules was pur- initial configuration, the CART boundaries were taken
sued by applying the simulated annealing algorithm to to be the starting point at which the annealing process
the trees formed from the waveform data. The previ- began. For each tree, the minimum resubstitution mis-
ously specified values of T, (0.000625, 0.00125, 0.0025, classification rate obtained was exactly the same as it
and 0.005), r (0.25, 0.5, 0.75, and 0.875), L (100, 150, was for the "random start" variation. As before, nu-
and 200), and K (5, 10, 20, and 30) were used in the merous combinations of parameter values resulted in the
annealing process. Every possible combination of these minimum misclassification rate, but with this variation
parameter values was tried, making a total of 192 com- the following values were found to be most favorable: T
binations for each tree. Also, four different variations 0.00125, r = 0.875, L = 200, and K = 10.
of the annealing algorithm (random start/single shift, It can be noted that the best value for r is the same
CART start/single shift, random start/multiple shifts, as it is for the "random start" scheme, but the optimiz-
and CART start/multiple shifts) were tried with each ing values for K, L, and T are slightly different. With
combination of parameter values. So, in all, 768 distinct the "CART start" variation, it seems to be better to use
ways of doing the annealing were tried with each tree. smaller values for K and T1. These smaller values will

The annealing algorithm was implemented by running lead to more moderate perturbations of the boundaries,
C programs on an Intel Hypercube concurrent computer. as well as allow for fewer uphill moves. The result is a
For each tree and each distinct case of the annealing more controlled cooling, for which the energy function
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decreases steadily towards a lower value. With the "ran- value for K is 10), it can be noted that the optimal value
doa start" method, for which the starting point could of K is smaller in this CART start/multiple shifts vari-
be quite far from the optimal solution, a larger value ation. This observation serves to reinforce the tentative
for T prevented the process from being stopped at a lo- conclusion reached earlier concerning the desirability of
cal minimum (which might be far from the overall min- constraining the overall size of the maximum configura-
imum) by producing greater probabilities of escape via tion shift.
uphill moves. Also, a larger value for K allows for wilder To summarize, numerous ways of performing the sim-
movement of the boundaries, which seems appropriate if ulated annealing resulted in the same minimum resubsti-
the starting points for the boundaries can be far from tution misclassification rate for each tree, and so it ap-
the minimizing locations. pears that the technique is rather robust. However, with

The overall performance of the two single shift varia- the randomly chosen starting points, the minimum rate
tions differed little. Both schemes reached the same min- is achieved with slightly greater frequency. On the other
imum value for the resubstitution misclassification rates, hand, with the CART starting points it generally took
and with the parameters set favorably, both schemes considerably less time to reach the minimum misclassifi-
reached the minimum value with high frequency. How- cation rate. Whether the "random start" or the "CART
ever, the "CART start" variation was quicker for each start" method was utilized, the single shift method per-
tree examined, typically reducing the average number formed a little better.
of perturbations required to reach the frozen state by a It seems that for all four variations a more gradual
factor of about two or three. cooling, which results from a larger value of r, is supe-

For the third variation of the annealing scheme, the rior to using a small value for r and obtaining a quicker
single shift procedure is replaced by the multiple shifts cooling. Furthermore, with each of the four variations
procedure, and a randomly selected initial point is em- it was found that the performance deteriorated when-
ployed. With regard to the best overall choice of pa- ever T1 was made too small. A small value of T, de-
rameters, this case leads to the selection of T1 = 0.005, creases the probability of uphill moves, and this resulted
r = 0.875, L = 200, and K = 10. In all of the cases, the in a greater likelihood of the solutions being trapped at
minimum value found was the same as it is for the other local minimums. It can also be observed that when a
two schemes. randomly selected starting point is used instead of the

Comparing the set of parameters which worked best CART solution starting point, T1 and K should be cho-
for this random start/multiple shifts scheme with the sen to be larger in order to allow for a wilder shifting
set that worked best for the random start/single shift of the boundaries before the cooling severely limits the
scheme, it can be seen that T1 and r are the same, but chance of escaping from local minimums. Also, it can be
the values for L and K differ. When only a single shift noted that the multiple shifts variations work better for
is made for each perturbation, the best choice for K smaller values of K than those which are preferred with
is 20, which can produce rather large boundary shifts. the single shift variations. This leads one to conclude
When multiple shifts are allowed, a smaller K works that it is best to limit the overall amount of shifting al-
better. This observation may lead one to the tentative lowed. This notion is additionally supported by the fact
conclusion that the overall amount of shifting should not that none of the four cases worked best when K was
be allowed to be too large. set as 30. To conclude these remarks concerning the pa-

The final case is similar to the previous one in that it rameter values, it should be stated that the experiment
involves multiple shifts of boundaries, but instead of the performed has not ruled out the possibility that the per-
randomly chosen starting boundaries, the CART tree is formance could be improved by using larger values for r
used as a starting point. This final case resulted in the and L. Unfortunately, larger values for r and L would
the same minimum misclassification rates and yielded require longer running times for the annealing programs.
T, = 0.0025, r = 0.75, L = 200, and K = 5 as the best The simulated annealing process produced new classi-
combination of parameter values. Overall, this variation fication trees by randomly shifting partition boundaries
did not work quite as well as the other three. until the resubstitution misclassification rate seemed to

The lower initial temperature and the smaller value be lowered as much as possible. In each of the thir-
of K will result in a more controlled cooling than that teen cases examined, the annealing experiment produced
which occurs with the larger parameter values of the ran- more than one tree having the lowest misclassification
dom start/multiple shifts case (where T, = 0.005 and K rate. In order to assess the typical amount of improve-
= 10 worked best). When a comparison is made with ment due to the application of the algorithm to CART
the CART start/single shift variation (for which the best produced trees for this setting, it was decided to examine
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the performance of the tree which was most frequently plication of the simulated annealing method is beneficial
produced by the annealing process in each case. for the waveform data, and that if the resubstitution mis-

For eleven of the thirteen cases considered, the resub- classification rate is decreased then the true misclassifica-
stitution misclassfication rate for the classification tree tion rate may be slightly decreased. Of course, it could
produced by the annealing algorithm was lower than be argued that the typical amount of improvement is
the resubstitution misclassification rate for the original somewhat negligible since, on the average, the annealed
CART produced tree, and for the other two cases the trees were observed to do only a little better than the
resubstitution misclassification rate was the same as it original CART trees. However, the small amounts of
was for the CART rule. However, just because the re- improvement could be largely attributed to the fact that
substitution misclassification rate is typically reduced by the CART trees actually do a pretty good job with this
the annealed trees, it is not necessarily true that the an- data, and there simply wasn't a lot of room for improve-
nealed trees are realiy more accurate. In order to assess ment. In fact, when a brute force search for the lowest
the amount of improvement produced by the annealing resubstitution misclassification rate was performed for
procedure, the true misclassification rates of the result- all of the three and four node trees (with the searches
ing trees can be estimated using test samples consisting limited to the class of trees having the same general stru-
of observations which are independent of the observa- ture as the CART trees), in each case it was determined
tions that were used to create the trees. The accuracy that the annealing process reached the minimum rate
of the CART produced trees can be assessed using the possible. Furthermore, it was found that the minimum
same test samples, and then the estimated misclassifica- resubstitution misclassification rate was obtained by an-
tion rates can be compared. nealing much more quickly than by an exhaustive search

Recalling that a total of twenty data sets of 300 obser- - for the four node trees the average time required for a
vatins achwereoriinaly gnertedin te sme ay, brute force search was greater than the time required forvations each were originally generated in the same way,

it is clear that test samples of independent observations a set of eight annealing trials by a factor of ab t 650
can be produced in the following manner. To assess the (and for five node trees the difference would be much
accuracy of trees produced from a given data set, the larger). All in all, the results of this simulated anneal-
observations in all of the other nineteen data sets can ing experiment can be taken as encouragement that the

be combined to serve as a test sample. By doing this, method may be an efficient way to obtain improved tree

test samples for each tree would consist of 5,700 obser- structured classifiers in situations where CART leaves
vations, none of which were used in the construction of some room for improvement.
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A Stratification Option for Regression Trees

Michael LeBlanc *
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Abstract (CART) algorithm of Breiman, Friedman, Olshen and
Stone (1984) (BFOS).

A simple modification of the Classification and Regres- After choosing a tree of about the right size there can
sion Tree (CART) algorithm of Breiman, Friedman, 01- be a simplification of the description by further combin-
shen and Stone (1984) that yields K-group stratifications ing nodes that are close in terms of response and/or in
is presented. Such stratifications can be useful for de- the covariate space. These nodes need not be adjacent
scribing patient prognosis. in the presented tree structure. In terms of studying a

patients outcome, this recombination of many possible

1 Introduction terminal nodes could lead to a few descriptive classes,
say "good prognosis" , "fair prognosis", and "poor prog-

Classification and regression trees have found applica- nosis." Such prognostic stratifications can also be useful

tions in many fields including, pattern recognition, artifi- the development of staging schemes that can be used

cial intelligence and medicine. Trees have several advan- in the development of new clinical trials. The problem

tages compared to classical methods; they are completely of development of prognostic stratification rules was the

non-parametric and include powerful variable subset se- motivation for the technique presented here.

lection; they are robust to outliers in the covariate space Below I outline a variation of the CART regression al-

and are easily used on a wide variety of data structures. gorithm that recombines of possibly non-adjacent nodes,

In addition, they yield results that can be expressed as a to yield a tree based stratification:
binary decision tree that allows fast prediction and that
is often easily interpreted. For applications in medicine 1. A tree is constructed and cost-complexity pruning

it is the decision tree representation that is probably the is used, as in CART algorithm, to find the sequence

greatest attraction to clinicians. The results are con- of optimally pruned subtrees for any penalty a.

sistent with how some medical researchers think about 2. For each optimally pruned subtree a locally opti-
certain problems, which can lead to easier interpretation mal 2,3,4,5,... group recombination of the nodes is
and communication of statistical results. found by a K-means type clustering algorithm.

Tree-based regression models are constructed by re-
cursively partitioning the data and the covariate space 3. The whole process is cross-validated as in CART.
into groups that minimize some measure of impurity, for Therefore, the choice of number of strata can also
instance residual sum of squares for continuous response be based on an estimate of prediction that is not
data or binomial deviance for binary response data. The overly optimistic.
partitioning typically continues until there are only a few
observations in each group and the binary tree represent- The use of K-means like clustering to construct lo-
ing the partitioning is large; this is done to avoid missing cally optimal K-ary splits of nominal covariates was in-
structure.

Whicture s mvestigated by Chou (1989). In addition, he proposes
While tree-based methods have been available since the development of "compound nodes" by using the ter-

Morgan and Sonquist (1963), advances in the method- minal nodes of a tree to define a class variable. The
ology including not limiting the tree growth and using algorithm presented here implements such a clustering
an optimal pruning algorithm with cross-validated esti- scheme among all optimally pruned subtrees with the

mates of prediction error to choose the size of the tree

were introduced in the Classification and Regression Tree goal of finding good tree-based stratifications. Another
ereintroded iteCasftoatree-based stratification technique was implemented by
*Research supported by the NSERC of Canada Ciampi et. al (1988) for survival data.
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2 Growing Trees An optimally pruned subtree for any penalty a of the
tree initially grown is 7T1 if

The data are assumed to consist of a vector of obser-

vations (yi,xi) i = 1, ... , N observed from (Y,X) where Ra(TI) =in Ra,(T'),

Y is the the response and X is a vector of covariates
X = (X1 ,X. ....... X). where " -< means "is a subtree of", and it is the small-

Tree growing procedures recursively split the data and est optimally pruned subtree if T1 - T" for every opti-
the covariate space into two groups. Splits are chosen mally pruned subtree, T". Let T(a) denote the smallest
based on the reduction in the impurity of a node or on optimally pruned subtree of T for complexity parameter
a measure of dissimilarity in response between nodes, a.
Define impurity at a node as the expected loss There is an efficient algorithm for obtaining T(a) for

any a called the cost complexity pruning algorithm.
i(t) = E[L(Y, p(t))It], It consists of finding the sequence of optimally pruned

where p(t) minimizes the loss for node t. Let the ex- subtrees by tcpeatly removing branches for which the

pected cost a node t be average reduction in impurity per split. in the tree is
small. The process yields a nested sequence of subtrees

RT(t) = .(t)P() Tm -.< ... -< T -< T- 1 ... -. < T, -< To , where Tm is the root

where P(t) is the probability of falling into node t; an node, and the sequence thresholds oc > a,, > ... > al >
estimate of R*(t) is a1 -I > ... > a 2 > a, > 0, such that for the optimally

pruned subtree T(o) = T(o) = T for al < a < o1+1

R(t) = J L(Y, pj(t))dFN (BFOS).

where B, is the region corresponding to node t, , is 3 K-ary Stratification
the empirical distribution function and where frequently
the loss functions L(Yp) = ('1 _ )2 and L(Y, p) = A tree-based K-ary stratification will be defined to be a
Y log(p) - (1 - Y) log(1 - M) used for continuous and bi- special case of the tree based model described in Section
nomial data respectively. Here, I follow Clark and Preg- 2. That is we have a partition function 7(x) = t as before
ibon (1991) and Ciampi et al. (1987) in the use of the but now there is also the comstraint that the decision rule
likelihood function for tree-based models. v(.) must have only K values, where K is smaller than

Tree growing procedures calculate the reduction in im- the number of terminal nodes. The tree-based regression
purity at all possible splits and choose a split that maxi- model is then reduced to a piece-wise constant model
mizes the reduction. The splitting conti,ues until a large with only K different, prediction values.
tree has been grown with only a few observations in each One strategy is to find the best K-ary stratification
node. The entire partitioning process is usually repre- among all subtrees of tree T. This scheme would by very
sented by a tree T. Let t denote the terminal nodes of computationally demanding because of the extremely
tree T. large number of possible bubtrees of even a moderate

A tree-based regression model can be expressed in size tree. The proposed algorithm restricts the search to
terms of a partition function r(x) = t if x E Bt where finding locally optimal recombinations of optimal trees
Bf corresponds to a terminal region, and a decision rule obtained from the cost-complexity pruning algorithm. I
v(t) = t where Ah is an estimate corresponding to denote the K-ary stratification of the optimally pruned
that terminal node. Alternatively, the model can be ex- subtree for parameter a by SK(T(a)). Note that some
pressed by step function regression function stratification of a sub-optimal tree may ptrform better.

Chou (1989) showed that a necessary condition for
U(x)= ZuI{Z E B,1. any K-ary partition A0...,AK..L, A = {It .. t -} to

(0 minimize the average impurity

In the CART algorithm, the cost-complexity measure K-i

R,,(T) = ZR(t) + ITI, = E i(s)P(s.)
k=O

is that t E Ak only if k = argmind(t,p(sk)) or if P(t) =
where a is non-negative complexity )arameter and R(t) 0, where sk = {t E Ak } and where d is the divergeuice
is the estimated cost of node t defined above, is used to
assess the performance of a tree based model. d(t,i) = E[L(Y, jit)] - E[L(Y,p(t)Ii)],
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which measures the increase in expected loss when p normal distribution. The sample size was N = 250. Fig-
is used to represent Y instead of p(t). This in general ure 2 summarizes the estimated relative prediction errors
takes the problem of finding a optimal K-ary partition for the unstratified tree and 2,3,4 and 5 group stratifica-
to polynomial time in N, O(NK). However, even with a tions for each optimally pruned subtree. Relative predic-
moderate number of terminal nodes a fast approximate tion is the ratio of the prediction error to the null model
algorithm is useful. A K-means like clustering will be prediction error. While it is clear in this situation that
used as Chou (1989); the algorithm will always converge, the 2, 3 and 4 group stratifications yield increased pre-
but. may only lead to a local optimum. diction error the 5 group stratification yields estimated

Below is an outline of the K-means algorithm that prediction errors almost as small as the unstratified re-
is applied to each optimally pruned subtree, TI, sub- gression. However, in this example the stratification does
scripts indicating validation sample, and pruned subtree not yield much simplification since the unstratified tree
are omitted to simplify the description, that minimizes the cross-validated estimate of prediction

error has 7 terminal nodes.
I. Pick some initial partition So = (.40 ... , 4 For

example order the "mean"s for each node and divid-
ing them up into K groups of approximately equal
size. - unstrat

size.2-group
0- 3-group

2. Calculate the centroids, P0, ..., PK-I where 4-group
S. . 5-group

i'=argmin d(t,Ilk)

3. Update the partition, S' - = (A..AV-) let I ?.

SeA if , .

k arg min d(t, pi)

Steps 2 and 3 are repeated until convergence of the 5 1 15 20 25 30 35

partition. The algorithm yields a sequence of locally nodes
optimal K-ary stratifications SK(T(a)) for complexity
parameter a, _< a < +,> 1.

Figure 1: Example 1 - Cross-validated estimates of
relative prediction error for the unstratified tree and

4 Examples 2,3,4 and 5 group stratifications.

In this section I explore the stratification option and
compare it to unstratified tree-based models on two sim-
ulated data sets. In both cases 10-fold cross-validation Five hundred observations were generated from the
was used to calculate estimates of prediction error. The model
algorithms were implemented by modifying the tree-
based tools of Clark and Pregibon (1991) in the S- Binomial(n = 1,p(xi) = exp(f(xi))/(1 + exp(f(xi)))
programming Language. where th function

4.1 Simple Regression f(\) = -2sign{x 1 > .5} + 2sign{x-, > .5}

The regression function f(x) = 2+ 2x, + 2X2 + 2x3 was -2sign{X3 > .5} + 2sign{X 4 > .5.}
used for this example. The response values were gener- The (xl, 2 ,X 3,x 4 ) were generated from the Uniform
ated as

(0, 1) distribution. In this model the conditional prob-
Yt = f(x,) + (i ability of success given x has only five different val-

ues. However, the the best fitting un '*ratified tree-based
where the (X I, z, X3) were generated from the Uniform model has 13 nodes (with sufficient data one would ex-
(0, 1) distribution and ci were generated from a standard pect a tree with 16 nodes, each node corresponding to
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an area of constant success probability). Figure 2 shows
that either the 3 or 4 group stratifications at tree sizes of
12 and 13 nodes perform similarly (slightly smaller esti-
mated prediction error) for the unstratified tree with 12
terminal nodes. The 3-group stratification is presented
in Figure 3. Note, Figure 2 also shows that for trees
much larger than the optimal size the 2 and 3 group .
stratification perform better than the full unstratified
trees.

The technique has also been applied data on prognosis
after heart attacks. The data set analyzed included 1780
subjects collected by the Specialized Center for Research
on Ischemic Heart Disease at the University of Califor- °
nia, San Diego. A subset of this data set was analyzed ii II I
in BFOS. The unstratified tree that minimizes the cross-
validated estimate of weighted deviance had eight termi-
nal nodes with a relative deviance of .883. However, the F9
stratified tree with oniy 3 prognostic strata has similar I
relative deviance of .889. The analysis is presented in
LeBlanc (1991, unpublished manuscript).

Figure3: Example 3 - 3-ary stratification tree. The
number of observations and success probability for the
unstratified tree are given below each node.
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Abstract document-term space. This query vector is a weighted

A long standing problem in information retrieval is how to average Of the term vectors used in the query. Documents
in the collection are ranked by the closeness (measured by

treat queries that are best answered by two or more distinct the colin r rad by the co s (meury
sets of documents. Existing methods average across the tecosine or doc he ts to te qevector. The top ranking dociments are selected as
words or terms in a user's query, and consequently, relevant and returned to the user.
perform poorly with multimodal queries, such as: "Show
me documents about French art and American jazz". We Representing the query by a single vector works well
propose a new method, the Relevance Density Method for when the vectors of the relevant objects (documents and
selecting documents relevant to a user's query. The terms) are clustered together in a single region of the
method can be used whenever the documents and the document-term space, since the center of that region is a
terms are represented by vectors in a multi-dimensional reasonable estimate of the query's content. However, if
space, such that the vectors corresponding to documents the vectors of the relevant objects fall into two or more
and terms dealing with closely related topics are close to clusters separated by regions of the space containing non-
each other. We show that the Relevance Density Method relevant documents, then averaging will perform poorly,
performs better for multimodal as well as single mode since it will tend to retrieve documents between the two
queries than an averaging method. In addition, we show clusters of relevant documents. One proposed solution [4]
that retrieval is substantially faster for the new method. was to identify multimodal queries and split them into
Introduction sub-queries. However, this method was too

computationally expensive and has not been used widely.
The task of an information retrieval system is to respond to An additional drawback of vector averaging is
a user's request for information (a query) by searching a computational expense. Typically, the query vector is
collection of documents (e.g texts such as books, journal compared to every document vector. If the document
articles etc.) and selecting those documents that seem to be collection is large and the dimensionality of the
relevant to the topic(s) of the query. Usually, the document-term space high, computational demands can be
documents in the collection are indexed by terms quite significant. The proposed method can be
(keywords). It is assumed that the topic(s) of a document implemented using table look-up, thereby trading space for
or of a query is adequately reflected by its collection of time.
terms.

The Relevance Density Method
The relevance density method proposed in this paper can

be applied whenever terms and documents are represented We propose a new method of ranking documents. The
by vectors in the same multidimensional document-term Relevance Density Method (RDM) can be used whenever
space with similarity of terms and documents reflected by documents and terms are represented by vectors in the
the closeness of their vector representations in that space. document-term space.
In other words, if two vectors are close together, then the We treat relevance as a continuous quantity and model its
corresponding terms or documents can be assumed to be distribution by a probability density t(D) over the
closely related in their topics and vice versa. Methods for document-term space. The documents in the collection ar
constructing such a space are presented in [] and [2]. ranked in the order of the height of the density over their

Currently, the method of selecting - relevant documents vector representations D. In other words, the document
used in conjunction with such vector representations of that has the highest value of it(D) is given rank 1 etc.,
terms and documents is called vector averaging (VA). with higher ranks reflecting greater similarity or relevance.
VA (2], [31 represents a query by a single vector in the Thus, this density should be high over areas of the
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document-term space containing vectors to relevant can be weighted according to their information value;
objects and low over areas of nonrelevant objects. If there common or frequent words are weighted less heavily than
is more than one cluster of relevant objects, then the rare words. (A list of desirable qualities of a sampling
density should be multimodal. density, proofs that f (Q I D) has these qualities, and an

To construct the density nt(D) we will start with a prior alternative sampling function are presented in [5].)

density n0(D) which reflects the system's a priori guess The values of wj c(bJ)exp bj cos(Tj D)) can be pre-
about the user's interests. If no prior information about L )

calculated for every document and term and stored. Thus,the user is available, :r0(D) is a constant and does not

affect the ranking. We use Bayes' rule to update the when a user's query is processed, the system simply looks
density when the user's query is received. As in vector up the values corresponding to the terms used in the querydvesiynwh theusr's query is rreate acecti on vtecr and adds them up to compute f (Q ID). This table look-up
averaging, the query is treated as a collection of terms mto fcmuainmksteRM frls"l method of computation makes the RDM far less

used in the query. Let Q 4 T1 ..... Tk] be the set of computationally expensive than the VA in terms of the
I Jnumber of operations required [5]. However, if the term

vectors corresponding to the terms used in the query, by document matrix is large, having enough space to store
where k is the number of terms used in the query. Then I  the values becomes an issue.

nt(D IQ) =f (Q ID )-t0 (D) Results of Testing

In some cases, relevance feedback can be obtained from B
the user after the initial query. The user is presented with a Both the RDM and VA methods were tested on Bellcore's
few top ranking documents and asked which of them s/he ADVISOR system [3], [6]. The system responds to a
considers relevant to her/his query. If such relevance query by identifying departments within Bellcore best

feedback is available, it can be used to update 7r(D). Let suited to answer the query. (Bellcore is a large and
1 diverse research and development company.) At the time

Q I D 1, D m  be the set of vectors corresponding of the first set of tests, the 104 departments were
I represented by abstracts of the technical papers they

to the documents that the user considered relevant, where produced in 1987. There were 728 such documents
m is the number of documents the user considered indexed by 7,100 terms in the ADVISOR's collection.
relevant. Then the relevance density after the feedback is: New abstracts were collected in 1987 and in 1989 and

't2(D IQ, Q1) =f(Ql 1D)'t1 (D IQ) used as test queries. (We did not use as queries any of the

We used: abstracts in ADVISOR's collection.) In addition, to study
k f )j the performance in cases where the query was likely to

f (Q ID) = Yj-c (bJ)exp[bj.cos(Ti,D) have at least two separate topics, we constructed "double"j=1
where cos(TD) is the cosine of the angle between the queries by joining the texts of pairs of abstracts produced

term vector T and document vector D. The above density by two different departments and treating these joined
has the property of being unimodal when the term vectors
are in a single cluster and multimodal when there is more The measure of performance for each test query was the
than one cluster. This density is a sum of bell-shaped rank of the first retrieved "relevant" document. A
components. The ith bell is centered over the vector of the document was considered relevant to the query if it was
ith term used in the query. The bell is tall and narrow if produced by the same department as the one that produced
the parameter of concentration, bj is high, and low and the query. In the case of the double queries, the
wide, if bj is low. The parameter of concentration documents produced by either one of the two departments
differentiates highly specific terms from broad, less were considered relevant. If the method of retrieval were
specific terms. For example, single word terms, such as perfect, the rank of the first correct document would be 1.
cable tend to be less specific than multi-word terms, such On the other hand, if the the documents were ranked
asfiberoptic cable [31 [6]. The, factor c (bj) normalizes the randomly, the rank would be on average 52.
ith bell to integrate to 1, making it a proper density. The
weights wj can be used to express different amounts of Each query was ranked by each of the two methods, RDMimportance associated with terms. For example, words and VA. VA was used with a root mean squared

weighting of the terms and with the cosine as the similarity
measure. This weighting scheme and similarity measure

I. To make It1 a proper density, a scaling constant is needed, but since it were chosen because they produced the best performance
does not affect the ranking, we will omit it. in previous tests on this collection. The RDM was used

with a constant prior density (i.e. no prior information),
with constant weights on the terms and with bj=l for
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terms consisting of a single word and bj =2 for multi-word seconds.
terms. Conclusions

The results of these tests are presented in Table 1. We The Relevance Density Method of ranking documents for
observe that for 263 new abstracts produced in 1987, retrieval was designed to overcome two problems of the
which were used as queries, both VA and RDM answered currently used method, Vector Averaging. These problems
at least 25% of these 263 queries correctly on the first try, are: (1) poor performance in the case of multimodal
since the lower quartile of the ranks of the first correct
documents is 1 for both methods. VA answered at least queries and (2) high computational cost. The proposed
50% of the queries on or before the third try (median method was tested on BelVcore's ADVISOR system and
rank=3), while RDM did better with a median rank of 2. performed faster and better than Vector Averaging in these
Finally, the upper quartile of the ranks was 19 for VA and
9 for RDM. This indicates that RDM answered 75% of References
the queries correctly on or before the 9th try, whereas VA
answered 75% of the queries correctly on or before the [1] Deerwester, S., Dumais, S. T., Landauer, T. K.,
19th try. From the user's point of view there is likely to be Fumas, G. W. and Harshman, R. A. "Indexing by
a big difference between looking at 8 versus 18 non- latent semantic analysis." Journal of the Society
relevant documents before getting a relevant one. The for Information Science, 1990, 41(6), 391-407.
statistical significance of the differences in performance [2] Salton G. and McGill M. J. Introduction to Modern
was assessed using a Wilcoxon Signed Rank test. The Information Retrieval. McGraw Hill, New York
value of the z statistic for the 263 queries was -2.14. The 1983.
p value of the test against the two-sided hypothesis is
0.016. [3] Streeter L. A. and Lochbaum K. E. "An

Similar comparisons can be made for the two ranking Expert/Expert-locating System Based on
methods based on queries from 1989 and on the "double"Structure."
queries from 1987 and 1989. Both methods performed Proceedings of the Fourth Conference on Artificial

queres rom198 and198. Bth ethos prfomedIntelligence Applications. San Diego Ca., March
better on the 1987 queries. This is to be expected, since 1418, 1988, pp. 345-350.

the work of the departments represented in ADVISOR's

database is from 1987 documents, and undoubtedly [4] Borodin A., Kerr L. and Lewis F. "Query Splitting
departments' emphasis and work have shifted in two in Relevance Feedback Systems." Scientific Report
years. No. ISR-14, Department of Computer Science,

The overall conclusion that can be drawn from the data in Cornell University, Ithaca NY, October 1988.

Table 1 is that the RDM performed better than the VA [5] Kane-Esrig Y. Information Retrieval and
(had the rank of the first relevant document closer to 1). Estimation with Auxiliary Information.
The Wilcoxon test statistic ranged from highly significant Dissertation, field of Statistics, Cornell University,
(p value < 0.0001) to moderately significant (p value < Ithaca NY, 1990.
0.018), but in all 4 tests the RDM was the superior [6] Streeter L. A. and Lochbaum K. E. "Who knows:
method. A System based on Automatic representation of
Recently, we compared the two methods in terms of their Schematic Structure." RIAO 88: User-oriented
computational cost. We collected 316 actual queries Content Based Text and Image Handling
submitted by the users at Bellcore to ADVISOR and found Massachusetts Institute of Technology, Cambridge
out how long it took to do the computations needed by MA, March 21-24, 1988, pp 379-388.
each method for these queries. (We ignored the time it
takes to do the I/O and the sort of the documents since this
is the same for both methods.) The current version of
ADVISOR represents documents and terms by 300
dimensional vectors and has 1023 documents in its
collection. The computations were done on a DEC
5000/200 machine. The computation time (the sum of
user and system time) is plotted against the number of
terms in the qucry in Figure 1. It is obvious, that VA took
substantially longer than RDM. The median of the VA
time was 0.53 seconds, of the RDM time was 0.02
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TABLE 1
ADVISOR RESULTS

1987 Queries
Method Lower Q Median Upper Q

VA 1 3 19

RDM 1 2 9

Computing time vs. # terms in query.
Zwil p value # of queries ADVISOR
-2.14 0.016 263 1

1987 PAIRS 1 1 liii

Method Lower Q Median Upper Q
VA 1 5 24 C;

RDM 1 3 19
w0

Ci

-4.20 0.000 66

1989 QUERIES E
Method Lower Q Median Upper Q

VA 2 8 51 2

22 2
2 29? 222 2 2RDM 1 5 29 22 2 2

2 2222

Zwik p value # of queries
-0.920 0.018 43 0 2D 40 60

# terms in query.1989 PAIRS 1-vector averaging, 2-relevance densityMethod Lower Q Median Upper Q
VA 3 10 31

RDM 1 6 33

Zwilc p value # of queries
-0.918 0.018 98
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Analysis of IData from Computer Linked Fles

William E. Winkler, Bureau of the Census, Rm 3000)-4, Washington, D)C 20233

1. INTRODUCT~iION review. At a minimum. the procedures tell uts hosw much
Information that resides in two computer data bases 4.an accuracy is inmproved via adjustment. whether estimates arc

be usef Iul tor anal ysis andi polic tIC',cis ins. For instance, anl sufficiently accurate for statistical analyses andi pi ilic,,

epidemiologist might wish to evaluate the effect of a new decisions. and] how much cost nrulst he incurred (throughi
ian,er treatmnit b', maltching information from a coilcition targetted cILler ical rv-, ies ) to insure a gis, en benetIit in

ot medical case studies against a dcath index that contains increased accuracy. The key to the adjustment proceduic is
intirmiation abi mt t he cause: andi date of death An e stimating accurate ly the propo riions of matches and
economist might wish to evaluate energy policy decisions by nonmaiches within a set of pairs for all ranges of scores
matching at data base Containing fucl anid comimodit', The method of estimating proportions of matches wsithin
information for a set itt companies against a data base weight ranges is dute lo 11dmi andi Rubin ( 1990. 1991 )
Containing the alueCS andi ty'pes of goods prodUCe'd by th1c The paper presents an evalutilon of thlt adjustment
companics If unique itlctiiirs such ats s erititil social procedure for ordinary linear regressiorn [he evaluation
sccurit' numbers or emnploser idlentification numbers are tool is anl extcnsion of Rubin's multiple imputation (see e g,
a. ailale.c then madtching data s urocs is sti aightit tisard anti HRubin N X7. pp. 7'1 77) TIhe emipirical data base IS
standard methods of statistii al analysis are applicable, constructed fromt two tiles for Muc liri u matching stat!S of

If such identifiers are not as ailabk . ften matching must pairs is km issn. \'ery extensive review andtset ification if
bie perforrmed using information such ats comipany or pairs vs as done to) assure that matching status I S aki 4, atd
intlii idual name, address, age. and other decsci iptis e Numer-icali data arc consltuctd using known normial miodels
in tormat ion Est enwshen itv'pi traphical variation andi er ro rs IDitfercint sets of seed numbers produce differenti samples
arc absent, name information sui Ii as 'Srrith' andi Robert' l'ie in1tuitive ideca itt multiple imiputation is that the
maly', not uniquely idtify'l anl inkilis idual Csc of address structure of datal~ relationships ari thre modcl undecr wshichi
inrforrmation Is oiftern subject to) errtr because vse impute plai, is restraints on the statistical estimaites, being

parsigstaidariiat o titiare do nott effectisci', allir's considered. For noirirsponlse (Rubin 11957). thre set tuf daia
ctimparistri of. say, at house number wiis itfa house number t, llies associatedt w it h respondents, the pattern of
andi a street name with a street nanme. Ihe addresses ot arlt nonresponse. anti thle imputatio n model all effect mitl iply
iriditt idual we wish ito match may diffter brecause one is imputed parameter estimates andi their variances. For this
e rronetous or because the i ndtsidual has mnioscii paper. wshat records frin imtne file are matchbed with what

Fecllegi arid Sunter ( 1 1(09) presented a formal records fromt another file, the data associated with the
mat hermatical nmtodelI and] showed the tptirrrality of decisio n nmatched records, andi tire mo del for adjusting tor matching
rules in at record linkage strategy IPairs (it records in a file error all effect the mrultiply imputed estimates
are given a score. Tho se abo~ve a certain score are The outline for the remainder of the presentation is as
designated matches, those Ibelowis a sci t md. lo wer. sctore are firl lowks In thle second sectio n we present somrie tif the
designated no mate hes. anti tho se, %kith1 with scties be tween thetoretical background. In the third section we present brief
tire higher ari loiwe r sci tis are he ld ftor clerical review results The final section co nsists oif discussitin
[he scotres, hr computer matihing sseughts. arc based tin a
crucial likelihotod ratio) that is often dilttil t ito estimate (see 2 IIMA GROUIND
e g.. Wirnkler and Th iiaulcall I99tt, 11dmi arid Rinl 19901. 2 I Theotretical Adiusmnt Miodiel
l') I ). This sect iton pitovsides a decscripttiin of the regressiton

With files (i it idecrate si/c. several thn tusnild pirs nMalt franmewotrk and) adjustme nt me thodoiloigy fur thle simplest
need tio be clerically ret iewed As such review often classes of urtivariate regressitor. The theory for general
involves e xamining paper tirms (if tirey exist) iii use of regress..itn is given by Winkler andi Scheuren (14991).
adiditiornal dlata sources, it is espenisis e arid subjiect tit errorr I et Y = X + Ie tIcrie ordlinary unis ariate regressiton
Withi large tiles, reviewing hundredls ot tit)Isaid 1ittIl pairs model for which errotr tern.% are irndeperndernt wkith conistant
is likelyt tic prohibitively expensive, variance oi; If we were wtorking with a single dlata base,

Winikler andi Scheuren (199)1) irititiducedl a moidel thrat Y would bec regressed tin X in the usual mnanner. For =
pitiits at means tif djusting ge~neral regrerssiun analis 1. .N, wec wish to use t X,.Y,) but use: ( X,.i,) 7, is
for ttching errtor ihe riraii plptise fit tile adjiustmnrrt usually Y, tiut riay takec sonic tither salue Y, dute loi
pntceture i~s it)i reiuc iii elinrinate the rneed fur tcrical nmatchring eirtr
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For i= 1, ---, N, 10,000 records having known matching status. Basic
matching parameters (see e.g., Winkler and Thibaudeau

Yi with probability pi 1990) are estimated that cause the curves of log frequencies
Zi= versus matching weight for nonmatches and matches to

Y, with probability q for ji. separate (Figure 1). Matching probabilities are estimated
using the Belin-Rubin methodology (Table 1). We see that

pi + I qj = 1. the estimated probabilities agree quite closely in the tails
joi (above weight 4 and below weight 2). For weight 3, the

deviation is relatively large because the true proportion of
The probability pi may be zero or one. We define hi = false matches is 0.06 while the estimated one is 0.20.

1 - p, and divide the set of pairs into N mutually
exclusive classes, The classes are determined by records
from one of the files. Each class consists of the indepen- Table 1. Probabilities and Counts
dent x-variable X, the true value of the dependent y- of Matches and Nonmatches
variable, the values of the y-variables from records in the in Weight Ranges

second file to which the record in the first file containing - Count - Probability
X, have been paired, and computer matching weights. weight Mat NM true est
Some of the N classes may have zero matching weights
By Raied we mean two records from the two files that have 11 6950 0 .00 .00
been brought together during the record linkage process but 10 785 0 .00 .009 610 0 .00 .00
for which no determination of matching status may have 8 439 3 .00 .00

been made. Under an assumption of 1-1 matching, for each 7 250 4 .00 .01
i = 1,., N, there exists at most one j such that % > 0. 6 265 9 .03 .03
We let q be defined by 0(i) = j. 5 167 8 .05 .06

To define regression properly, we need to find #,=E(z), 4 89 6 .06 .11
o 2 anda,. We observe that 3 84 5 .06 .20

, sr2 38 7 .16 .31
1 33 34 .51 .46

E(Z) = (1/N) Yi E(ZIi) = (1/N) 7, (Yi pi + Jj.. Yj qi) 0 13 19 .59 .61
-1 7 20 .74 .74

=(I/N)2i Yi + (1/N) J [Yi (-h) + Yo) hJ = Y + B. -2 3 11 .79 .84
-3 4 19 .83 .89
-4 0 15 .99 .94Similarly, we can represent ,~y in terms of o.) and -5 0 15 .99 .96

abias term B, and oZ2 in terms of oy2 and a bias -6 0 27 .99 .98
term B,. We neither assume that the bias terms have -7 0 107 .99 .99
expectation zero nor that they are uncorrelated with the 1/ In the first column, weight 10 meansobserved data. / nth fis oun wegt 0mas

weight range from 10 to 11. Weight
Different equations yield the adjustments that relate ranges 11 and above and -7 and below

regression coefficients 18, based on observed data with are added together separately. Mat
regression coefficients 6YB based on true values. Our is match and NM is nonmatch.
assumption of 1-1 matching (which is not needed for the
general theory) is done for computational tractability to
reduce the number of records and amount of information Each unique record in the merged data files has an
that must be tracked during the matching process. independent x-variable that is generated according to a

In implementing the adjustments, we make two crucial uniform distribution between 1 and 101 and a dependent y-
assumptions. The first is that, for i = 1,-, N, we can variable that is generated via with a random normal
accurately estimate the true probabilities of a match p. distribution such that the slope is 2 and the R-square value
The second is that, for each i = 1, -.-, N, the true value Y is approximately 0.45. Error arises because the observed
associated with independent variable Xi is the pair with the (x,y)-pair that is normally used in computation has a y-value
highest matching weight and the false value Y,) is from a record to which the record containing the x-valuc
associated with the second highest matching weight. was falsely matched.
2.2. Empirical Data Base For the analysis we consider only those pairs having

The empirical data base is created from two files of matching weights between 0 and 10 because all pairs above
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weight 10 are true matches. Pairs between 0 and 10 contain sample component of the variance estimated via the multiple
both true and false matches. We do this to determine how imputation procedure was roughly equal the within sample
much the adjustment improves the accuracy of the regres- component. If we had considered only individual samples,
sion analyses in situations for which there is significant we would have missed the additional source of variation.
matching error. If we include pairs above weight 10, then
then it is more difficult to judge the adjustment process
because ordinary regression estimates based on observed Table 2. Comparison of Estimates
data and adjusted regression estimates will both be relatively Averaged over 25 Samples
more accurate. Coefficient Estimates

In the remainder of the paper, whenever we use true we wgt
will mean estimates based on the true values. Similarly, class size true est obs
when we use observed, we mean estimates based on
observed data. Adiusted will always refer to estimates 8 442 2.020 2.018 2.004
obtained via the adjustment methods of this paper. cv 0.082 0.082 0.082qrmse 0. 082 0. 082

3. RESULTS 6 970 2.015 2.002 1.976
The results of using the adjustment process are illustrated cv 0.053 0.056 0.056

in Figure 2. Figure 2a provides a comparison of the relative qrmse 0.056 0.058
coefficients of variation of the adjusted procedure versus the 4 1240 2.010 2.006 1.956
nonadjusted procedure. To get the plotted points, the 0.046 0.048 0.049
coefficients of variations (cvs) computed via either qrmse 0.048 0.055
procedure are divided by the true cv for weight class 8.
The results show that both adjusted and nonadjusted 2 1374 2.005 2.025 1.940
procedures yield approximately the same cv estimates and cv 0.044 0.047 0.047

that cvs decrease as sample size increases. The relative bias qrmse 0.049 0.056

of the cvs for the adjusted procedure is substantially lower 0 1473 2.007 1.976 1.870
than the relative bias for the nonadjusted procedure (Figure cv 0.042 0.046 0.046
2b). The nonadjusted procedure uses ordinary linear qrmse 0.048 0.081
regression on the observed data pairs. Note: Weight class 2 means those

Multiply imputed estimates for 25 samples (Table 2) pairs having weight above 2
show the relative cv estimates for both adjusted and and below 9.
nonadjusted procedures are about the same while the higher
bias of the nonadjusted procedure yields higher quasi root This paper reflects views of the author and not necessarily
mean square errors (qmrse). The term qrmse is used those of the Census Bureau.
because we use an estimate of the variance component of
root mean square error rather than the true value. We REFERENCES
observe that for higher weight ranges, say between 6 and Belin, T. and Rubin, D. (1990) "Calibration of Errors
10, both the adjusted procedure and nonadjusted procedure in Computer Matching for Census Undercount," Proc.
produce about the same qmrses, 0.056 and 0.058, resp. As of the ASA Section on Government Statistics, to appear.
weight ranges having more erroneous data are included, say Belin, T. and Rubin, D. (1991) "Recent Developments in
between 0 and 10, qrmse under the adjusted procedure, Calibrating Error Rates for Computer Matching," 1991
0.048, is substantially lower than under the nonadjusted Census Bureau Annual Research Conference, to appear.
procedure, 0.081. Fellegi, I. and Sunter, A. (1969) "A Theory of Record

Linkage," J. Amer. Stat. Assn. 1183-1210.
4. DISCUSSION Rubin, D. B. (1987) Multiple Imputation for Nonresponse

The multiple imputation procedure adopted for analyzing in Surveys, New York: J. Wiley.
the adjustment procedure was intended to dampen the Winkler, W. E. and Scheuren, F. (1991) "An Error Model
influence of the regression-variable-creation procedure. for Regression Analysis of Data Files that arc Computer
Specifically, as individual samples showed significant Matched," 1991 Census Bureau Annual Research Conf.
variation from sample to sample, it was difficult to Winkler, W. E. and Thibaudeau, Y. (1990) "An Appli-
determine how much of an improvement the adjustment cation of the Fellegi-Sunter Model of Record linkage
procedure yielded. Although not shown, the between to the 1990 U.S. Census," Technical report.
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Figure 1. Log of Frequency vs Weight
Matches & Nonmatches
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The Discrimination Power of Dependency Structures in Record Linkage
Yves Thibaudeau, U.S. Census Bureau, F.B.4, Room 3000, Washington, DC 20233.

Abstract In practice, the comparison function is a vector valued

In record linkage, the correct statistical model function. Each vector component y(,(a),(b)) , where

underlying a particular application may present estimation i=I,...,N , corresponds to a specified field, such as last
difficulties. Often, a convenient model is substituted in place name or age. y'(a(a),(b))) is assigned the value 0 if the
of the correct one. Naturally, the substitution induces an records of the two indviduals disagree over field i and it
error and one can only hope that the error is negligible. This is assigned 1 if they agree. The comparison space r is

paper compares two models as they are applied to the data the set of all binary vectors (i.e. whose components are 0 or
collected during the 1988 Dress Rehearsal of the Decenial 1) of dimension N

Census.
Consider a particular comparison vector denoted by y*

Key Words: Record linkage; Decision rule; Conditional The probability that a pair of records (a,b) gives rise to

independence model; y * , through the comparison function y and given that
the pair belongs to the set of links M , is defined as

1 Introduction follows:

The paper compare three related techniques of record m(y)= E P4y(a(a),3(b))=yl(ab)1P4(a~b)IM
linkage. Sections 2 to 5 give a background on record

linkage, while sections 6 to 8 apply the 3 techniques to a

particular situation. Similarly,

2 Record-Linkage Rules u(y*)- P4y(a(a),(b)) =y* I(a,b)]P4(a,b)lU]

Consider two populations of individuals: population A

and population B . Denote the individuals of these two

populations by a and b respectively. A and B is the probability that a pair of records gives rise to y

may have some individuals in common. Consider the set of given that the pair is a non-link.

all possible ordered pairs (a,b) . This set is the cartesian
product AxB = i(a,b) I a e A, b e B) and it can be The purpose of record-linkage is to determine which pairs

divided into two sets: M=((a,b) I a , A, b e B, a=b and are the links. In this respect, a decision rule is constructed.

U=ka,b) I a e A, b e B, a~b) . The pairs in M are the Let A1  be the decision to declare a given pair a link,

links, while the pairs in U are the non-links. Note that while A2 is the decision to declare that same pair a

Mfl U = o and M U (=A x B . Let a be a possible link, and A3 is the decision to declare the pair a

record generating function on A and let P3 be a record non-link. Any one of these three decision is taken on the

generating function on B . These two functions produce basis of v . It is assumed that the comparison vector yr

a(a) and P(b) , the records of a and b is sufficient. In this context a decision function is a triplet of

respectively. Y is a comparison function over probabilities, Ay) = (Pf[A I y, P" 2 1 y], PrA31,D ,where

a(A) x P(B) if for any individual a e A and for any P{Ahy] is the probability of making decision A, when

individual b e B , the record a(a) can be compared to observing comparison vector Y 3, where i=l ...,3 .

the record j3(b) through the comparison function Naturally PjfAJy] t 0 and E PIAhy] 1 . The

(a(a),1P(b)) . Finally, the comparison space is the set definition of record linkage rule foflbws easily: A record

r = {y(a(a),P(b))Ia e A, b c B) , the set of all possible linkage rule (linkage rule) is a mapping from the comparison

comparison values, space r onto a set of decision function D = {(y)}
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Two types of error may occur when applying a linkage rule.

The type I error occurs whenever a pair declared a non-link (1,0,0) in-1
is in fact a link. The type II error occurs when a pair is (P,,1 -P1,0) i=n

declared a link but is not. A linkage rule is said to be a anr) a(0,1,01 n<in -I
linkage rule at the levels p and A , where 0 <1 <010 I~~n-
and 0<1<1 ,if P4A,Ij = i and P4A3IM] = 1 (0,1-PP1 ) i-n
Here P?{A,IU] is the Type II error and PrfA3IM] is the

type I error. Such a linkage rule is denoted by L4pA,I") .(0,0,1) in+l
Furthermore, the rule L(p,1,) is said to be optimal at the

levels i and A if for any other linkage rule at the defined in (1) is optimal at the levels i , A

levels g and A , denoted by L*(tt,l) , the
following holds: P[IL] : PkA 2IL] . That is the In order to make use of theorem 1, the ratio m~ylu(y)
probability of declaring any pair a possible link is no greater must be known for each observable value of the comparison

under rule L than under rule L , while maintaining vector y . Of course, in practice, those ratios are unknown

the same error levels. and must be estimated. To perform the estimation, a class of

probabilistic models is established. Then estimation
3 The Fellegi-Sunter Theorem techniques are used. Before introducing some classes of

Fellegi and Sunter (1969) formally show how to construct an models, more notation must be reviewed.

optimal linkage rule. Let all the comparison vectors y be

ordered by decreasing order of the ratio m(y)/u(y) . If 4 Notation for record-linkage
there are ties, order is assigned randomly among them. This Let v,.._,, represents the count of pairs with the

ordering gives rise to a sequence {yi}Ar , where Nr is following attributes: whenever k = 0 the corresponding
the total number of comparison vectors. For given error pairs are non-links and whenever k = 1 they are.

levels Ip and A assume there exists n and n" Furthermore, when i, = 0 , the corresponding pairs do not

such that exhibit record agreement over comparison field s and

-I ,,whenever i, = I , the pairs do exhibit record agreement
u(') < P u(i) over comparison field s . Note that s = 1,...,N , where N

j=I j=1
is the number of comparison fields.

It is important to realize that the counts vtoil-AV cannot be

and observed. Rather, what is observed are the aggregated

Nr Nr counts, denoted by v, 1  , where

F, m(y1) Z A E m(7) v V

This notation is usefull. The next section present a class of
Consider the following linkage rule: record linkage models.

R-I

P must satisfy (¥y)P -= ip -E u(Yj) . This ensures 5 The Conditional Independence Model

the consistence of the randomisAibn rule. A similar Goodman (1974) gives a thorough analysis of the conditional

constraint involves P, . independence model. It is best described by its log-linear

representation:THEOREM 1 (Fellegi and Sunter, 1969): The linkage rule
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N N under the same roof and therefore they are more likely to
Iogv, ) - + + + E.4,. (2) agree on the rest of the houseold fields.

pi p1

In this section, two explanatory models are proposed for the

There are constraints on the parameters involved on the right St. Louis data. The first model is the conditional

hand side of (2). These can easily be deduced and are left independence model in (2) with N = 11 . The second

out here. model includes interaction terms between the houseold
variables. The log-linear representation of this model is

The expression on the right-hand side of (2) includes one similar to that in (2), but with the addition of 2-nd, 3-rd and

term corresponding to the effect of the link status (link/non- 4-th order interaction terms between the household fields,

link) of the counted pairs ( k ) and one term for the effect among the non-links.

of each comparison field ( a ). It also includes terms for
the interaction effects between the link status and the 8 Linkage Performances

fields( CJ ). However, there are no interaction terms In this section, the models are fitted to the St-louis data. The

between the fields and this implies that, conditional on the Fellegi-Sunter rule is applied under the conditional

latent class, the fields are independent. In many cases, independence model and under the model with interactions

because of dependency relationships, it is necessary to between the houseold fields.

include interactions terms between certain fields. In those
case, selective models must be used. The following situation In section 2, the Type II error is defined as the proportion of

is such a case. non-links actually declared links. For the St. Louis data it is
known which pairs are the links a priori. This information

6 Applications: The St. Louis data was obtained through tedious follow-up operations. With this
These data were collected in 1988 during a dress rehearsal, information, the Type 2 error can be controled when
in preparation for the Decennial Census operations. Two applying the Fellegi-Sunter decision rule.

files were created, based on two surveys of the individuals
living in a defined geographical area within the city of St. There are exactly 9823 links among the pairs. Table 1
Louis. Those surveys are the census and the post- contains the number of links that were actually recovered,
enumeration survey. In both cases, for each individual applying the Fellegi-Sunter rule, under the 2 models
reported at the time of the survey, a record is created and presented previously and under an ad-hoc model, for 3

various characteristics of the individual are recorded. The different controled Type II errors. The ad-hoc model is
objective is to link the records of the Census file with the based on informal advice from W. E. Winkler (1989). The
records of the Post Enumeration Survey. The comparison principle behind it is to improve the performance of the

fields are indexed 1 to 11 and are in order: Surname, house conditional independence model by adusting its parameters,
no., street name, phone number, first name, middle initial, rather than using a more elaborate model. The adjustments

marital status, age, race, sex and relationship with the are largely based on experience and past knowledge of
respondent. similar process. One such adjustment for example, is the

increase of the value of the term corresponding to the effect

7 Two Models for the St Louis data of the first name in (2) to ensure that pairs of records

In the case of the St. Louis data there are dependencies agreeing on the first name be weighted heavily. The

between some fields. Particularly among the non-links, advantages of this method is that it does not require
between the houseold fields. These are surname, street no., estimation procedures beyond those used for the conditional
street name and telephone. When two individuals agree on independence model.

some of the houseold fields, they are more likely to be living
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Clearly, the model including interactions is the best when the Haberman, S. J. (1976), "Iterative Scalling Procedures for

tolerated error is at its smallest (.01). At that error level the Log-Linear Models for Frequency Tables Derived by
conditional independence model is poor, but the ad-hoc Indirect Observation," 1975 ASA Proc. of the Statist. Comp.

model does fairly well. If the tolerated error goes up to .02, Sec. 45-50.
then both the independence model and the ad-hoc model
catch-up on the model with interactions. This trend continues Thibaudeau Y. (1989). "Fitting Log-Linear Models in

as the error is allowed to climb to .03. At that point the Computer Matching," 1989 ASA Proc. of the Satist. Comp.

independence model is only 36 links behind the model with Sec. 283-288.

interactions, whereas the ad-hoc model and the model with

interactions are virtually the same. Winkler, W. E. (1989). "Methods for Adjusting for a Lack

9 Conclusion of Indepence in an Application of the Fellegi-Sunter Model
The model with interactions clearly gives the best of Record Linkage." Survey Methodology, Vol. 15, No. 1,

performance when the tolerated Type II error is small. When 101-117.
the tolerance on the type II error is relaxed, the other

methods may be just as good, especially the ad-hoc This paper reflects views of the author and not necessarly

procedure, in this type of situation. those of the Census Bureau.

Table 1: Links Recovered For Three Error Levels

Independence Interactions Ad-hoc
Error .01 .01 .01
Links 7273 9712 9562
Pairs 7346 9808 9659

Error .02 .02 .02
Links 9636 9758 9765
Pairs 9824 9952 9960

Error .03 .03 .03
Links 9740 9776 9783
Pairs 10038 10062 10097
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Abstract 2 Optimal Allocation
The odd ratio as an approximation to the Relative Risk

This paper derives an expression for the optimum sam- of disease in a group of people exposed to a certain
pling allocation under the minimum variance criterion rs atr oprdt hs o xoehsbe
of the estimated attributable risk for case-control stud- wieyudsncititrutonbCrfel(15)
ies. Various optimal strategies are examined using al- widely used since its introduction by Cornfield (1951).
ternaieeoursp ii dsag sae eaned uEpidemiologists and public health officials suggested
ternative exposure-specific disease rates, the so-called 'Attributable Risk.' The measure of 'At-

KEY WORDS: Odd Ratio, Relative Risk and At- tributable Risk'suggests the potential impact on disease
tributable Risk. frequency of eliminating the exposure in the population.

Consider the following 2 x 2 contingency Table 1 for
possible association between a dichotomous study factor
(A = exposed or unexposed) and a dichotomous disease

1 Introduction outcome (B).
Table 1. Data Layout

Mullooly (1987) derived expressions for the optimal Table_1. _ataLayou

number of cases and controls that minimize the total A B [
sample size and ensure the required level of precision Cases Controls j
for exposure-specific disease rates. Unequal sample al- Exposed a, b,
location rule for various types of clinical studies was Unexposed (10 b0
discussed by Gail et. al (1976). They suggested the so- Total n, n2

called 'square root rule' to the case when the response
variable has a different variance in each group. They Denman and Schlesselman (1983) estimated the at-

presented various techniques to determine the optimal tributable risk which is given by

number of subjects. Brittain and Schlesselman (1982) albo - blao
examined the problem of optimal ailocation for com- nibi (1)
paring proportions, p, and P2, in two groups of clinical
trial or follow-up stadies. The criterion chosen was the
precision of the estimator. In a series of papers, Walter = - i_-. P2 (2)
(1975, 1976, and 1978) discussed the estimation proce- q2

dures for estimating attributable risk and its role in epi- where Pi = 2..,P 2 - b such that
demoilogical research. Walter and Morgenstern (1985)

stressed the importance of optimal sampling plan which pi + q, = 1, and P2 + q2 = 1.
is escentially dependent on the choice of measures for It is assumed that p, and P2 are independently bino-
summarizing the data. The purpose of this paper is to mially distributed. Walter (1976) has shown that the
derive expression for optimal strategies in determining variance of A may be estimated by
allocation rules under the minimum variance criterion
of the estimated variance of attributable risk for case- Var (a]n) [ +  (3)

coto tde.bon, aon, bo1 2 (3
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The equation (3) can be rewritten as Leung, 11. M. and Kupper, L.L. (1981). Comparisons

of confidence intervals for attributable risk. Dio-
Var (n)( + n(1 _)) [ p) metrics 37, 293-302.

nF(-p) -(4) Mullooly, J.P. (1987). Sample sizes for estimation

where F denotes the proportion of the total sample sub- of exposure-specific disease rates in population-
jects which are assigned to group I (cases), i.e., F = 1 based case-control studies. American Journal of

Minimization of Var (A) requires differentiating Epidemiology125, 1079-1084.
equation (4) partially with respect to F and then equat- Pentico, D.W. (1981). On the determination and use
ing to zero. Solving, one gets of optimal sizes for estimating the difference in

means. The American Statistician 35, 40-42.

F . •(5) Walter, S.D. (1975). The distribution of Levin's mea-

rp +/ Vsure of attributable risk. Biometnka 62, 371-375.

The optimal sample size allocation to cases and con- Walter, S.D. (1976). The estimation and interpreta-
trols can be obtained by using Equation (5) for various tion of attributable risk in health research. Bto-
combinations of p, and p2. metrics 32, 829-849.

Walter, S.D. (1978). Calculation of attributable risks
3 Concluding Remarks from epidemiological data. International Journal

of Epidemiology 7, 175-182.
It is often required to choose a particular combination of
n, and n2 that maximizes the precision of the estima- Walter, S.D. and Morgenstern, H. (1985). A note on
tor. Walter and Morgenstern (1985) emphasized that optimal sampling for the comparison of propor-
the optimal sampling strategy depends on the choice of tions or rates. Satiistics in Medicine 4, 541-512.

function of p, and p2. For example, Mullooly (1987) dis-
cussed the optimum sampling strategies based on pre-
cise estimation of disease rate in the exposed popula-
tion. However, expression (5) minimizes the variance
of attributable risk given by equation (4) for a given
fixed total number of subjects. The choice of estima-
tor for summarizing the data dictates the appropriate
allocation rule.
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Bandit Strategies for Ethical Sequential Allocation
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Abstract therapies in such a way that trial goals are met as well
as possible. While any complete description of a clinical

The problem of allocating patients in a two treatment trial design should address all aspects of trial protocol
clinical trial with dichotomous response is considered. (e.g., eligibility criteria, interpretation of responses, data
The trial goal is to determine the better treatment while analysis, etc.), we focus on the effects of changing allo-
incurring as few patient losses as possible. Several alloca- cation rules within otherwise fully specified designs.
tion rules are compared and it is found that bandit strate- It is assumed that the sample size for the trial is a fixed
gies perform well on both criteria in that they achieve number, n, but that the sample sizes for the treatment
nearly optimal power while keeping expected trial fail- groups, nl for T1 and n2 for T2, may be random. Theures nearly minimal. The rules are also evaluated ac- response variables, X and Y from T1 and T2 respectively,

cording to their computational complexity. are independent Bernoulli random variables such that

1 Introduction (1) XI,X 2,. B(1, P); Y1,Y 2 ,...-. B(1,P 2 )

where (Pi,I'2) E Ql, for fl = (0, 1) x (0, 1).
Researchers designing clinical trials often encounter dif-

ficulties when trying to determine the best way to allo- An allocation rule, y, is defined to be a sequence

cate patients to treatments so that trial goals may be (7i .... 7) such that,
achieved and the costs to all concerned kept at a mini- " 0, if T is used for patient i;
mum. Conventional designs, in which subjects are allo- 7i- 1, if T2 is used at patient i, n.
cated to groups in equal or predetermined proportions,
have good decision making properties but lack the flexi- It is required that the decision, yi at stage i, depend only
bility to incorporate other desirable design goals. Adap- on the information available at that time.
tive designs, in which allocation strategies may depend The parameter of interest is the mean difference in
on data observed during the trial, have more flexibility, responses, A = P2 - P1 , and T1 is said to be superior to
The consideration of adaptive techniques raises the ques- T2 if A > 0, and inferior if A < 0. The terminal decision
tion of what an optimal allocation rule is for a problem rule depends on the maximum likelihood estimate for A
where statistical merit is not the only measure of the which, after n observations, is given by
quality of a design. This question is complex and in- , A(7) = Y - X-
triguing, and it deserves more attention than it is given where n, = 71 + ... + Yn, n2 = n - ni, and
here, where only a simple trial set-up is examined. What
we can show, however, is that adaptive designs based on - 1 - 1
optimal strategies for bandit problems perform well ac- i ' X; Y n2 =1 0-0 J

cording to multiple criteria, which include but are not
restricted to the ability to make a good terminal deci- 2 Design Characteristics
sion. In particular, these rules are evaluated according
to ethical and computational criteria and then compared With the primary goal being to select the better of two
with standard fixed allocation techniques. competing therapies, the decision rule has been formu-

Now, consider a clinical trial in which we wish to corn- lated to test. the hypothesis
pare two treatments and determine, if possible, which
has the higher efficacy rate. The patients, who enter the (2) 11 A < 0 vs. H : A > 0,
trial sequentially, are to be allocated to one of the two and it specifies

I Research supported in part by National Science Foundation Reject H0  if A0 > 0;
under grant DMS-8914328.2 Research supported in part by National Science Founda- (3) No decision if A, = 0;
tion/DARPA under grant CCR-9004727. Fail to reject. H, if An < 0.
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An informative measure of how well a test performs is Here we have only a two-armed bandit (TAB), but
given by its power. For this problem, the power is sim- these techniques generalize easily to problems with sev-
ply the probability, as a function of P E f0, of correctly eral arms. Let the outcomes for the two treatment arms
identifying the superior treatment. In practice, a rule be given by (1), and model the prior information on the
allowing the no decision option should not be used with- success rates, P1,P2, as independent beta distributions
out a null hypothesis of equality and corresponding ac-
ceptance region. We would prefer, in fact, a test that Be(a0,b0) and P2 Be(c0,do).
not only recognizes similar treatment effects with high At any stage m < n, the posteriors for P, and P2 are
probability, but also one that has maximum power at the
smallest clinically significant difference between the pa-
rameters. The testing regions here, however, have been where k = ET = =i= i, and
established so that we may study the behavior of the al-
location rules over the entire parameter space and obtain a = j + a0 , b = k - i + b0,
lower bounds for the power of (3). In [3], we examine =j+c0, d=m-k-j+d 0.
problems incorporating both type I and II errors. The posterior means of p, and P2 at m are simply

It is not difficult to show that, for any P E 0, the Em[pi] = a/(a + b) and Em [P2] = c/(c + d), where
probability of making an incorrect decision based on (3) Em denotes expectation in the model (4).
is minimized by allocating patients to therapies in equal Typically, the choice of a prior distribution will de-
proportions. This may be achieved via alternating as- pend, somewhat subjectively, on the knowledge of the
signments or by constrained or blocked randomization. investigator preceding the trial. We use independent
Since an equal allocation rule guarantees that fully half uniform priors here, ao = b0 = co = do = 1, because
of the patients are assigned to the inferior treatment, de- they contain no initial bias and little information, and
signs utilizing them tend to incur more failures than may because the parameters of the beta posteriors concisely
be necessary for the decision process. Our evaluations of summarize the relevant study data to date.
allocation rules are based on three criteria: It is worthwhile to note that these allocation rules,

1. The probability of making a 'correct' decision at the which arise within a Bayesian framework, are being eval-
end of the trial, uated according to frequentist standards. In Section 4,

2. The expected number of failures during the trial, the Bayesian design is seen to have had little effect on the
results of the trial from this viewpoint. However, if de-

3. The complexity of the computations required to uti- sired, the design may be set up to impact the trial and its
lize the design. results more heavily, since investigators can strengthen

Due to space limitations, the manner in which these cri- and/or bias the parameters of the beta distributions to
teria are assessed is quite simplistic. While each of these reflect a preferred level of information.
items can be viewed from many angles, the results (Sec-
tion 4) seem to be representative of the behavior of the 2.2 Ethical Criteria
allocation rules in more general settings as well. An advantage of using bandit problems to model clinical

trials is that elements of the discount sequence can be
2.1 Bandit Problems selected to represent an ethical decision regarding the
The sampling plans that we propose are based on opti- relative importance of the patient outcomes both dur-
mal rules for multi-armed bandit problems. In a bandit ing the trial and in the future. At each stage of the
problem, the goal is to maximize the sum of weighted sequential decision process, a bandit allocation rule is
outcomes arising from a sequence of experiments from a function both of the effort to gather information and
arms whose outcomes follow the laws of a specified of the effort to gain immediate reward. Here, we con-
Bayesian model. A bandit allocation rule is thus one sider two discount sequences, {1,01, /32. , 3n}: the h-
that utilizes prior information on unknown parameters horizon uniform sequence with 13i = I, i = . n, and
together with incoming data to determine optimal selec- lhe geometric sequence, { 1, ,/ 32,/33 ....}, 0 < A3 < 1.
tions at each stage of the experiment. The weighting of In lhe uniform, finite horizon case, the optimal strat-
returns is known as discounting and it consists of multi- egy will begin by emphasizing the gathering of informa-
plying the payoff of each observation by the correspond- tion with the result. being that the first patients will be
ing element of a discount sequence. The properties of treated rather like patients in an equal allocation trial
any given bandit allocation rule will depend upon the where one assumes throughout that the treatments of-
associated discount sequence and prior distribution. fer the same prognosis. Toward the end of the study,
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with a decision imminent, the emphasis on immediate pected number of failures remaining in the trial, if m

reward is increased until, at the last stage, a completely patients have already been treated and there were i suc-

myopic rule is used. In the geometric case, it is assumed cesses and j failures on T1 , and k successes and I failures

that that there will always be more patients, so the need on T2 . (Note that one parameter can be eliminated since
for information is never completely absent as in the last m = i + j + k + 1.) The algorithmic approach is based on
stage of a finite horizon problem. However, as more and the observation that if T1 were used on the next patient,
more patients are treated, the need to sacrifice imme- then the expected number of failures for patients m + I
diate reward to gain information will decrease. Since through n would be
the sample size in the present problem is fixed at n, we ( ,],
truncate the allocations after n observations. Thus ban- m(,jk,1) E.[piJ F+I(i + 1jk,1) +

dit allocation strategies for problems with geometric dis- Em[1 - Pl (1 + Ym+i(i,j + I, k, 1))

counting are not exactly optimal for the truncated rase. while if T2 were used then we would get
As we see, however, these rules still provide good model
strategies for the problem at hand. See Hardwick [2] j2(i, j, k,1) = Em[p2].Ym+i(i,j,k+ll)+
for further discussion of the incorporation of geometric Em[1 - P2] " (1 + Ym+i(i,j, k, I + 1)).
bandit strategies in clinical trial designs.

Therefore F satisfies the recurrence

2.3 Computational Criteria .- m (i, j, k, 1) = min{X TF (i, j, k, 1), FT(i, j, k, I)}

Ethical attributes aside, an experimental design must be which can be solved by dynamic programming, starting
straightforward to carry out if it is to be useful. For com- with patient n and proceeding toward the first patient.
putational purposes, this means that the rules should For the mth patient there are O(m 3 ) possible values
use reasonable amounts of time and space (memory), of i, j, k, 1, so to evaluate all possible combinations of m,
and be sufficiently easy to program. We distinguish here i, j, k, and I requires 0(n 4 ) computations. A clever im-
between the computational requirements to set design plementation might not evaluate all possible values, but
parameters and those needed to carry out the trial. In a straightforward implementation, as used here, needs
general the former will be significantly greater than the to do so, and empirical evidence indicates that, in fact,
latter, but can be carried out on large computers with- O(n 4 ) values must be computed. The space require-
out significant deadline pressure. The latter may require ments can be kept at O(n 3 ) (see [3]).
timely response, and may often be performed on personal
computers. The latter will be analyzed here in the next 3.2 Gittins Lower Bound
section, while the former will be discussed in [3].

According to a theorem of Gittins and Jones [1], for ban-

3 Allocation Rules dit problems with geometric discount and independent
arms, for each arm there exists an index with the prop-

The following three allocation rules were evaluated with erty that, at any given stage, it is optimal to select, at

respect to the given criteria: the next stage, the arm with the higher index. The index
nAllocation, for an arm, the Gittins Index, is a function only of the

TAA = Tir ncat Altraing posterior distribution and the discount factor 3. While

UB = Uniform Bandit, and the existence of the Gittins Index removes many compu-

tational difficulties associated with other bandit prob-

The "truncation" in TAA and TGLB refers to a rule lems, the only known technique for computing the in-
whereby, if a state is reached such that the final decision dex involves an iterated dynamic programming approach

can not be influenced by any further outcomes, then the which is computationally intensive when # is close to I
treatment with the best success rate will be used for all (see [1]). Unfortunately, these are the )3 values needed
further patients. to produce tests of suitable power.

here we show that very good results can be achieved

3.1 Uniform Bandit by utilizing an easily computed approximation. For an

By definition, the n-horizon uniform TAB uses prior and arm with posterior distribution Be(a, b), a lower bound

accumulated information to minimize the number of fail- for the Gittins Index is given by (see [1,2])

ures during the trial. We can determine the optimal -ta+')_ b -= I i r(a+i)

strategy for this bandit problem using dynamic program- Ar r(n+b+l) b I r(a+b+i+i)

ming. Let F.m(ij,k,1) denote the minimal possible ex- r(a) -b ra+t-i)rton+b) I r(a+b+i)
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Parameters -- A = 0.1 A = 0.3

1 Criteria TAA TGLB UB TAA TGLB UB
n=20 Power 0.671 0.667 0.647 0.913 0.906 0.874
13 = .999 Average Failures 9.947 9.774 9.768 9.505 8.330 8.217

n=50 Power 110.760 0.7,54 0.70810.985 0.98210.947
= 9 Average Failures 24.828 24.148 24.117 23.489 19.673 19.214

n= 100 Power 0.841 0.835 0.771 0.999 0.996 10980
/3 .99999 Average Failures 49.614 47.779 47.642 46.762 38.01 3 4
n=150 Power 11 0.890 1 0.885 0.811 1.000 0.998 0.989

.999999 Average Failures U74.393 J71.243 70890 70.031 56.367 54.611

Table 1: Comparisons of Discrimination and Ethical Criteria

Because A, is a unimodal function of r, the best such Parameters UB TGLB
lower bound is Ar-, where r' = min{r : Ar - A,+i I> 0}. 71 3 A = 0.1 A 0.3
Each A,. can be computed from the previous one in a 20 0.999 8,855 180 174
constant number of steps, so the total time to compute 50 0.9999 292,825 611 597
the best lower bound is proportional to r* + 1. 100 0.99999 4,421,275 1,705 1,687

The computational requirements of the TGLB ap- 150 0.999999 1 ,21,947,850 4,124 4,109
proach are difficult to analyze since they depend upon
the value of r* and upon the successes and failures en- Table 2: Comparisons of Computational Time
countered. In the simplest implementation, the approx-
imate indices for both treatments are computed at each
stage and compared to determine the best choice. How- UB, the value presented is the number of evaluations of
ever, computation can be saved by noting that a "play 7v which occur, each of which takes a constant amount
the winner" property holds, in that if the indices resulted of time. Thus the computational time for a clinician

in treatment i being chosen for the previous patient, and to utilize UB is proportional to the value presented and
the outcome was a success, then they will again choose may be prohibitive. For TGLB, the value also represents

treatment i. Therefore an index needs to be computed a quantity which is proportional to the total computa-

only when a failure has occurred, and then only for the tional time needed to utilize TGLB during a trial. The

treatment that failed since the posterior distribution of value presented is the average, over all trials, of the total

the other treatment is unchanged. number of A, values which must be computed for index
calculations throughout the trial. While space require-
ments were not tabulated, recall that UB needs E(n3 )

4 Results space and TGLB needs only G(1) space.

The results of our investigations are summarized in Ta-
bles 1 and 2. The computational techniques used are References
explained in [3]. [1] Berry, D. and Fristedt, B. (1986), Bandit Problems:

Table I shows that TAA, which is optimized to make Sequenial Allocation of Experiments. Chapman and
the correct selection, incurs a large ethical cost, while flail, New York.
UB, which is optimized to minimize failures, has a poor
discrimination ability. The TGLB rule is a compromise [2] llardwick, J. (1986), The Modified Bandit: an aP-
with nearly the power of TAA and nearly the ethical be- preach to ethictl allocetion in clinical Arals. Ph.d.
havior of UB. Note that TGLB has an extra parameter, thesis, University of California at Los Angeles.
03, which must be adjusted to optimize its performance. [3] Hlardwick, J. and Stout, Q. F. (1991), Computational
One can show that 3 must converge to 1 as n increases aspects of sequential allocation for testing with mul-
in order to obtain increasing power. The specific values tiple criteria. In progress.
of 3 used have been indicated.

Fable 2 compares tTB and TGLIB on comptational
grounds. TAA was not. included since the total conpu-
tation time is merely proportional to n., i.e., 0(n). For



AD-P007 182 92-19635

Dynamic Graphics: Linked Points, Lines and Regions with Applications to
Spatial Data Modellingl
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particular in fact involve integrating, within one study, data
Abstract of various types associated with different types of objects.

Mineral exploration thus naturally involves assembling data
The convergence of Geographical Information Systems on satellite imagery (pixels - regions or points), geology
(GIS) and Statistical Dynamic Graphics has led to the (regions) geochemistry (points) and geological faults (lines).
development of a number of new concepts in spatial data Many other examples abound.
analysis. This paper discusses how such ideas may be
extended in the context of spatial modelling. The software One way to approach the task of integrating is through
environment we use - REGARD - incorporates the GIS ideas Geological Information Systems (Burrough,1986). This
of point, line and region 'layers of data' pertaining to an area supports layers of information which may be superimposed
under study. both visually and logically. A complementary proposal,

using linked views, is to treat each layer as a data matrix
The spatial variation here is modelled by a variogram. The comprising a list of objects with associated attributes
model may be used to generate new statistical views of the (variables) and to support a Map View with visually
data, which may be regarded as diagnostics. Aspects of the superimposed point line and region objects, each of which is
model may be decomposed spatially in the linked-views separately associated with linked views of the attributes. See
environment. Many such aspects ase naturally viewed as Figure 1 and Haslett and Cameron (1990) for further aspects
being defined point-wise. Aspects which refer to data pair- of this study. At the simplest level, selecting a case in, for
wise can naturally be associated with line-objects. Many example, a scatterplot of two variables causes that case to be
analyses are oriented to defining regions of anomalous highlighted in other views of that case, including its object
behaviour. The paper will illustrate these intert-twined ideas. in the Map View. At a more sophisticated level, selecting

objects in one layer can cause objects in other layers to
1 Introduction become selected. We refer to this as cross-layer linking.

Thus a histogram of the attributes in a region layer can be
The linked windows concept in dynamic graphics supports a used to select one or more regions of interest; these regions
number of views of the data. Each view focuses on some can then cause points within them, but in a point layer, to
relatively simple aspect of the data; dynamic linking of these become selected; these in turn will be highlighted in a view
provides a platform for understanding the variation. We of the attributes of the points. Such ideas have been
introduce below a new generalisation of such views for implemented in REGARD, experimental software under
spatial data and exploit it here for the very specific purpose development in Trinity College, Dublin. See Haslett et
of studying diagnostics for spatial models. al (1990), Haslett et al (1991). One important type of datawhich lends itself well to such analysis is data defined on a
Spatial data may best be thought of as data which are defined network. Such data are commonplace (traffic flow on a
on objects which have location. A central view in spatial telephone network, airline traffic between cities, wade flows
data analysis is therefore that of the objects and of their between counties). In this context we may use inter-
physical locations; we call this a Map View. The simplest connected point and line layers to analyse the data defined on
objects are point objects. Stream sediment data are naturally such a network; lines connect pairs of nodes.
thought of as multivariate data on geochemical composition
associated with small samples which may be thought of as Thus views of the different objects and of their attributes can

assoiatd wih sallsampes hichmaybe hougt o as be linked to each other. This provides one avenue towards
points. More generally one may think of data on lines or on be inkedtoe o t . i p r naveue owards
regions. Regional data may be administrative or geological, the integration of such data. An alternative use of such a
Disease rates are naturally defined on regions. Lines may be platform is in the spatial decomposition of aspects of the
roads or streams: the variables may be stream width or traffic data.We illustrate this by reference to a spatial model ofon the road. Many projects in the environmental sciences in univariate data defined on points. We will see that a network

can be a useful vehicle to study together the pairwise
interactions and the point wise data.

I The support of Apple and of EOLAS (Dublin) and of
CSIRO (Sydney) are gratefully acknowledged.
REGARD is experimental software, written by Graham
Wills of the Department of Statistics, TCD.
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2 Spatial Decomposition 2.2 Pair-wise decomposition of the likelihood.

We begin by decomposing the mean and variance of data on If we model the data as being a partial realisation of a spatial
the proportion of stone to be found at various point stochastic process we may develop model derived measures
locations in a field (Burgess and Webster, 1980). of the data which may similarly be decomposed. Specifically

consider the geostatistical model in which the data above are
2.1 Point-wise decomposition of the mean and Pair- taken to be a partial realisation of a Gaussian stochastic

wise decomposition of the variance, process with given isotropic variogram y(h) (Journel and
Huijbregts, 1978) in which

Consider data z(&i) defined at points, ji, i=l,..n. Trivially,
the mean ofthese is E {2(Z(x.i)_Zj))2} =jIi- j ) =,(hij)

n
z(Li) Clearly, under the model, the data are a single realisation of

n 1 a multivariate Normal distribution. Consequently the

likelihood of the data can be written as a quadratic form in

Thus the histogram view of z(xi) provides the possibility of the !z(x i). A convenient representation for pair-wise

a spatial decomposition of the mean i. by cross referring to decomposition is:
the physical locations in the Map View. See Figure 2. As
the smaller values are to be found in one part of physical -2LogLikelihhood =

space (and the larger values in another) there is certainly constt + c~ij(z(Ai)z(&.)]2
spatial structure. The mean is a very useful summary of I>J
unimodal bell shaped distributions; in other cases this is less i>j

clear. In Figure 2 for example there is a suggestion that
there are in fact two modes. This is reinforced by the Map where the coij terms have an interpretation close to the

View. partial covariance of (Z(.W,Z(&j)) given the rest of the data.
More specifically they can be seen by considering leave-one-

Less trivially, the variance may be written out cross validation, the estimation of each data point in
turn from all the others. Thus, by seeking the maximum

2 1 likelihood estimator of the unknown Z(xi) from
5zn(n-1) (z(xi) z(xj)) 2  (z(&j), j * i} we find on differentiation that

i>j

Thus a histogram view of (z(xi). z(xj)) 2 provides the Z(&i) = Xo ijz(J&)IXij = yxijz(sj)
possibility of a spatial decomposition of the variance by j J j
cross referring to the physical locations in the Map View.
Since (z(xi) _ z(xj)) 2 involves a pair of points, it is natural and that the variance of this estimator is a 2(Ui) = .c.ij.
to associate it with a line from xi to xj. Further it is more j

natural to view (z(xi) - z(xj))2 through a scatterplot against The (oij are thus proportional to the kriging weights Xij
hij= i - j. See Figure 3. This in fact a plot of the used in cross-validation. They may also be interpreted as
variogram cloud' (Chauvet, 1982) and is closely related to proportional to the correlations between cross-validation
the empirical variogram of the geostatistical family of residuals at Si and x..In this context they have another
models of spatial variation.In Figure 3 a selection has been J

interpretation, that of pair-wise leverage on the likelihood.
made of the pairs which have relatively high (z(xi).- z(xj))2  More simply stated, for a pair of data values to contribute
for the separation. The corresponding lines are shown in the significantly to the (un)likelihood, which is in fact a
Map View; all other lines ( n(n-1)/2 in total ) remain measure of lack-of-fit, it is necessary not only that
invisible. The variance (and more specifically the empirical {z()-z(&.)12 be large, but that toij be large.
variogram) has been spatially decomposed pairwise. Certain )}2
pairs, in a band in the SE and associated with a single point
in the NW, contribute strongly. See Bradley and Haslett The model thus suggests another plot, that of z() 2

(1990) for further discussion, against coij. Pairs which are high in both are important; if

It is clear that there is a local outlier in the NW and some their are also located in one part of space that part of space is

suggestion of a discontinuity in the SW. Below we see that contributing significantly to the lack of fit. Thus for lack of

by viewing the variation through a simple model these fit, coij is a more useful metric than hij against which to

issues become more clearly defined. judge the separation of two points. In Figure 4, such a plot
is presented; a few pairs have been selected and are presented
as lines in the Map View. These have been computed using
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a variogram fitted to the data. They are seen to communicate
the same message as previously, but much more crisply. Burgess, T.M. and Webster, R. (1980) Optimal
Note the cross layer linking: selected lines in the line layer Interpolation and Isarithmic Mapping of Soil
cause their end points to be selected in the point layer. We Properties 1: the Semi-Variogram and Punctual
see, naturally, that these pairs of points are associated with Kriging', Journal of Soil Science, 31,2, pp315-
the upper and lower ends of the distribution of the 331.
proportion of stone. Point-wise decomposition of the
likelihood is also possible and attractive. In particular, it is Burrough, P. (1986) Principles of Geographic Information
possible to show that: Systems for Land Resource Assessment, Clarendon

Press, Oxford
-2LogLikelihhood =

constant + j z) i- z)x.))/a 2 (&i) Chauvet, P.(1982) The Variogram Cloud', Proc. 17th
APCOM Symposium, Colorado, 19-23 April,

i>j 1982, Colorado School of Mines, Golden
Colorado, pp757-764.

A scaterplot of {1~i) - z(Ai)a(Ai)}, the standardised cross-
vAiattio relt f I [z(A i )/ai)a thestanareforero e Haslett, J. , Wills, G. and Unwin, A.R. (1990)
validation residual, vs (z(& )/c(i)) can therefore provide the SPIDER - An Interactive Statistical Tool for

basis for a point-wise decomposition of the likelihood. See the Analysis of Spatial Data, Int. J Geog.
Bradley and Haslett (1991). Infor. SysL, 4, p285-296.

3 Discussion Haslett, J. and Cameron, M. (1990) Interactive Graphics
for the Exploratory Analysis of Spatial and

This paper has indicated one of a number of new Spatial-Temporal Data, Karlsruhe Hydrology
possibilities for the use of linked windows. Here we have meeting, July 1990
concentrated on its use as a platform for research on
diagnostics in spatial modelling. New pairwise views of the Haslett, J., Bradley, R., Craig, P.S, Wills, G., Unwin,
data can be supported; it is thus possible to investigate a A.R.,(1991) Dynamic Graphics for Exploring
number of pairwise diagnostics. Two such have been offered; Spatial Data, with application to Locating
the decomposition of the empirical variogram may be Global and Local Anomalies, to appear in
perhaps described as a pre-modelling diagnostic, and the American Statistician.
decomposition of the likelihood as a post modelling
diagnostic. Spatial decomposition is a general principle: one Haslett, J., Bradley, R., Dillon, M. and Wills, G. (1990)
can often ask " from where does the evidence come that Interactive Graphics for the Exploratory Analysis of
..... .The likelihood can be expressed as a sum of terms Spatial Data - Application to Data of Different
defined pair wise, as above, or point-wise; see Bradley and Support CODATA Geostatistics meeting Leeds,
Haslett (1991). Other pairwise and point-wise diagnostics Sept 1990
can be created and, using our platform, can be investigated.
Such procedures are likely to be particularly valuable in Journel, A.G. and Huijbregts, Ch. J. (1978) Mining
multivariate spatial processes. Geostatistics, Academic Press

The possibilities of integrating data of different spatial
support are also important. In this context the ideas of cross
layer linking provide a natural vehicle with which to
examine such data. See Haslett et al (1991) for further
examples.
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for the Exploratory Analysis of Spatial Data -
The Interactive Variogram Cloud CODATA
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Bradley, R. and Haslett, J.(1991) High Interaction
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Figure 1: Layers of data. Shown are three layers of data, defined on points, regions and lines. The data pertain to
rainfall data in 30 meteorological regions of New South Wales. Variables of interest are defined on the regions,
on points within the regions and on pairs of points. The objects for each layer are visible in the Map View:
statistical views of some of their attibutes are shown. In each layer a few objects have been selected. Here
there is no formal cross-layer linking; since the objects occupy the same physical space they are visually cross
referred. The use of colour in the Map View is recommended.
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Figure 2: Data on the distribution of the proportion stone in soil samples in a field. Selecting the left hand tail of the
distribution shows that there is a clear spatial structure to the variation. One unusual point has been identified
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Figure 3: With each pair (line) is associated the distance between the pair and the squared difference
between the two proportions. A scatter plot of these is shown. Some of these have been selected.
These correspond to pairs which are unusually different, given their separation. The
corresponding lines have been highlighted. The remainder of the (very many) lines remain
invisible. It is clear that many such pairs are to be found in a region in the SW and associated with
a single point in the NW.
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Figure 4: A few pairs simultaneously having high w and large squared difference have been selected.
These correspond to the same features as in Figure 3, but much more dearly defined. In this case
cross layer linking is active: thus the points at the ends of the selected lines have been selected and
the point data values are shown in the histogram view of the data in the point layer.
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ABSTRACT

This paper describes an approach to integrating var-
ious computing tools used in data analysis. Integra-
tion is accomplished by creating direct manipulation Numerical Software
panels which control and link disparate software. The
linked programs can perform data manipulation, numer- Control Panel
ical analysis, static or dynamic graphics. / Static Graphics

The two prototypes described here are integrated sys- IZ i E XGobi
tems that are used to control data analysis sessions.
XSmooth coordinates a smoothing session; it consists of
a control panel and a plotting window and has a link to W
S. XClust coordinates a clustering session; it uses a panel

to control an S process and one or more instances of
XGobi, an interactive dynamic graphics program. The XGobi
prototypes run in the X Window SystemTM.

1 Introduction

There is a great deal of software for statistical com-
puting available for UNIX®workstations, but no sin- Figure 1: General Model
gle system can do everything. A system which is rich
in data manipulation functionality may lack dynamic Each control panel manages a single application which
graphics; a dynamic graphics package may not be easily includes some or all of the following: analytical and data
programmed by a user; a system which is easily pro- manipulation software, static graphics displays, dynamic
grammable may lack data analytic methods, graphics software. The analytical software can be writ-

An analyst might then wish to use a variety of soft- ten by the user or it can be an independent interactive
ware on a single problem. This can prove difficult and program. The static graphics software can be indepen-
cumbersome, because each system has its own command dent routines or part of a package. The dynamic graph-
syntax and its own data representation. ics software is to be XGobi. Figure 1 shows a sketch of

One solution is to use a control program to manage this approach.
the communication between these different elements. Its The panel can control these elements in a few differ-
own command syntax should be quite simple, so that itown ommnd yntx soul be uit siple sotha it ent ways. In the simplest case, it can use direct function
does not burden the user with another language to learn. eas. In te iets it ca srectufunctIncalls, and even write directly into data structures. In

We are exploring a method in which we create a con- other cases, it would use UNIX interprocess communi-
trol panel which becomes the user's means of interact- cation methods, sending and receiving data over pipes
ing with several other pieces of software. The panel itself or sockets.
has a direct manipulation interface which allows the user Elements in this model can sometimes communicate
to communicate with the panel by selecting buttons or directly, without using the control panel as a translator.
menu items with the mouse. For example, instances of XGobi can share data using an

X Windou System is a trademark of MIT. X interprocess communication method; in fact, that is
UNIX is a registered trademark of UNIX System Laboratories. how linked brushing and identification are implemented
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in XGobi. Another sort of communication between ele-
ments occurs if the analytical software is S and the static
graphics window is an S plotting window. In that case,
the control panel sends plotting commands to S, and Controls Static Graphics
relies on S to communicate with the S plotting window.

The use of a direct manipulation interface to coor-
dinate and link disparate software could be applied to [""'
several areas of statistical computing. Two examples [" ]
are optimization problems and iterative cycles of data
analysis. [ JS

In an optimization problem, the control panel could
continuously print the value of the function to be opti-
mized, using plots to enrich the feedback to a user. The
user could interactively adjust parameters in response to
this information. For example, a display could indicate
that the routine is stuck at a local maximum, and the
user could increase a step size, allowing the program to Figure 2: XSmooth Model
keep searching the solution space. The projection pur-
suit methodology developed by Cook et al. (1991) for XSmooth is an integrated system with only two ele-
XGobi provides an illustration of this approach. ments, as shown in Figure 2. There is a window con-

During an iterative cycle of data analysis, an analyst tamning both a control panel and a plotting region, and
executes a command that applies the initial model, then this window communicates with S, which performs the
studies some numerical and graphical output to evalu- smoothing computations.
ate the model. After examining this output, the analyst Three smoothing functions can be found in S (lovess,
adjusts the model and re-executes the command. In re- smooth, and spline), and each has at least one smooth-
gression, for example, the analyst evaluates the model ing parameter. An S user who wants to find a smoothed
using statistics such as the residual sum of squares and curve for a pair of vectors x, y is likely to experiment
the i-test for each coefficient, and uses graphical out- with at least one of these routines several times. First,
put such as residual and influence plots. In response to the scatter plot is generated:
this evaluation, the analyst adjusts the model by adding
or removing a term, eliminating outliers, and so forth. plot (x, y)
The regression may be repeated many times before the Then a smoothed line can be added to the plot usinganalyst is finally satisfied with the model.Thnasotelneanbaddtoheptuin

anas s al atinasid seiont u wants several lowess, where the argument f is the fraction of the data
In such a data analysis session, a user wused for smoothing at each x point:

kinds of information readily available at the same time:
all the printed values returned by the regression func- lines(lowess(x, y, f=.3))
tion, various diagnostic plots, and plots of the raw data.
The analyst's work can be made easier by a direct ma- At this point the user may generate several different
nipulation interface: the recomputation of the model is smoothed lines, then decide the plot has become too
reduced to a couple of operations, key presses or clicks noisy, regenerate the scatter plot, and continue to add
of a mouse button. smoothed lines until the preferred value of f is found.

Using XSmooth, the user executes an S function, pass-

2 XSmooth ing it the name of the data to be smoothed:

xy <- cbind(x, y)
Smoothing was chosen for the initial prototype, for xsoothC(xy)

two reasons: first, a scatter plot with an added line or

lines is the only graphical output required, and second, An XSmooth window appears, initially displaying the
a smoothing session is well captured by the iterative for- smoothed curve generated by using lowess with the de-
mulation just described. The data analyst repeatedly fault value of f. A user can now choose to work with
adjusts one or more smoothing parameters and looks at lowess or to select the smooth or spline function. If
plots of the smoothed curve and scatter plots of the raw lowess is chosen, the f argument is adjusted using a
data. scrollbar, clicking on the arrows at either end of the
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scroilbar for fine control. A single click on the "Send"
button causes a new smoothed curve to be generated and
plotted. A user can control various features of the plot
with single button clicks: whether or not the raw data
values are plotted, whether or not axes and aiis labels Contol Panel - Static Graphics
are shown. A history of the most recent three smoothed /
curves is kept, and a user can include or exclude each of } L XGobi
the three.

To communicate with S, XSmooth uses UNIX inter-
process communication code. In response to a button I " -
click, XSmooth assembles a command in S syntax and [Z i
sends it to S. Then it captures S's response and copies XGobi
it into C data structures. ______oi

3 XClust

The second integrated system is used for clustering.
This is another example of iteration in data analysis,
but it uses a greater variety of graphical output than Figure 3: XClust Model
smoothing. One would want to see different views of
the cluster structure, such as a dendrogram in a static
graphics window and a scatter plot in a high-dimensional XClust is initiated from the UNIX command line. The
motion graphics system with brushing. XClust control panel appears, an S process is started,

XClust, as shown in Figure 3, has a panel which con- and an S graphics window appears. Figure 4 shows the
trols one or more instances of XGobi and an S process XClust control panel and the S graphics window, as well
with an S plotting window, as a Variable Selection Menu, which will be described

To perform clustering in S, a user is likely to repeat later.
a sequence of operations a number of times, using di- To start a clustering session with XCust, the user
agnostic plots to guide the iterative procedure. First, a types in the name of the S data to be used, selects a
distance matrix is calculated, using one of several dis- button, and the functions dist, hciust, and plclust
tance metrics: are applied to that data and the tree is plotted in the S

d <- dist(x, metric="euc") graphics window. All the arguments to those functions
can be adjusted using menus, buttons, or text windows.

Then the hierarchical clustering tree is determined, us- The user selects another button to initiate an XGobi
ing one of the clustering methods available in S: window using the same data.

tree <- hclust(d, method="compact", sim) To define a clustering scheme based on this tree, the
user can click on the S graphics window, specifying the

Now, the dendrogram itself can be plotted and studied, height at which to cut the tree. This action has two
and there are several parameters to the plotting func- results: a line is drawn on the S window indicating the
tion: height of the cut, and the vector of cluster membership

piclust (tree, hang, unit, level, is passed to XGobi, which then redraws each point using
a different color and glyph for each cluster. The result

At this point, other diagnostics can be performed. For of this action is shown in Figure 5.
example, one can use the cutree function to cut the To investigate the validity of this clustering scheme,
tree, specifying either a height or a number of clusters, the user can select another button called "xgobidiscr0."
The function returns a vector of cluster membership: This action initiates a new XGobi window containing a

ind <- cutree(tree, k, h) plot of the data in the space of the discriminant coor-
dinates. After examining the scatter plots and the dis-

Using this vector, one can make pairwise scatter plots of criminant coordinate plots, a user may decide that one
the variables, plotting each cluster with a different color or more varitaies are not contributing to the clustering
or glyph. One might plot the data in the space of the among the data. The Variable Selection Menu allows
discriminant coordinates, or use other diagnostic tools, these variables to be eliminated from the computation
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Figure 4: XClust: Control Panel, S Graphics Window, and Variable Selection Menu

of the distance matrix. If a change is made in that menu, window in XClust. When we write our own code, we
a new tree is calculated and plotted, have greater control over it. It would be easy to link

An additional form of interconnection between pro- the plotting window in XSmooth to an XGobi window,
gram elements is used in XClust: instances of XGobi for instance, as XGobi windows are linked, and such a
communicate with each other using an X interprocess window could respond to mouse events in a very flexible
communication method. Selecting a button in one way. On the other hand, when we use existing code, we
XGobi window causes the color and glyph characteristics have the benefit of previous authors' work. We saved
of each point to be sent to other linked XGobi windows, time by using the S code for drawing a clustering tree,
In this way, the points in the XGobi window which rep- at the cost of some limitation on the user's ability to
resents the data plotted in the space of the discriminant interact with that window.
coordinates reflect the cluster identities shown in the In future work, we expect to encounter that same
first window. question again, in choosing each element of the inte-

grated system. We will make the decision by balancing
4 Conclusions those two factors: the amount of work we expect to save

by using existing code, and the amount of control we
In this work, we often encountered the question of want over the element of the system.

when to write new software and when to use existing We think this model has wide applicability, and we
code. For example, we wrote the code for the static plan to work with it further. We would like to find out
graphics window in XSmooth but used an S graphics whether it can be made easy to program. There are
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Figure 5: XClust: XGobi and S Graphics Window

tools that are intended to make it easy for users of the X Language: A Programming Environment for Data
Window System to create windows such as these control Analysis and Graphics. Wadsworth & Brooks/Cole,
panels and to attach functionality to them. We want to Pacific Grove, California.
find out whether these tools could be used in our context.

Cook, D., Buja, A., and Cabrera, J. (1991). Direction
and Motion Control in the Grand Tour. In Pro-
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Abstract tosh. It is probably fair to say that these systems have not
been widely used by data analysts, because the software

When a data analyst meets a complex dataset, graphics systems provide too many restrictions.
displays giving overall summaries are examined first, then
more specific displays that highlight observed features are We are interested in displaying multiple views on a work-
studied. Frequently, this involves selection of svbsets, and station screen to
point-and click-methods are intuitive and effective. Some- w select subsets interactively
times the observed features are investigated by altering
details of the analysis, and then an interactive command * investigate relationships by highlighting
interface (like S) can be more useful. u setting of parameters interactively

A rainfall dataset with geographic and time components is We wish to explore how well these concepts of dynamic
used as an example. Graphics displays are done in a modi- graphics and linked windows fit into a realistic working
fled version of S that permits multiple graphics windows, environment for data analysts. We have chosen an exam-
and this is compared with xlispstat, xgobi, and datadesk. pie dataset that does not fit the mould of either brush or

spin, and is not trivially small.

1.0 Introduction
2.0 The Rainfall Dataset

Five years ago the S Language offered two examples of
dynamic graphics (brushing and spinning). These methods The dataset to be examined is monthly rainfall for 70 years
were supported on special graphics terminals that never (1913 - 1982) for 30 regions of the state of New South
achieved great popularity, but the concepts of these graph- Wales. The Great Dividing Range is parallel to, and close
ics techniques inspired many. Since then these ideas have to the coast, giving high rainfalls along the coast, and low
been extended to more general notions if how linked rainfalls in the west. The north coast is sub-tropical with
views of data, and animation can be helpful to the data high summer rainfall, while in the south the mountain
analyst. Much of this work has been done on the Macin-
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range is higher (Snowy Mountains) and has a more promi- 5.0 Lisp Stat
nent winter/spring rainfall. This is indicated in Figure 1.

% 5.1 Learning a New System

/-,Tro p ica l  Learning any new system can be a hassle whether it be a

new editor, a new word-processing system, or a new data
analysis system. At the most elementary level it is the dif-

Arid ference between

fun (x)

and

(fun x)

"-. That is just the beginning. How do you list a function?
Figure 1 What is a sensible operating environment for this system?

Our aim is to explore the data looking for patterns that So given these likely problems, it came as a surprise to

may be interesting. Clearly, plotting the map will be use- discover that Lisp-Stat is fun, and a challenge. This is

ful, and comparing patterns for rainfall between regions largely because of the graphics that can be achieved, and is
will be one feature to explore helped by the book which guides you between learning by

doing, then absorbing new concepts. To give an example,

by page 62 your are presented with an example of a dozen

3.0 DataDesk lines of code. This generates a scatterplot and a slider con-
trol (Figure 2) which sets the parameter of a Box-Cox

Datadesk on the Macintosh has gone a long way with the power transformation. As you move the slider, the plot

concept of linked views. It can display scatterplots, shows the effect.

lineplots, barcharts, piecharis, boxplots, and probability
plots. Any number of these can be displayed with linkages
between them.

However, it did not seem that we could plot a map of the .

regions, so we did not pursue DataDesk any further. Of
course, we went out of our way to identify a dataset that Cl...

did not fit the brush/spin mould.

4.0 Xgobi

Xgobi is similar. It has addressed the needs of brushing
and spinning, and done a really excellent job of it. The
user controls are well designed and operate smoothly.
Color is used effectively, and re-scaling and rotation are
beautiful to watch.

However, it does not appear that our requirement for a
map of regions fits in at all. Figure 2
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5.2 Using Lisp-Stat to look at rainfalls

Plotting the map of regions is quite straightforward. Once - 1
10

the data variables have been set up all that is needed is E-

PLOT-MAP - draws a map of NSW:

(defun plot-map()
(def plotmap (plot-points

mgns-x mgns-y :title
"Map of NSW" NIL)) IT;

(send plotmap :x-axis nil nil 5) K
(send plotmap :y-axis nil nil 5)
(send plotmap :clear-points) "
(send plotmap :size 380 270) -

(send plotmap :location 3 80)
(dotimes (i 30)

(send plotmap :add-lines
(select reg-x i) A
(select reg-y i)) Figure 3

(send plotmap :add-points 6.2 Locating Regions
centres-x centres-y ) The first demonstration has two windows, one showing a

(send plotmap :linked t) histogram of average total annual rainfalls for the regions,
and the other showing a map of the regions. Then by
pointing at any bar(s) of the histogram, the corresponding

Instead of trying to add a label to each region, Lisp-Stat regions of the map are shaded in the same color as the his-
makes it very easy to have the list of names as a linked togram bar (Figure 4).
window, so that as you point at regions, the corresponding
names highlight (Figure 3). Finally Lisp-Stat offers a
range of statistical functions that can be used to explore
the data.

..........

6.0 S-PLUS .

6.1 The versions we used

We started this work using a version of New S (June 89
tape) that had been modified to permit multiple graphics
windows simultaneously. We then received a beta copy of l /
S-PLUS 3.0 which has this same facility. We did not use
any other new facilities of S-PLUS 3.0 for these demontra-
tions. Figure 4

The skeleton of the S function to do this is:
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demol <- function()

Xll() # open first window .TT hWu R f1 TGW M

histogram( ...

repeat { ,, ,= - -- J
loc.list <- locator(...)
if (...) 1# have selection

if (first) f

X11() #second window
plot(..) #map

else ... # select 2nd h.A-RAl,-M

for(.. . # over selections
for (...) # regions .

polygon(..) Figure5

else break # no selection is shown by drawing a line between the two regions. We

have used the monthly averages, and then focussed on the
.# finish up small number of correlations that are negative (Figure 6).

This runs fast enough (on a Sun 4), and the main short-
coming is lack of visible feedback as the mouse is used. i.. .- ftv

The user has to know that locator will be expecting input
in window 1. While one can add S code to provide visual
cues, this only partly solves the problem.

6.3 Pointing at Regions
2/

The inverse operation is simple. F'rst place a map on the
screen, and then as the user points at regions, pop up a I -- _ _ _ _

window showing some summary of the data for that
region. So an argument to this function, is a function to
produce a summary graph for the selected region. Obvious I
possibilities are the total annual rainfall for the 70 years, or
the average monthly rainfall for the 12 months. Here we
show the average monthly rainfalls (Figure 5).

Figure 6

6.4 Locating Correlations

Given that we can summarize each region by 12 monthly It turns out that all these negative correlations are between

averages or 70 annual totals, we can look at correlations the sub-tropical north-cast coast, and the Snowy Moun-

between regions. It is then useful to be able to relate given tains. The next step is then to look at the monthly patterns

correlations to the map. In this example, the correlations for these regions, and the function provides for this.

are presented in a histogram, and their location on the map
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The main point to be made from these examples, is that the be tempting to provide a slider for the adjustment of the
big advantage of S is the flexibility in defining the graph- smoothing parameter for these trend-lines (Figure 7).
ics required, and the range of analyses that can be called
on.

7.0 Conclusions
For a given region there are two plots of interest. The aver-
age monthly rainfall for each of the 12 months, and the Having deliberately chosen a data-set that was not well
pattern of wet/dry years, as shown by a plot of 70 total served by brushing or spinning of scatterplots, it is not sur-
annual rainfalls. They are both shown here. The annual prising that we did not make progress with less program-
total rainfalls show a smoothed trend-line fitted using a mable tools like Datadesk and Xgobi.
cubic spline routine that was dynamically loaded. It would
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Lisp-Stat provides a good environment for implementing
the linked views required. It is easy to program the graphs
required, and the responsiveness of the system is good.
However, the range of procedures available is limited, and
at the next stage of the data analysis scenario, this may
have become a real limitation.

S-PLUS, on the other hand has an extensive range of sta-
tistical functions, and it is likely that whatever else we
would want to try could easily be done. The graphics are
also flexible so that whatever style of display we require, it
should be achievable. The multiple graphics windows
make the multiple views possible. However the shortcom-
ing is the degree of responsiveness to the mouse.

Since S-PLUS would be our preferred working environ-
ment, the ideal solution would be to have improved facili-
ties for providing linked displays in this environment.
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An Application of Subregion Adaptive Numerical
Integration to a Bayesian Inference Problem *

Alan Genz Robert E. Kass
School of EE and CS Department of Statistics

Washington State University Carnegie Mellon University
Pullman, WA 99164-2752 Pittsburgh, PA 15213-3890

Abstract uct of twenty one-dimensional integrals. Although the
results given are for only one specific example, the gen-

Well-tested and available software for evaluating multi- eral approach described here should be useful in a variety
dimensional integrals of moderate dimensionality may be of other applications.
adapted for use in Bayesian inference via elementary pa-
rameter transformations. We illustrate with an example
from cognitive modeling of error rates in computer-based 2 Adaptive Integration
tasks, in which the parameter being integrated is six-
dimensional and the integrand itself requires a product Subregion adaptive integration methods are based on the

of twenty one-dimensional integrations for each function fundamental assumption that the integrand in the prob-

evaluation. This method appears competitive with, and lem of interest can be accurately approximated locally by

may be superior to, alternative methods when the trans- a low degree multivariate polynomial. The basic strat-

formations are well chosen. egy for a subregion adaptive algorithm is to dynamically
subdivide the initial integration region R into smaller and

KEY WORDS: adaptive integration, hierarchical models, smaller subregions that are concentrated in the parts of

multiple integrals, posterior computation. R where the integrand is more irregular. The hope is that
at some stage in this process the region R is sufficiently
well partitioned that the combined integrated polynomial

1 Introduction approximations for all of the subregions provide an accu-
rate approximation to the initial integral. Typical input

Many Bayesian analysis computations require eval- for this type of algorithm consists of (i) a description of

uation of multidimensional integrals in the form the initial integration region R, (ii) the integrand, (iii)

f h(A)L(A)?r(A)dA, where L(A) is the likelihood function, an error tolerance c and (iv) a limit kmaz on the total

7r(A) is the prior density, and A is m-dimensional. Among number of subregions allowed.
integration problems generally, these are special because The adaptive algorithm itself also requires a basic in-

the likelihood function is often peaked near its maximum tegration rule (or formula) B and an associated error es-

and thus locally of an approximately normal form. In- timation rule E. We let Bi be the approximation to the

tegration strategies often try to take advantage of this integral in a subregion R, obtained using the basic rule,
special situation (e.g., Geweke, 1989; Naylor and Smith, and let E be the estimate for the absolute error in Bi. If

1982). Here we show how subregion adaptive numerical at some stage in the algorithm R has been subdivided into

integration (Berntsen, Espelid, and Genz, 1991a,b) over k subregions, the relevant pieces of information are kept

the m-dimensional unit cube may be used following an el- in a list S = {(R 1 , B1 , E1 ), (R 2 , B2 , E2), ... , (Rk, Bk, Ek)}.
ementary parameter transformation that accommodates Initially we set R, = R with k =1 and compute B1 and
the local form of the likelihood function. We apply the El. There are many possible adaptive strategies that
method to computations for a hierarchical model in which may be used to dynamically refine the list S. The soft-

rn = 6 but each evaluation of L(A) itself involves a prod- ware (Berntsen, Espelid, and Genz, 1991b) that we have
used for the tests described in Section 5 uses a globally

*This work was supported in part by NSF Grant DMS-9008125. adaptive algorithm. The main loop for this algorithm has
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the general form: of work from the user, however. Furthermore, when the
algorithm is applied following this kind of transformation

while (Fi= Ei > c and k < kma,) do it may lose efficiency by spending large amounts of time
a) determine j with Ej = ax =,Ei finding the subregions in which the contributions to the
b) divide Rj into two pieces; Rj = ij U Rk+I integral are large. For the same reason, any kind of a pri-
c) compute (Bj, Ej) and (Bk+l, Ek+) oi specification of the transformation is likely to produce
d) set. k = k + 1 an integrand that is poorly suited to the adaptive algo-

end while rithm. In order to obtain more efficient computation a
transformation should force the algorithm to concentrate

In step (b) the selected subregion is divided in half function evaluations where the integrand contributes sub-
along the coordinate axis where the integrand is (locally) stantially to the integral.

most rapidly changing (see Berntsen, Espelid, and Genz, The general transformation method we use here is
1991a for details). The output from the algorithm is an based on the assumption (Chen, 1985) that the posterior

k density function is approximatel € multivariate normal. Inestim ate Ei.1 Bi for the integral, and an error estim ate t i a e ( r( ~ -X u ' -( -'/ o o e¢ n
'k ~this case, L()7r(.\) - e-(-\- ) / for some con-Fi=1 Ei. While software for this type of algorithm has stant c, and optimization can be used with iog(L()ir())

not been widely used by statisticians, it has been available to obtan o p t eion c ode used th o dal( coar i-

for several years. Software that uses a globally adaptive ance matrix e. If CCt is the Cholesky decomposition

subdivision algorithm was available in the NAG library of then we may transform the original integral using

starting in 1980, and in CMLIB starting in 1985. f = + C , followed by inverse normal transformations

on the individual y components to obtain

3 Transformations '

In order to use a subregion adaptive algorithm we first f J h(.)p())dA = I h(z)g(y(z))dz,
need to apply transformations to the integration vari-
ables so that the region of integration becomes a hyper- where g(y) = (27r)'eY'Y2p(p+Cy), h(z) = h(p+Cy(z))
rectangle. Many Bayesian analysis problems (including and y(z) = ( (Z) ... (z)) t .

the problem that will be discussed in Section 4) have a This joint transformation is more straightforward to
prior density function that is a product of commonly- apply than one that, would consist of separate transfor-
occurring one or two variable density functions, like the mations for each of the integration variables. In addition,
normal or gamnia density functions. In this case an as long as the stated assumption of approximate normal-
obvious choice for a prior transformation is simply to ity is correct, this method should be reasonably efficient
use the appropriate cumulative distribution function to because the transformed integrand should behave roughly
transform each of the variables. For example, if one as a piecewise low-order polynomial comprised of a com-
of the interation variables x has an associated factor paratively small number of pieces.
e-(( r - )/ ' 

/2/(,,Vr2-) in the prior with integration limits
-oo and x, then the change of variable x = p + ao4-(z)
with 4(t) = f' e-Y 2 /2dY/vfi allows the removal of the 4 An Example
associated exponential factor from the prior, an]t the z
variable integration limits become 0 and 1. A sequence An article by Carlin, Kass, Lerch and Huguenard (1990)
of transformations like this one can provide tile hyper- considers two cognitive models for predicting error rates
rectangular domain of integration needed for a subregion in computer-based tasks using the cognitive psychologi-
adaptive algorithm. cal concept of human working memory. Here we discuss

Although this approach might seem limited to situ- in detail the computations for one of these. The more
ations in which the prior is a product of distributions complicated model involves an integral
such as normal and ganinia and for which there are avail-
able good numerical routines to evaluate the distribution l(h) = f h(A)L(A)7r(A)dA
function, a simple modification of this approach would be E K 1 oM -- o
to base the transformations on elementary (list ributions
chosen in soe, convenient way bIt without necessarily with
matching the marginal priors. This couihl require a lot A ( , ,
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The prior 7r(A) is a product of normal densities, ex- 5 Computations
cept for the aq variable which contributes a factor
e-a 2 /d/0,(C+I). The likelihood function has the form The integral calculations all require a six-dimensional

outer integral of a function that requires a product ofe(,)_ ('

2 10 _- 1(2L.±)2 twenty one-dimensional inner integrals. The inner inte-
L(A) 11 i e C g(6'), A)d00')' grals were all computed with a simple subregion adaptive

i=lj=l- 0 F2 ' one-dimensional quadrature algorithm. This algorithm
is similar to the algorithm used by the QUADPACK

with (Piessens, deDoncker-Kapenga, and Kahaner, 1983) sub-
3 3 e 1+(k-l)+a[1/21+0ll3)z.J.kI routine QAG, with a 7-15 point Gauss-Kronrod pair cho-

g(o~i),A)= 1-[ 1-[. sen for the basic integration rule. The outer integrals were
k=1 1=1 (1 + [ 2 computed with a subregion adaptive m-dimensional algo-

Here, [x) is used to denote the integer part of x and the rithm using the SCUHRE (Berntsen, Espelid and Genz,
zi,j,k,I and nij,k~i values come from experimental data. 1991a,b) subroutine for vectors of integrals.

For prior transformations, we use appropriately chosen One problem with the computation of the inner inte-
inverse normal transformations on all of the variables ex- grals was how to set the required level of accuracy. Since

cept for ao. For this variable aq = d'/x, with d' = (2), the computation of all of these inner integrals is what
followed by an inverse normal transformation gives (in takes most of the time in the calculations, it was neces-

one variable) sary to choose this parameter with some care. The re-
sults in Tables 1 and 2 used a relative error tolerance for

ge ,)d a q 4P_(z + l2c d' each inner integral of 10-. A significantly smaller value
--2 d = ) g.( )dz. for the error tolerance significantly increased the compu-

2O tation time without significantly changing the results; a
Using these transformations on the prior and an inverse much larger value decreased the computation time but
normal transformation on each of the Likelhood inner in- changed the results significantly.
tegrals, I(h) now becomes A second problem with the inner integrals involved scal-

1 ,1 ing. Some experimentation showed that these inner inte-

I(h) = ... h(Z) (Z4 + 1 )2cL(z)dz, grals had values that were typically about 10- 6 . Because
Jo J.o 2 a product of twenty of these could cause underflow, we

where computed log(L(A)) using a sum of the logs of the inner

2 1 integral factors. This sum was initialized to the value

L(z) 1 l J]0(( 210, and the likelihood value was obtained by exponenti---) g( j (Sij), A(z))dsij, ating the final sum. The effect of this intialization was toscale the integral value by e2 11, but since the numbers of
h(z) = h(A(z)) and 0)(si-) - i ) + 0e Z4-(sij), interest all require a division by I(1), these scale factors

The modal approximation transformation can be used cancel.
almost directly with the integral I. The only difficulty In Tables 1 and 2 below, the results are given for
occurs with the variable ae, which has limits 0 and c. both types of transformations. The adaptive integra-
We use an initial transformation o, = log(aq), and tion software computed the vector of integrals 1(h) for

then use optimization to obtain the mode A and modal h = 1,, and then scaled the re-
covariance matrix E with Cholesky factor C. suits by I(1) to obtain the required expected values.

The integral I(h) can then be put into the form Since the major part of the computation is the compu-
tation of the likelihood products, the time was reduced by

1(h) = (27r)a1CI... h(A(z))p(A(z))dz, an approximate factor of 1/7 by the simultaneous compu-
J o 0tation of all the integrals (i.e., for all 7 choices of h). The

with prior transformation results required approximately four
hours of single precision computation time on a DECsta-

p(A(z)) ew,4+ 2 h(A(z))L(A(z))r(A(z)), tion 3100 (14 mips). The modal transformation results
required approximately twenty minutes. In both tables,

where A(z) = (w, w 2 ,w3 , Cw4', W5 , W6 )' is defined using the numbers in the rows labelled "L(A)'s" are the num-
w = A + Cy(z) with y(z) -- (b(z), ... ,$-(zn))t. hers of evaluations of L(A)r(A). Several columns of re-
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suits are given to illustrate the speed of convergence, and tegration method is used. The prior transformations that
allow some estimation of the accuracy in the results. were used to obtain the less accurate results are trans-

Table 1: Prior Transformation Results formations that might naturally be chosen by a numeri-
L(,\)'s 5957 11753 23989 47817 cal analyst, without a deeper knowledge of the expected

1.068 1.065 1.068 1.064 approximate multivariate normal structure for the com-
) -4.328 -4.322 -4.320 -4.314 plete integrand. On the other hand, subregion adaptive

-(2) integration methods are not widely used by statisticians.
98  -4.961 -4.964 -4.946 -4.939 The relatively small number of function evaluations we

log(tr) 0.178 0.183 0.184 0.181 found to be required when using the modal transforma-
6 1.397 1.391 1.396 1.395 tion makes us optimistic that, together with this kind of
i3 0.796 0.789 0.794 0.793 modification, subregion adaptive integration could prove

Table 2: Modal Transformation Results to be competitive with, or superior to, available alterna-
L(A)'s 483 1449 3059 tives for solving similar numerical integration problems.

1.062 1.062 1.062
-4.311 -4.310 -4.310 References

t02) -4.930 -4.935 -4.936
log(o) 0.174 0.175 0.176 Carlin, B.P., Kass, R.E., Lerch, F.J. and Huguenard,

& 1.394 1.394 1.394 B.R. (1990) Predicting working memory failure: a
__ 0.793 0.793 0.793 subjective Bayesian approach to model selection,

It is clear that, the modal transformation results in the Technical Report No. 503, Department of Statistics,
first column of Table 2 are accurate to 2-3 digits, but the Carnegie Mellon University.
prior transformation results do not have this level of ac- Berntsen, J., Espelid, TO. and Genz, A. (1991a) An
curacy until the last columnn. In this example we can see adptvenJ a li, fO a e alcuation
that the modal trnsfornmation method takes about 1/100 adaptive algorithm for the approxinmte calculation

of the time taken by the prior transformation method to of mitiple integrals, ACM Trans. Math. Soft., to

achieve a comparable level of accuracy. The modal trans- appear.

formation results in the first, coluni of 'Fable 2 were ac- Berntsen, J., Espelid, T.O. and Genz, A. (1991b) An
tually obtained by the adaptive algorithm using only two adaptive multiple integration routine for a vector of
subregions. The basic integration rule used here has de- integrals, ACM Trans. Math. Soft., to appear.
gree seven, so that the transformed integrand apparently
has a good local degree seven polynomial approximation. Chen, C.F. (1985) On asymptotic normality of limit-
One problem that we had with the subregion adaptive ing density functions with Bayesian implications. J.
software was with the error estimates. The estimates pro- Royal Statist. Soc., 47, 540-546.
vided by the software for the relative errors in the final
column Table 2 results were approximately 0.1, while the Geweke, 3. (1989) Bayesian inference in econometric
actual results apparently have much smaller errors. This model usn M tCo er n. n t
problem is not uncommon with this type software, where rica, 57, 1317-1339.
the error estimates are usually very conservative. The Naylor, J.C. and Smith, A.F.M. (1982) Applications of a
usual solution to this problem is to take the approach method for the the efficient computation of posterior
that we have taken, and that, is to estimate accuracy by distributions. Applied Statist., 31, 214-225.
looking at, the level of agreement -between results from
finer and finer subdivisions. Piessens, R., deDoncker-Kapenga, E., Uberhuber, C.W.

and Kahaner, D.K. (1983) QUADPACK, Springer-

6 Concluding Remarks Verlag, Heidelberg.

The reported results demonstrate the potential of subre-
gion adaptive integration for solution of numerical inte-
gration problems in Bayesian analysis. The results also
demonstrate the importance of choosing a good transfor-
mation to precondit ion the problen before a iumerical in-
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APPROXIMATIONS OF THE NORMAL-LOGISTIC CONVOLUTION INTEGRAL

John F. Monahan and Leonard A. Stefanski
Department of Statistics

North Carolina State University, Raleigh, NC 27695 - 8203

Abstract In the measurement error model, we observe Z

The normal-logistic convolution arises in several and not X and the distribution of X I Z = z is

statistical applications, including logistic regression expressed as Normal( p(z), Q(z) ). Then we have the

models and multinomial logit models. We begin by observed outcome probability structure

characterizing the logistic distribution as a scale Pr(Y=IlZ=z) = G(q = 6TP(z), r = /3TQ(z) 5).

mixture of normals. We then construct least In the random effects model, most commonly random

maximum approximations of the logistic distribution litter effects in animal experiments, we have the

function using finite discrete mixtures of normal df's random effect for litter i, and subjects j within the

using the Remes algorithm. The convolution integral litter. The survival probability for the subjects in

follows by convolving this approximation with the litter i (with covariates X.) is then given by

normal. Pr(Yij=g 1 jX i, i ) -F( /Tx i + i

1. Introduction

Logistic regression has become one of the most so that the expected number surviving in litter i is

popular methods of analyzing experiments with E( Yi. I Xi= xi) = ni G( #Txi , r )

discrete or binary outcomes. The most common where r is the standard deviation of the random litter

situation models the survival probability of a patient effect. In the third situation, following a Bayesian

given a specified dosage, that is argument, one may from the logististic regression

Pr( patient survives receives dose x) analysis of an experiment have an approximate

= Pr( Y=1 I X = x) posterior distribution for the regression coefficient

= F(OTx) vector # that is multivariate normal,

where F(t) is the logistic distribution function F(t) = % % Normal( /, J-1 ).

(1 + e-t1 = et / (1 + et) and # is a vector of To construct the forecast probability of survival a

unknown regression coefficients to be estimated. The patient with covariates X = x, one must compute the

normal-logistic convolution, G(,r) defined by convolution integral in the form

G(q1 ,r) = f F(t) r"10( t ) dt 7- Pr(Y = I I X =x)=G( Tx, 4x ).
= Pr(Logistic RV < t, t - Normal(rq, r2 ))

In all three applications, the convolution integral
arises in three related situations: measurement errors, G(iq,r) will be computed often, and fast, accurate

random effects, and forecasts. caluculations are required.

92-19638
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2. Key Result and Implications must be determined. While the ultimate goal is to

Stefanski (1990) proved that the logistic make the error I G - Gki small, achieving this over

distribution can be expressed as a scale mixture of both parameters Yj and r is quite difficult. Making

normals, that is F(t) f 0(ts) q(s) ds where Z(.) is the error for the mixing distribution I Q - QkI small

the standard normal distribution function. The can provide a bound for the error I G - Gk, but

mixing distribution q(s) is, strangely enough, related choosing the best here cannot guarantee small error in

to the Kolmogorov-Smirnov distribution, but that is Gk. Our approach has been to find the best { pj, sj,
not important here. The following calculations show j=l,...,k } to minimize the maximum over t of

k
the implications of this result to the computation of I F(t) - Fk(t) 1, where Fk(t) pi 4( t sj) the

j =
G( q, r): approximation to the logistic df. An accurate least

G( P7, r ) f f F(t) 10( (t-;i)/r ) dt maximum or "Chebyshev" approximation to F will

= f {fP(ts) r-10( (t-i?)/r ) dt I dQ(s) then lead to an accurate approxi'nation to G.
Least maximum approximations are the staple

where the expression in braces can be expressed in of function approximations for computer evaluations

probabilistic terms for simplification (Hart, et al., 1968). However, usually the

{ } = Pr(Z < ts where Z - N(0, 1) approximant is a polynomial or a rational function.
and t -N(q, 12 )) Taking the polynomial case for illustration, let

p

= Pr( Z - ts < 0) Hp(x) =E a x- be approximating the function H(x).

Then, according to Chebyshev's Theorem, the least

()7s / ,,I + s 2 ).maximum approximation will leave the difference

The convolution integral G can then be evaluated as function d(x) = H(x) - Hp(x) with extrema that

G( r/, r ) - f *( 17S / ,J1 + s2r2 ) dQis), alternate in sign and achieve equal magnitudes. With

a polynomial Hp(x) of degree p, with p+ 1 parameters,
For computation, the integration with respect to the there will be p+2 extrema for the least maximum

mixing distribution dQ(s) is approximated by a k approximation. The algorithm commonly used for

point discrete distribution Qk(S) with masses pj at s finding such an approximation, the Remes Algorithm.

for j = 1,..., k. The approximations Gk(r7, r ) now follows these steps:

only require evaluations of ERF/ERFC :
k Remes Algorithm

Gk( r j, r ) = p. *( 1 1sj / + ) a) Find p+1 roots { zi} of the difference function
d(x)

3. Least Maximum Approximations b) Find p+2 extrema { xi)
The expression for GO( , ) shows only the c) Solve the linear equations in f aj, j = 0,.... p). D

premise of a computational method for computing the d(xi) = H(xi) - Hp(x i) = (-1)i+lD

convolution integral G, since the discrete for i 1, ..., p+2

approximation Qk in terms of { pJ, sj, j=l,...,k } d) Repeat
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In our situation, the approximant Fk(t) is not a Table 1 gives the values of D* = sup I Dk(t) [ for k =

polynomial, but a complicated function Fk(t) 1, ... , 8.
k
1 p 0( tsj) with 2k-I parameters (Epj = 1). If an While the original problem was the

j=1
analogous approach can be successful here, we would approximation of G(i/, r) by Gk(1, T), an accurate

hope to find 2k-1 roots of the difference function solution to the approximation of F(t) by Fk(t) was

Dk(t) = F(t) - Fk(t) and -k extrema alternating in hoped to lead to an accurate Gk(7, T). We have

sign and equal in magnitude. Some special found that since our approximations Gk('?, r) improve

considerations include symmetry about 0, since with increasing r, the error Dk also bounds the error

Dk(-t) = - Dk(t), and D(0) = 0 because F(O) = 1/2 = I G - GkI for all q, r. Other approximations based on

X"pj(P(0sj). Moreover, since F(t) -4 0 slower than Taylor-like expansions, quickly fail when r increases.

0(st) for large t, then Dk(t) will be negative for large While the Crouch-Spiegelman method can achieve any

t. Also, Dk(t) will have a positive slope at the origin, level of accuracy, their approach requires many more

These considerations lead to an even number of evaluations and its use is not appropriate for the

extrema, which luckily matches the odd number of applications mentioned here.

parameters 2k-1. Our algorithm for finding the least 4

maximum approximation differs from the Remes E. Crouch and D. Spiegelman (1990) The evaluation

algorithm only in that we solve a system of nonlinear of integrals of the form ff(t) exp{-t 2 )dt.
and D of the form D Application to logistic-normal models. Journal of

jk(Xi) the American Statistical Association, Volume 85,()i+lD. pp. 464-469.

In spite of these obstacles we have been able to John F. Hart, et a]. (1968) Computer

find approximants Fk(t) whose difference function has Approximations, Wiley, New York.

extrema that alternate in sign and have equal Leonard A. Stefanski (1990) A Normal Scale

magnitudes, and we suppose, but have not proven, Representation of the Logistic Distribution,
Statistics & Probability Letters, Volume 11, pp.that the approximants are the least maximum 6-0
69-70.

approximations. For small values of k, we could

obtain starting values by trial and error. But for Table 1

larger values of k, we found starting values by Accuracy of Approximations

successive nonlinear regression, minimizing over I pj, k D* k

sj} the weighted sum of squares
1 9.5(-3) 5 6.0(-7)

E wi [ F(xi) - Fk(xi)] 2 2 5.1(-4) 6 8.4(-8)
3 4.4(-5) 7 1.3(-8)

By taking wi = [ F(xi) - Fk(xi) ] 2r we are able to 4 4.7(-6) 8 2.1(-9)

minimize the 2r+2 norm, and by increasing r,

approach the Chebyshev solution. We were able to

achieve high accuracy for these approximations.
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AUTOMATIC DETECTION AND TREATMENT OF SINGULAR INTEGRALS

Chaiho C. Wang
Antitrust Division, U.S. Department of Justice

Washington, DC 20001

Abstract computer power would yield more accurate results. Part
of the reliability requirement also goes together with
robustness, since the integrator is required to handle a

Manynumricl itegatin agorthm ca hadle broad range of integrals and also be predictable. A key

singular integrals effectively if they are told the locations requirement for an automatic integrator is the ability to

of the singularities. This paper gives algorithms for (1) handle singularities. Otherwise, an integrator can be
prescreening the integrand for the locations of hadesnuaie.Otrwenitgaorcnb
pscrgulainthes, nand for thculocatingcomp ose o automatic in all other applications but will break down
singularities, and (2) circumventing compiler-imposed when encountering a singular integral.

accuracy restrictions. In application, the algorithms are

used together with a core Romberg type algorithm. The Core Integrator
While transformations may be needed to handle
"pathological" integrals that converge very slowly, most
integrals, including nearly all probability integrals, can be The core integrator is an extended Romberg (RE)

evaluated quickly and accurately. algorithm given by Wang [61. The merits of classic
Romberg are fully explored in Bauer, Rutishauser and
Stiefel [1]. The method is valid for all Riemann integrals
(it is therefore robust). It converges rapidly (and is

Introduction therefore efficient). Finally, it is predictably accurate;
(i.e. reliable). The performance of the classic Romberg

Semi-automatic numerical algorithms are available method, however, depends on the asymptotic behavior of

allowing the user to perform integration by simply specify the integrand. If the integrand converges slowly

the form of the integrand, the limits of integration and somewhere on the interval of integration, such as in the

the accuracy requirement. Some algorithms also allow neighborhood of a singular point, however, the accuracy

evaluation of singular integrals by specifying, in addition, may be unsatisfactory. The RE method treats the range

the locations of singular points of the integrand. This of integration "dynamically," adjusting to the asymptotic

paper presents an algorithm for detecting the location of behavior of the integrand. Essentially, we have an

singularities. Once the locations are known, a semi- integral

automatic procedure can evaluate the integrals b

accordingly. -=ff (x) dX

A true automatic integrator, like a robot driven a

automobile in the streets of New York City, has not yet
been perfected. Semi-automatic integrators, which such that

require a minimal amount of human steering, are a a2 + a
available. A number of automatic integrators were =a a, + ". a1_
presented in Davis and Rabinowitz [31. The three
qualities required of an automatic integrator, as defined
by Davis and Rabinowitz, are efficiency, reliability, and where ao  a, a,, = b, and

robustness. The automatic handling, of course, defines a

the fourth quality a non-automatic integrator does not ra' f (x) dx
possess: convenience. As micro-computers become J
increasingly powerful and computer time less costly, other aj
than in real-time applications, the importance of
efficiency is fast diminishing. Since reliability often The additive decomposition is valid provided that the

depends on efficiency and computing power, its conditions for the Romberg method--the integral is

prominence is also declining. A little muscle-flexing of Riemann and hounded--are satisfied in each interval
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(a1, a.+,). Mathematically, if the integral is Riemann in In the interval (a., b.),forj=1,...,n,
(a, b), it should be Reimann in (a, aj+1) for all j. In
practice, the classic Romberg method operating in (a, b) compute yj = f(a + (0 + 1)h), and
may not get close enough to the singularity points to Dyj = ([(a + ] + 1)h)-f(a +jh))/h
cause problems, even though it would not yield very
accurate results. But in a narrow neighborhood, such as 5. Zero in.
in one of the sub-intervals (ai, aj+l), a singular point
would be more likely to cause computational difficulties. If yyj-1 < 0 or Dy)y_ < 0,

The RE algorithm has been tested successfully for Readjust the intervals:
evaluating internals with end-point singularities (as well
as improper integrals). Evans, Hyslop and Morgan [4] a=a+jh, b=a+(Y+ )h, and go back to step 1.
gave many test integrals including 12 from Chisholm,
Genz and Rowlands [2], 9 from Harris and Evens [51, and 6. Repeat the steps 1-5, until some point x, (y=f(x.))
10 of their own. The various Gaussian-type methods used where Iy is sufficiently large to resemble infinity.
and discussed in Evans, et al., have achieved accuracy
from 3 to 10 digits. In particular, the e-Patterson Declare xs a singularitypoint.
procedure used by Evans, et al., have consistently reached
10-digit accuracy. The RE procedure had little trouble
getting 10-digit accuracy for all but two oscillatory The Under- and Over-flowing Problem
(trigonometric) integrals. More precisely, RE obtained 7-
digit accuracy for the oscillatory integrals, and 15-digit In order for the algorithm to work, we must work
accuracy for all other integral. With the exception of a within and around the limit of the computation
pathologically slowly converging integral environment. The arithmetic processor sets a boundary

around what it recognizes as a valid real number. For
= 0-6_ ==.06 _, example, a given Fortran compiler may recognize a

'f (double precision) real number as one in the interval
0 (-2*10 3O8, 2*10308). A zero, therefore, can retain an

accuracy close to 10-308. In order to identify a singularity
no functional transformation of the integrand was before we are blown out by an overflowing or
required. For I,, after an exponential transformation, RE underflowing problem, we need to compute using those
obtained the exact value for the integral, very "large" or "small" numbers. A relatively easy way to

circumvent the boundary problems is to retool all
Detecting Singularity arithmetic operations and intrinsic functions, including

multiplication, division, exponentiation, logarithmic and
In order to move closer to an automatic setting, we trigonometric functions. For example, the division x/y

present a simple algorithm for detecting singularity of the can be rewritten as x div y, which does everything x/y
integrand. The algorithm is based on a search process. would do except when y is "zero",(say, less than, 10-307),
The idea is to find a neighborhood of a singular point at which point it will stop and give a message, without
where the absolute value of the function is large, and having to discontinue the program. The ordinary
either the function or its derivative changes sign. division x/y,would in this case have killed the program.

1. Let h = (b-a)/n for suitable n. The Significant-Digit Barrier

2. Select a. < a-2h, and b. > b+ 2h, such that neither a-a. The second limitation the arithmetic processor sets a
or b-b. is a multiple of h. limit on accuracy. For example, a given Fortran

compiler may allow a double precision arithmetic to
3. Initialize. carry 15 to 16 significant digits before truncation or

rounding takes place. Although the apparent range of
Compute yo f(a.+h), Dyo (fa.+h) -f(a.))/h valid numbers is (-2*lO308, 2*10308), it is full of

enormous holes. All numbeis that must be represented
4. Searching. by 17 or more digits would fall into those holes.

Consider the integral
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1

If=f(x) dx Practically, there is little we can do to resolve this
0 problem. For certain integrals, but not in general, a

transformation of the integrand can shift a singularity
with singularities at both end points. The lower limit, 0, away from a non-zero point to zero. Then things
as approximated by 10-3° s and is accurate to the 308th become more manageable.
digit. But the upper limit, 1, if inexact, cannot be
represented from below by anything better than References
0.9999999999999999. As a consequence, a chunk of I,
namely the integral 1. Bauer, F. L., Rutishauser, H. and Stiefel, E. (1963).

1 New Aspects in Numerical Integration, Proceedings of

1= f f(x) dx Symposia in Applied Mathematics, Vol. XV, Am. Math.
0.99999999999999 Soc.

cannot be captured. It becomes a part of the error. 2. Chisholm, J. S. R., Genz, A. and Rowlands, G. E.

(1973). Accelerated Convergence of Sequences of
For example, the value of it can be represented by the Quadrature Approximations, J. Comp. Physics, 10, 284-

integral 307.

1 3. Davis, P. J. and Rabinowitz, P. (1984). Numerical
-I 2 =f t 2 (1-t) 2 dt Integration, Blaisdell, Waltham, Massachusetts.

0
4. Evan, G. A., Haslop J., and Morgan, A. P. G. (1983).

treated as an integral with singularities at both ends, or An Extrapolation Procedure for the Evaluation of
by the integrals Singular Integrals, Intern. J. Computer Maths. 12,251-265.

1/2 1 1 5. Harris, C. G. and Evans, W. A. B. (1977). Extension
1,=2f X 2 (1_X) 2 dX of Numerical Quadrature Formulae to Cater for End

0 Point Singular Behavior over Finite Intervals, J.
Computer Math. 6, 219-227.

and
6. Wang, C. C. (1990). A Bread-and-Butter Algorithm for

1 1 1 Probability Integrals, Proceedings of the 22nd Symposium

2fX2(l-x) 2 " on the Interface of Computing Science and Statistics, in
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each treated as an integral with a singularity at one of the Note
two ends. For 13, the integrand is singular at 0; the RE
procedure returned a value of 3.141592653589793, The views expressed in this paper do not necessarily
accurate to 16 digits. For 12 or 14 , the integrand is reflect those of the U.S. Department of Justice.
singular at 1. In both cases, the result is 3.141589...,
accurate to five digits.



92-19640

AD-P007 188 l2f1l4 tfon 451

111111111 J ii i1ii lM 
1U

Computation of the Multinomial Distribution Function

Trong Wu
Department of Computer Science

Southern Illinois University at Edwardsville
Edwardsville, Illinois 62026

effective method to compute the probabilities
Abstract for the multinomial distribution function

accurately and efficiently. Section 2 diccusses
The computation of the multinomial some important applications of the
distribution function is of interest to many multinomial distribution function. Section 3
researchers and practicers who are working in presents the new method and its
the areas of engineering and in the related mathematical foundations. Finally, some
disciplines of computing sciences. The computational examples are given in Section 4
accurate computation of probabilities is very and conclusions in Section 5.
important in some applied areas. A direct
computation is not only difficult, due to the
limitation of the computer systems, but also 2. Applications of Multinomial
inaccurate, as a result of many redundant Distribution Function
computations. This research is to develop an
effective method to compute the weight Let Ei (i=, 2, ... , k) be k mutually
probabilities for the multinomial distribution independent events, and the probability of
function accurately and efficiently. occurrence of the event E is equal to qi. Then

the joint distribution of the random variables
n (i = 1, 2, ... , k) representing the numbers

1. Introduction ot occurrences of the events E- (1, 2, ... , k)
respectively, in N trials (with n,+ n2 + ... +

Accurate probabilities of the multinomial n = N) is called multinomial distribution
distribution function are very important in function and defined by
many theoretical and applied areas related to
engineering and computing sciences. P(n 1, n , , nk) = N _k( qNn 1 )l

However, the direct computation is still i1
considered difficult due to the computation of
factorials and decimal numbers; the The multinomial distribution function
limitations of computer systems such as is employed in many diverse fields of
overflow, underflow, and the maximum statistical analysis. In general, it is used in
accuracy; the programming techniques such as the same circumstances as those in which a
writing a reliable and efficient program; and binomial distribution might be used, when
the time consumed by computing. there are multiple categories of events insteadof a simple dichotomy. For example:

As a result, currently, there are no
software packages available for the In computer science, a program
computation of the multinomial distribution requires I/0, input or output services from
function, such as IMSL Library 15], or an device i with probability q, at the end of a
effective algorithm for dealing with CPU, central processing unit, with q, + q2 +
computations. This paper presents an "'" + qk = 1. This situation gave rise to a
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multinomial distribution problem [6]. theorems from the theory of numbers [3]

If one observes n CPU burst which is stated and proved as below:

terminations, then the probability that & of Theorem 1. Let p be a prime. Then the
these will be directed to I/O device i (for i =

1, 2, ... , k) is given by the a multinomial exact exponents of p that divides n! is

probability mass function. One may also [] + [l + [ n+
replace the "I/O device" by a word "file" for [ J + 3+"'
the application in the database management
system. Another application of multinomial
distribunotion funcication ours inaopeting where [xJ is the largest integer less than x.distribution function occurs in a operating

system when we consider a paging system and Proof: For
we model a program using the independent
reference model [2]. In this model, we assume n 1- 2 • 3 ... (p - 1)
that successive page references are
independent and the probability of referencing p (p+l) (p+2) -. 2p ... (p-1) p
page i is qi.

Another important field of application . 2 (p 2+1) (p2+2) ...
is in the kinetic theory of classical physics [4].
Particles are considered to a cell in a six- pZ. (p3 +1). (p3+2)...
dimensional space, three for position and the
other three for velocity. Each allocation of N ...... (n-1) • n.
particles among the k cells available
constitutes a microstate. The thermodynamic We see that the number of p's factors
probability of a macrostate is proportional to is [n/pj the number of p 2's factor is [n/p 2j,
the multinomial distribution function. the number of p3 's factors is [n/p 3], and so

forth. Then the Theorem follows.

3. The Method and Its Mathematical From Theorem 1, we are able to factor
Foundations the n!, for all n > 1, as a product of prime

numbers. The result is given in Theorem 2
This research will apply prime number below:
factorization to factorials and rewrite
probabilities q, (i=1, 2, ... , k) in the simplest Theorem 2. For any positive integer n > 2,
fraction form with denominator as a product the n! can be written as a product of prime
of prime numbers. Then the cancellation of numbers.
numerator and denominator is applied to
reduce the computational complexities to the n! = Pi " P2 Pr 3  Pk rk,
minimum and to achieve maximum accuracy.
Also the Ada programming language's special for some positive integer k.
features [1, 7], "exception handling" and
"tasking" are used to handle the difficulties of Example : Consider the 20!, we have the
computation such as: overflow and underflow following exponents of prime numbers:
problems, redundant multiplications and
divisions of the same numbers, and time 2
comsuming computation. These Ada special The exponent of 2 is 2+ [2j [9]+ [441
features will make the computation effective,
efficient, and accurate. The mathematical
foundation for this method is given as follows:

In order to reduce the computational = 10 + 5 + 2 + 1 = 18.

complexity of P(n 2, ... , nk), we need
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The exponent of 3 is [2Q] + [20] =6 + 2= 8. The probability,

P(4, 3, 2, 3, 5, 4, 3, 2, 3, 5)

The exponent of 5 is [2] = 4. =2.991453222293589049380971718357348 E - 11

U The time used for the computing is

1.299438476562500 E - 01

The exponent of 7 is [20 = 2.
P7 (3) n= 4, q, = 0.010

n2= 7, q2 = 0.090
The exponents of 11, 13, 17, and 19 are all n3 = 10, q3 = 0.020
equal to 1. n4= 3, q4 = 0.010

n= 12, q5 = 0.050
Hence, the 20!=218 .38 .54 .72 .11 .13 .17.19. n6 13, q6 = 0.120

n7 = 5, q7 = 0.130
n 8 = 7, qB = 0.020

4. Some Computational Results n9 = 21, q9 = 0.050
n10 = 3, qj0 = 0.250

The following sample results were obtained n1l = 9, qjj = 0.010
from an output of an Ada program; this n1 2 = 11, q12 = 0.020
program was running on a MicroVaxII n 13 = 6, q13 = 0.010
machine. The program can compute the n14 = 3, q14 

= 0.030
probabilities of multinomial distribution up to n15 = 7, q15 = 0.180
200 categories of events and some results and The probability,
their computation time are given as follows:

(1) n1 = 10, q, = 0.200 P(4, 7, 10, 3, 12, 13, 5, 7, 21, 3, 9, 11, 6, 3, 7)
n2 15, q2 = 0.300 =2.702573447966758657909159323569038 E - 47

n3 = 5, q3 = 0.100
n= 12, q4 = 0.200 The time used for the computing isn4 = 8, = 0.200 3.699951171875000 E - 01

The probability, 5. Conclusions

P(10, 15, 5, 12, 8) The computation of the multinomial
=4.260814931023565440708158220943350 E - 04 distribution function is in general a critical

The time used for the computing is problem due to the limitation of the computer
1.899414062500000 E - 01 systems and programming techniques. The

goal of a computation is accuracy; the time
(2) nj = 4, q, = 0.050 consumed for the computation must also

n= 3, q2 = 0.050 remain reasonably small. This research has
n3 2, q3 = 0.200 developed a method based on theorems from
n4= 3, q4 = 0.300 the theory of numbers and implemented them
n= 5, q5 = 0.200 in the Ada programming language, the former
n 6 = 4, q6 = 0.050 is to break the limitations of a computer
n7 = 3, q7 = 0.050 system and the later is to solve the technical
n8 = 2, q8 = 0.200 difficulty in the programming. Since the
n= 3, q9 = 0.300 computation of the multinomial distribution
n9 = 5, q10 = 0.200 function is a number theory problem ;n the

nature. The problem can only be solved in
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number theory.The results given in Section 4
have reached the predefined goal for this
computation.
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ABSTRACT shown in figure 1.
The system can operate interactively, but here it is work-

We describe the FPG machine, which uses similarity-based ing in "commentary" mode: the user presents an entire case;
retrieval and "simulated speculation" to convert pools of the system scans it element-by-element, offering comments.
data directly into quasi-expert advice. The central oper- This case initially seems malignant (note the early mention
ation is the retrieval of a small set of records similar to of related cases with diagnoses of infiltrating ductal carci-
a partially-instantiated new record. The system uses two noma); the fact that the mass has not changed in density and
statistical techniques to improve on the standard Euclidean has no comet (contradicting the system's guesses, which in
measure for calculating distance between two records repre- the nature of guesses will often be wrong) points in the other
sented as a vector of features. One is a facility to automat- direction ("cyst" and "fcd" refer to benign diagnoses); but
ically weight the importance of features which will add or further data, particularly the absence of a halo, tips the bal-
subtract to those features' contribution to the overall dis- ance, and the system guesses that this is a malignant mass.
tance score. The other is a means for separating the most This guess is correct, and the diagnosis was in fact infiltrat-
relevant records from the rest by finding a natural break in ing ductal carcinoma. This transcript is driven by a small
the ordering of the records by distance from the input. We collection of 67 cases, which is the only domain knowledge
explain the role these techniques play in the overall opera- provided.
tion of the system in the next section; the algorithms used
for the calculations are described in the appendices. 2 THE MODEL

1 INTRODUCTION An FGP machine is defined in terms of a single kind of data-
object and three primitive operators. These define a virtual

The program we've built is named the FGP machine, af- machine in terms of which the system is programmed. We
ter its basic operations-fetch, generalize and project. We summarize the essential points in the remainder of this se.-
imagine the FGP machine's database as a collection of re- tion; see [1] for further discussion.
gions in space (cf. the standard vector space text-retrieval Data-objects & databases.
model). Each element of the database corresponds to some FGP machines run off a database of a single type of data-
region. Nearby regions correspond to nearby cases. When object, a feature tuple to which we refer generically as a r. A
presented with an inquiry, the machine's basic task is to add r consists basically of a list of attribute-value pairs; we give
to the database a new region corresponding to the inquiry, examples below. An FGP database consists of an unordered
Stationing itself on top of this new region (so to speak), collection of r's. A new case for inclusion in the database is
the machine then looks around and reports the identities presented as a r, and a query is an incomplete r-a partial
of the nearby regions-these will correspond to elements of list of attribute-value pairs, with a request that the system
the database that are nearby to, in other words closely re- fill in certain missing ones. We use M to represent an un-
lated to, the subject of the inquiry. We can then inspect this ordered collection of r's; an FGP database of stored cases
list of nearby regions and "generalize"--determine which at- and paradigms is an M. £ is a list of r's ordered on their
tributes tend to be shared in common by all or by most of "closeness" to some other r: we explai: below.
them. We can guess that these common attributes are likely Primitive operators.
to hold true for the case being described in the inquiry as The three basic FGP operations are fetch, generalize and
well. project. They work as follows.

Having reached whatever conclusions seem reasonable, fetch maps a r and an M to an £: given a feature-tuple
the machine may now indulge in a bit of simulated specula- and a database of feature-tuples, it produces an ordered list
tion. Temporarily turning aside from the inquiry in hand, it of those feature-tuples in the database that are "closest to"
focusses on any "evocative possiblities" that may have sug- the r mentioned in the query. It is this operation that makes
gested themselves during the examination of nearby regions. use of the statistical techniques that are detailed in the ap-
An "evocative possibility" is a datum that might be true, pendices.
and that would be significant if it were. The calculation of ftch uses a two-step procedure. First it calculates a "dis-
evocativeness is discussed in appendix A. The machine's in- tch"usesm two-st poere Firt it c ates a "dis-
teraction with the user represents a combination of fairly safe tance" from the new point to every point in the database1 ;all
conclusions, speculation experiments and the subsequent in- 1This calculation needn't require that every r in M be examined;
vestigation of resulting guesses. An example transcript is we can use a hash scheme to direct attention to 7's that occupy corn-
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(AGE 58)
(MASS-DENSITY ISO-DENSE)
(MASS-BORDERLnOMPLETE? NO)
(MASS-TYPE-BORDER IRREGULAR)
(MASS-BORDELDEFIIED? 10) Speculating: MASS-DENSITYCHANGED?...

Guessing INCREASED - e.g.
case ((id 14) (age 46) (diagnosis CA.INF-DUCTAL))
case ((id 50) (age 70) (diagnosis CA.INFDUCTAL))

Speculating: MASS-COMET?...
Guessing YES - e.g.

case 14
case ((id 40) (age 69) (diagnosis CA.INFJDUCTAL))

(MASS-LOCATION UIL)
(MASS-SIZLCNANGED? YES)
(MASS.DEISITYCHAiGED? 10)
(MASS-COMET? NO) Speculating: BACKGROUND-DENSITY...

Guessing DENSE - e.g.
case ((id 21) (age 61) (diagnosis cyst))
case ((id 47) (age 45) (diagnosis (cd))

(MASS-HALO? NO)
(BACKGROUTD.DENS ITY MODERATE) Concluding

(ARCHITECTURAL DISTORTION? NO)

Speculating: MALIGNANT?...
Guessing YES - e.g. cases (2 6 8)

Speculating: SKIN.CHANGES...
Guessing RETRACTION - e.g. cases (2 8 28)

(SKIN-CHANGES NO)
(NIPPLE-INVERSION? 10)
(ADENOPATHY? 10)
(FAMILYISTORY-CANCER SISTER)
(PERSONAL.HISTORYCANCER NO) Closest known cases:

(19) (YES) (CA.INFDUCTAL)
(33) (YES) (CAINFDUCTAL)
(26) (YES) (CA-INFIDUCTAL)
(28) (YES) (CAINFDUCTAL)
(18) (YES) (CA)

YES has been concluded or guessed for MALIGNANT?

Speculating: DIAGNOSIS...
CA?
CA.INF.DUCTAL?

Figure 1: Transcript of an FGP machine operating in the domain of mammography. The user's case description is in the left
column, the system's commentary on the right.
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cases further away than some parametrized threshold are takes precedence over system guesses. The eztend operation
removed from further consideration. fetch's calculation not is complete when all values that can be concluded have been
only takes into consideration the number of shared attributes and all contradictions removed.
and their types, but also, in the context of a request to fill
in values for missing attributes, the "evocativeness" of each SIMULATED SPECULATION
with respect to the current goal-a more evocative feature
is one that recalls a group of cases with a more highly fo- Refocus is then invoked over the extended r. Its role is to
cussed set of values for the goal. The evocativeness of an examine a r and refocus attention from this entire r to one
attribute-value pair with respect to a goal attribute is in- (possibly small and conceivably unrepresentative) part of it.
versely proportional to the entropy (disorder) of the distri- This element considered in isolation may serve as a seed for
bution of values for the goal represented in the group of a new set of inferences. We call this process "simulated spec-
cases returned by fetch. See appendix A for details on how ulation." refocus may choose no, one or many data points;
this value is calculated. Next fetch checks to see if there each chosen data point becomes the current r in turn. The
exists a well-defined group of "close" points among those re- more evocative a data point with respect to the goal-the
maining by performing a crude cluster analysis. Appendix B more sharply-defined the cases nearby a r consisting only of
describes the clustering algorithm. An ordered list of these that data point with respect to the goal attribute, in other
close points is returned as fetch's value, words-the likelier target for refocus. The more sharply a

generalize maps an £ to a r: it takes an ordered list data point stands out from the pack-by assumption it won't
of feature-tuples and compresses them into a single new stand out clearly enough to qualify as a conclusion, but there
feature-tuple. The weighter a r and the closer it is to the are many intermediate shadings here-the likelier a refocus
top of the list, the larger the contribution its attribute-value target.
pairs make to the combined r returned by generalize. Sup- Typically, the system will examine each of a small set
pose we query on the r (name apple), and suppose that M of values associated with a particular attribute whose value,
holds one hundred individual apples, half red and half yellow; if known, would focus the search space considerably. The
a generalize operation over a list consisting of one hundred system performs the basic fetch-generalize cycle on each of
apples, half red and half yellow, yields a single r that might these seed-tuples and is left with a set of regions in vector-
look like ((name apple 100) (type fruit 100) (color (red 50) space. One may be much closer to the original query than
(yellow 50)) ... ). the others and may therefore be mergeable with it. The

project maps a r to a r: given a feature-tuple it returns reader can see the system's behavior during several refocus
a new tuple constructed from a subset of the features in experiments by examining the transcript shown in figure 1.
the original. While project is a purely syntactic operation, refocus first announces the attribute projected to, followed by
it is used by higher level operations (see the discussion of any values tentatively guessed as the result of the speculation
refocus in (1]) to change contexts; the system focusses on experiment. It then gives pointers to specific cases that both
those attributes and values that are evocative, temporarily have this value and also resemble the rest of the user's input.
ignoring other information on hand.

3 PERFORMANCE
2.1 THE BASIC CYCLE

A version of the FGP machine was implemented in the T-
Given this three-instruction virtual machine, how does the dialect of Scheme. There are approximately 5000 lines of
system operate? The basic cycle is two phase: (1) extend code spread among 10 modules.
the current r; (2) choose a new current r, and repeat. Step We are encouraged by our initial tests of the system.
one is implemented by an extend(r) function that is defined Experiments were conducted on case databases in three do-
in terms of fetch and generalize. Step two is implemented by mains, one of which we discuss here. This test involved a
refocus which is defined in terms of all three. small database of patient records, specifically descriptions

To extend a r - to discover new implications given our of mammograms. There were originally 88 records in the
database of cases and paradigms - we begin by execut- database; 20 cases were reserved for testing and 67 were
ing the operation generalize(fetch(M, r)), where M is the used to seed the system spanning 13 possible diagnoses (one
database. If r, for example, describes a particular patient, of these 13 possibilities was the diagnosis normal meaning
fetch(M, r) will return a ist of remembered r's that are no disease present)3 . The system was presented with the 20
close to (similar to or remi.scent of) this particular pa- test cases and asked to judge if a malignant lesion was indi-
tient; executing generalizeover this list will produce an amal- cated and if so determine a specific diagnosis. As discussed
gam of all these remembered cases. Any highly-focussed and above, the system would present a short list (_54) of possible
sufficiently-weighty values can be classified as conclusions: if diagnoses if unable to decide on one with certainty.
the memories examined by generalize mainly have a value of The domain expert was the radiologist who had compiled
"blonde" for attribute "hair-color", say, the system will con- the database ". Working from the descriptions of the man-
clude that (hair-color blonde) is likely to characterize this mograms alone, he accurately judged the malignancy of the
case as well. It reports (hair-color blonde) to the user testcases at the 68% level. The system performed slightly
as a conclusion and augments the current r with this new worse at 63%. However the system outperformed the do-
attribute-value pair. The system attempts to conclude any main expert in producing a differential diagnosis, with the
value turned up by the fetch-generalize combination which right answer being stated outright or appearing in a short
hasn't yet been seen in the context of the current query. Val- list of possibilities (<= 3) 70% of the time to the clinician's
ues which contradict 2 are withdrawn; the user's input always 60% correct performance

parable subspaces. 3One record was thrown out because no diagnostic information was
2 As expected, two distinct values of a boolean-typed attribute al- included.

ways contradict. Systern-concluded values of other types of attributes 4 Dr Paul Fisher of the Department of Diagnostic Radiology,
contradict only if this information is specified in the attribute's dis- Yale University School of Medicine. Dr. Fisher's clinical specialty
tance metric. See [1] for more details, is mammography.
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4 CONCLUSION of those feature-tuples in the database that are "closest to"
the r mentioned in the query. To do this, fetch needs an

We have presented the main features of a methodology for algorithm to cluster the values returned by the distance cal-
extracting expertise from case databases automatically. The culation. We use an algorithm developed by Mitchell Sdar
FGP systems's domain independent similarity-based weight- that is efficient and experience has shown performs reason-
ing and clustering algorithms support retrieval of noisy and ably well. The description of the algorithm that follows is
incomplete data, drive an intelligent interface, and provide taken from Sklar's medical school thesis (2].
a mechanism for incremental learning of concepts. Ex- (We can use a routine) CLUSTER to find a natural break
periments with a portion of the National Cancer Insti- point in a list of cases, dividing that list into a "close" group
tute's SEER tumor registry are beginning and should tell C and a "distant" group P. Referring to a list of numer-
us how well the architecture scales in the face of truly large ical distances, the algorithm attempts to partition the list
databases. into two groups xi and y, such that the sum of the squared

deviations within the groups is locally minimized. That is,
A CALCULATION OF EVOCATIVENESS CLUSTER attempts to find a local minimum for

The calculation of evocativeness attempts to determine how E(x, - ±)2 + E(y _ )2 .

strongly a presenting case r brings to mind a value for the f j=1
current goal. What we would really like to measure is how
much information about the goal we gain from r. Does r Computationally, however, this calculation is inefficient. In-
strongly suggest only one goal value, or does it bring to mind stead, we can note that if p represents the mean value of all
ten goal values which are equally likely? One way to measure the distances x, and y, combined, then
this information content I is to relate it to the entropy D of
a probability distribution. E.- A ( m + ny

Let the total number of goal values found in the top- EZI- ) \, m+n )
cluster Q be T. Assuming that the probability p, of goal o=1 2
value i being correct is proportional to the number of times n
n, it occurs in the top-cluster, we can calculate the entropy = X. -i + m-n -)
(disorder) of the distribution:

Dr )2 mn 2 )2--Epi lnpi = E(x, - )i (me+ n) 2

E - - In it Similarly,

-n )-.lInn, + -n ., (y,-U)2 = J>, 9)2(+ ,n) :)2

_ E n, In no + In T Combining these results gives
Tn

+ =)

The entropy function D ranges from a value of 0, occurring E=1 =

when only one goal value is represented, to In N, where N m
represents the total number of possible values for the goal in 2 + m_9n 9m (-
the database M. We can scale the entropy to range from 0 E(x - k)2 + n )
to 1 simply by dividing by In N: = J=1

I (_ En, lnn, ) Since the quantity on the left is constant for the given list
S = In N T +nT of distances no matter what the partition, we can minimizethe total intra-group summed squared deviations simply by

We can further adjust the scale so that a scaled-entropy of choosing our partition to find the first maximum for the last
0 corresponds to the maximum evocativeness allowed by the quantity,

system, while a scaled-entropy of I corresponds to the min- (m + nj ( ' -)
imum evocativeness allowed by the system. By setting the
endpoints of the scale far enough apart, we can coerce a This will give us the first clean break in the distance list.
particular evocativeness value to an integer without mean-
ingfully reducing precision, and therefore avoid the cost of REFERENCES
storing and calculating with floating point numbers. This in-
teger is the final evocativeness number E used by the FGP [11 Scott J. Fertig. The design, implementation, and per-
machine. formance of a database-driven expert system. Technical

E = S ( m in- evoc,) + (1S-) ( max- evoc,) Report 851, Yale University Department of Computer
Science, Aug 1990.

B CLUSTERING ALGORITHM [2] Mitchell J. Sklar. Mu: A domain-independent ca-e-based
expert system, 1988. Thesis submitted to the School of

fech maps a r and an M to an C: given a feature-tuple Medicine.

and a database of feature-tuples, it produces an ordered list
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1 Introduction sis is hardly exhaustive, but may serve to con-
vince the reader that no direct means to address
these problems exists in standard facilities for dataStatements of statistical modeling objectives are manipulation connected with statistical analysis

often sufficiently formal as to provide a basis for enirconn te with st at ri a -
construction of precise database queries. Specific environments (the SAS data step, S matrix ma-
examplesnipulation facilities, relational databases). Conse-
of query commonly encountered i the analysis of quently, users of these environments who wish to
logiqurydcomona ly en"outein thorded aalyss o analyze actual longitudinal data are often engaged
longitudinal data is: "obtain all ordered p-tuples in detailed programming tasks to extract and for-
of repeated measurements subsequent to (or prior mat data with the required longitudinal properties.
to) the occurrence of a certain event." For cer- There is no question that the environments are ad-
tain kinds of modeling, there may be a further pro- equate to support such programming, but the pro-

viso to the effect that the measurements selected eut ospotsc rgamnbttepo
vsood he eect otan ath merasree ntsscted- gramming itself is expensive, prone to error, and is
should have been obtained at certain regular inter- often thrown away.

vals. Depending on the nature of the study under

consideration, resolution of such queries may entail Our objective in this report is to consider how to
problems of reduce programming burdens encountered in ma-

nipulating data for longitudinal analyses. Clearly,
" spacing verification: determining that the part of the burden will depend on the form of the

components of a long candidate vector are ap- permanent data store, and we propose a "longi-
proximately equally spaced in time, and tak- tudinal relation" as a format for permanent rep-
ing proper action in the presence of irregular- resentation of observations obtained in longitudi-
ities nal studies. Our major concern, however, is the
synchronization: although the data in gen- formulation of a programmable query idiom which

eral may be obtained in a very regular fash- is in close correspondence to the statement of the

ion, measurements of interest to the analyst modeling objective. This formulation has not been

may not be synchronized from subject, to sub- achieved, but we will discuss a working function on
instead, the "origin" of the time-course i longitudiinal relations which solves some problems

jeet; iae oiin " oaye time-sein of interest. A satisfactory interface to this func-
a variable of interest may be subject-specific tion may require language concepts and tools not

(depending, for example, on the time of an

exposure event) accessible to the statistical user of S.

" attribute linkage: the analyst's interest. in the All of the programming related to this essen-
value of a given attribute at time I may depend tially conceptual investigation is carried out in S.

on the fact that t was the first time at. which The ultimate realization of the objectives explored

some other attribute attained a certain value. here would likely be implemented in some other
language or database function; our purpose here is
in establishing broader features of the problem and

Such an enumeration of problems arising in(lat possible solutions.
manipulations preparatory to longituidinal analy-posleouto.



460 V. Carey, Y. He, and A. Mwfoz

2 Longitudinal Data 3.1 Conditional autoregression

The basic data structure we are concerned with is Let time be measured in units. Adopt the moda
p

derivable from "panel studies", "follow-up cohort Y;t = J30 + dklii-k + X2-r + ; X, (and ')

studies", "repeated-measures studies", though k=1

some of these terms may suggest aspects of reg- may be vector-valued, and some components of X

ularity or data balance which we do not assume. may be time-dependent. We refer to this model

There are I subjects presenting for observations re- as autoregressive with order p, AR(p). To fit the

peated in time. For the moment, confine attention model, the ordered p-+ 1-tuple of equidistant mea-

to the case where the observation is scalar-valued, surenients on '1 must be obtained and collated

on the variable X. Subject, i provides ni measure- with the apropriate elements of Xi to establish

ments on X; a may diff'er from subject to subject. the contribution(s) of subject i to the outcome vec-

Ti is the ni-vector of unique times of observation, tor and predictor matrix to be submitted to a re-

measured in some convenient scale from some coin- gression procedure. If the subject presents more

mon origin; {Ti} is the set. of elements of T,. For than p + I measurements, it is possible that sev-

E 1 .... I, t E 171), we denot~e by X the value of eral p + 1-tuples may be suitable for the analysis,

measurement A' obtained on subject iat te 1 and all must be obtained. See Mufioz et al., (1988),
for exanple and further references.

Let 1 = { 1 1. , }, '= U{)';} 'hen P =
I x T is a natural index set for the longitudinal
data Xit. The suitability of this index set to actLual 3.2 Proportional hazards regression
use for organization of the data will depend on the
distribution of inter-visit gaps aid on the variation Writing x(t) for the vector of time-dependent co-
of ni with i. In the case of ",,quidistant" (I'F - variates at lime 1, the model for the hazard of an
Tikl = c, all j $: k). "balanced" (ni =_ n. all i). event ,- It'( t)) = Ii(! x(I) = 0)exp(x(I)3). We
"complete" data (no missing observations), every cousider the implementat ion (agreg) supplied by
point in T corresponds to a unique data Point. If TFlirneau (1991) to STATLIB for use in S. Par-
only the "equidistant." condition is dropped, I x tiion [07 , ) into disjoint intervals on each of
{1,..., n} may be used to index both XA and the which x,(t) is constant, and denote the jh such
set of observation tinies. inwerval by [sij, ui). We may assume that there

are u, - 1 such intervals without loss of general-
Ii practice, X is vector-vahued, and the set of ity,. TI i required data structure for the j" contri-components of X (and of course the values of butio from iudividual i is (s,j. uj. (iii), i( ij)),

these components) may (differ from liCe to te where 6 (u) is the indicator of "event occurs at time
(within individual) and from individual to individ- u". St3 < fi < I,, and lie vector ., (t) is constant
ual. Furthermore, equidistance and balance are
rarely achieved in practice. Therefore the simple Oi [Sij, ,J).

indexing schemes just. discussed will be useful only
if considerable sparseness is tolerated. 33 D

These examples are emblematic, and the data ma-
3 Analysis of longitudinal nipulation activities entailed by these particular

data problms arise in other settings. We identify a few
of the broad features of the "required" data.

V,. mention a few analytical activities relevant iII
data analysis of such studies. Ve as.,ume through- * lIue 't in-gap" separating observations is a
out that time is measured i unils from ai origin crucial datimi: sequences of gaps may play an
common to all subjects. Importanit role in identifying analyzable con-

Iili 1 s.
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" Observations on different attributes (e.g., out- the single piece of information: "first date at which
come and predictor variables) may need to be infection was observed."
"linked" (for extraction purposes) with regard
to their time of measurement. The nature of
linkage may be complicated, not limited to 5 Processing longitudinal re-
e.g., "simultaneity". lations

" The structure of the contribution need not be
a function of elapsed time only, but may de-
pend on the values taken by time-dependent Our approach to the use of longitudinal relations
va "ables; the time at which such variables for extracting data for statistical analysis will be
take on certain critical values may constitute illustrated for the case of the AR(1) model (see sec-

a subject-specific "origin". tion 3.1.) The longitudinal relation is readily im-
plemented in an S matrix bearing attribute-namus
as column-names. For a very simple AR(1) model

4 Longitudinal relation for change in cd4, we require equidistant pairs of
observations on this attribute, lagged at approxi-
mately six month intervals. As a covariate, we em-

The application of relational database techniques ploy cd8 measured at the lagged time. A possible
to the management of longitudinal data may take solution is the following longitudinal relation:

various forms. We define a longitudinal relation to
be a relation comprising observations as described id date cd4 cd8 date+ cd4+ cd8+

in section 2 above, with the ordered pair (i, t) as
the compound key for the relation. As an example, 70328 9597 338 1222 9772 514 617
we provide an extract from a hypothetical cohort 70328 10163 312 1656 10346 270 1645

study of HlIV infection; data on age, markers of 70319 8861 1021 688 9049 785 447
infection, and infection status are recorded. 70319 9049 785 447 9238 915 826

70319 9238 915 826 9412 848 915

id date age cd4 cd8 HIV
We have adopted the convention that var+ is the

70328 9597 36.8 338 1222 + value of var at the "next" time as required by the
70328 9772 37.3 542 617 + spacing scheme. Such suffixing is naturally itera-
70328 10163 38.3 312 1656 + tive. Having obtained such a longitudinal relation
70328 10346 38.8 270 1645 + in an S matrix, say arlld, the S command
70319 8861 38.3 1021 688 -

70319 9049 38.8 785 447 +

70319 9238 39.3 915 826 + lsfit( arlld[,c("cd4","cd8")J,

70319 9412 39.8 848 915 + arlld[,"cd4+"I)

The longitudinal relation is not the inevitable is one way to estimate the parameters of the model

form of organization for longitudinal data. Often, of interest.

"flat files" are constructed at certain stages in the We have implemented an S function, pairgen,
study, with the file compreheni.;,g all observations to carry out this process. The user must supply an
falling in a certain intfrval. These files are then "admission function", which operates on criterial
subject to frequent merging and subsetting. variables (typically tie "time" component of the

A unified longitudinal relation may be awkward key is a criterial variable) to indicate which rows of

for the combination of attributes varying smoothly the input longitudinal relation should be combined

in time and discrete attributes. For example, the to produce an output longitudinal relation whose

HIV attribute above has values iii each of the Ili rows possess (tat a elements satisfying certain time-

rows for subject i, but lhese n, data itemis record dependent conditions. In the present example, the
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admission function specified that a pair of observa- nal analysis, we have investigated the possibility of
tions is to be admitted to the output relation only implementing a systematic approach and our re-
if the times of the observations are separated by suits suggest that further effort may be profitable.
more than 160 and fewer than 200 days. The chief difficulty we face in making this function-

ality widely usable is in obtaining an interface with
It may be worth noting that, at. least for sub- a natural syntax. The appendix presents the cur-

ject 70319, the output relation attributes (date, rent interface to the pairgen function. This func-
date+) are a partition of that subject's observa- tion generates regularly spaced longitudinal pairs
tion time-line as would be needed for the agreg and partitions observation time-lines in a useful
analysis mentioned in section 3.2. It is straightfor- fashion. A similar function might be developed in
ward to generate such partitions from longitudinal the SAS data step, based on the LAGn functions,
relations using trivial admission functions. or in the programming system of a RDMBS.

Because the pairgen function considers a vector
of criterial variables, it addresses the problems of
synchronization and attribute linkage mentioned in 7 Appendix
the introduction: the condition for admission of an
observation to the output relation may be specified
in terms of arbitrarily many attributes in the input The pairgen function takes three arguments, a
relation. longitudinal relation, a list of criterial variables,

and an admission function. The list of criterial
variables is a subvector of the "attribute-names"
vector of the longitudinal relation. The admis-

6 Discussion sion function must be written in terms of elements
of a vector of criterial variables extended to em-

The problem of effecting transformations of brace the naming convention described in section
5. To extract from the first relation in section 4 thedata from permanent storage ("archives" or
pairs representing lags approximately six months

"databases") into the structures required by par- ir epresening ags aates oths
ticular analytical procedures is often addressedinlgtadedngwhc8vlusoerhnby programs in high-level languages in isolation 800, the criterial variables are identified in the vec-by rogamsin ighlevl lnguges in. iolaiontor c ("date", "cd8"), and the following admission
from actual statistical procedure-invocation. Pro- to mighdat e sed a
grammed statistical procedures are used essentially
as targets: a procedure is selected in accordance
with modeling objectives, the input requirements function(x)
of the procedure are ascertained, and then data in {
the permanent store are extracted and transformed x["date+") - x['date"] > 160 &
in accordance with the input requirements. x[date+"] - x("date"] < 200 &

x["cd8+"] < 800
This extraction and transformation process is }

highly error-prone and inspires too much "throw-
away" programming effort. We propose that
classes of modeling objectives be identified, that
the data structures needed in pursuit of these ob- 8 References
jectives be identified, and that data management
systems be equipped with high-level functions de- * Mufioz A, et al., "Predictors of Decline in

livering these data structures. We have focused at- CD4 Lymphocytes in a Cohort of Homosex-

tention on modeling objectives related to longitu- ual Men Infected with Human Immunodefi-

dinal data analysis, and have identified some data ciency Virus", Journal of Acquired Immune

structure features which must. often be obtained Deficiency Syndromes, 1988(1), 396-404.
in performing such analyses. While it. is obviously * Therneau, T., agreg, in the S archive at
feasible for analysts to develop ad hoc extraction stat.ib©lib.stat.cmu.edu.
and formatting procedures t.o facilitate longitudi-
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Abstract

A model for the relation between multivariate fourth- trix based on a sample of size n + 1, p* =
order central moments of a set of variables and the p(p + 1)/2, and vecs is the p* x 1 column vector
marginal kurtoses and covariances among these formed from the nonduplicated elements of S. Under
variables is used to produce aii estimator for covariance the null hypothesis, at the minimum of (1)
structure analysis that is asymptotically efficient and
yields an asymptotic X2 goodness of fit test of the nF = n(s - a( ))'F- 1 (s - r(g)) - X2 (2)
covariance structure while substantially reducing the (p*-q)

computations. When the kurtoses of the variables are is asymptotically distributed as a central X2 variate
equal, the method reduces to one based on multivariate with (p* - q) degrees of freedom, and the asymptotic
elliptical distribution theory, and, when there is no covariance matrix of the estimator is given by
excess kurtosis, to one based on multivariate normal Z
distribution theory. -rF(O - 0) -.X[O, ( A 'r A 1 ], (3)

Introduction where A = Oo(8)/O0', evaluated at the true value 0
In covariance structure analysis, the p x p population = 0 0 Appropriate regularity conditions for (2) and
positive definite covariance matrix E is hypothesized to (3) to hold are given by Satorra (1989) and others.
be a function of a q x 1 vector 0 E E of more basic
parameters E = E(0). An asymptotically efficient As shown by Browne (1982), the elements of r are
distribution-free estimator 0 of 0 can be obtained by given in the distribution-free case by
minimizing the quadratic discrepancy between r ij, kI = O ijkl - Uij Oakl , (4)

F = (s - o(0))'f-'(s - a(O)) (1) where aij = E(Xi - j)(XJ- jaand a'ijkl =

where o'(O) = vecs(E(c)), s = vecs(S), and f is a E(Xi - Ii)(X - j)(X k - /k)(Xi - /) for

(p* x p*) weight matrix converging in probability to a random variables X = Xi ... ,X I having means pi,"'Pi"
positive definite matrix r, the asymptotic covariance Estimating the mixed fourth-order moments oit, re-
matrix of s. Here, S is the usual sample covariance ma- quires a lot of computer time and storage, ana the

moment estimator a" tends to be unstable in small
samples. Hence there tas been a search for alternatives

Supported in part by USPHS grants DA0017 and to (1) - (4) that are more practical, yet retain
DA01070. This manuscript is based on a paper asymptotic optimality. The two major approaches seek
presented at Interface '91 (Seattle, April 1991). to substitute a computationally simpler and more
Address reprint requests to P. M. Bentler, Depart- stable estimator for 'ijkl in (4).
ment of Psychology, UCLA, Los Angeles, CA 90024-
1563.
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Simple Efficient Models i-j with (8), and in minimizing F in (1), yielded the

One general alternative approach has been to determine asymptotic X2 goodness of fit test in (2) and theOnegenralaltrnaiveappoac ha ben t deermne minimum variance estimator with covariance matrix
conditions under which the matrix rFj with elements mimu vaanestaorwhcvrace arx

given in (3). In practice, they suggested using the

rXij ,kl: = O'ikO'jl + oUilojk (5) structure

can substitute for (4) with no loss of efficiency. This is ai- = 1(ni + q), (9)
the form that (4) would take if where 2i = oiiii/3oii. Thus, estimates of p marginal

Z
o'ijkl = Uiak1 + oUikojl + oilojk' (6) kurtoses, along with covariances, are needed to imple-

which holds when the variables X are multivariate ment (8). If the marginal kurtoses ri are equal for all
whicnhorlydstrute vrihabes no axess murate variables, (9) with (8) reduces to (7). Thus this
normally distributed, or have no "excess" kurtosis. methodology generalizes the approach bascd on cllipti-
However, (5) can be used without loss of efficiency with cal theory, while requiring no heavier computations.
nonnormal data, provided that some conditions on the
model and parameters are met. The relevant asymp- A Simple Kurtosis Structure
totic robustness theory has been the object of intensive A limitation of (8) was noted by Kano, Berkane, and
recent research (e.g., Amemiya & Anderson, 1990; Bentler (1990). Letting C = A*E (i.e c -

Browne & Shapiro, 1988; Satorra & Bertler, 1990). Kano et al. proved that a necessary condiNion forito
Although conditions for asymptotic robustness have be positive definite is that C is positive definite and the
been developed, in general they are difficult to verify i are all positive. While the latter condition is not re-
and apply in practice. strictive, if the 71i are highly variable, the structure (9)

might not be consistent with a positive definite r.
Another approach has been to determine conditions Hence (8) would be an inappropriate kurtosis model.
under which relatively simple extensions of (6) would For example, with p = 2, if ri = 1, q2= 10, and E
hold. As noted by Browne (1982) and Bentler (1983), is the 2 x 2 correlation matrix with 12= .6, under
under multivariate elliptical distributions (e.g., Fang & (9) C would not be positive definite. Here we give an
Anderson, 1990; Shapiro & Browne, 1987) alternative structure for (8) that is more widely

applicable than that based on (9).

O'ijkl = '?(0jjoUk1 + OUikoUj! + °ii°'jk) (7)
Let rqi = aiiii/3oii as before. In addition, let

where r/ = a .3o 2-- represents the common marginal1221 ZZ

kurtosis of the i = 1,... p variables. Hence, (1) - (3)
can be applied optimally if a consistent estimator j of a 3  i , -i. (10)
-q is used in (7) and hence (4). Such estimators are Then we have the following result: Under (10), the
readily available and thus elliptical theory is matrix C = A*E is positive definite. Clearly, co =
implemented in standard computer programs (e.g.,
Bentler, 1989). When q = 1, the multivariate normal T-Ij'oa i.e., C = DXD where D is a diagonal
form Fr- of F in (5) applies, and computations are matrix with dii = .-. Thus, since E is positive
simpler still. definite by assumption, so is C for any marginal kurto-

ses of the variables.
In practice, the assumption of homogeneous kurtosis for
all p variables as made under both normal and The structure (10) thus extends the applicability of the
elliptical theories is excessively strong. Thus, Kano, Kano et al. (1990) theory to a wider range of non-
Berkane, and Bentler (1990) proposed the structure normal distributions. In particular, (2) and (3) hold,

aijkl = provided that (8) holds with (10). The counterexample
S++based on (9), given above, would not be a problem

(aitakl)oikl + (aikaflJU'kU'l + (ailak)o~lolk (8) when based on (10). The structure (10) also represents

whefc aij = aji are parameters arbitrarily selected to a generalization of the elliptical structure (7). That is,

assure that r with elements given in (4) is positive if 71 = 72- for all variables, substitution of (10) into

definite. They proved that use of consistent estimators (8) yields te structure (7). In turn, the normal theory
relation (6) is also a special case.
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specializes into a form that avoids computation of the efficient statistics in structural models: Specification
large (p*xp*) weight matrix in (1). Because the pro- and estimation of moment structures. Psycho-
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tive number a and 0 E 6, there exists a 0* E 6 such normal theory methods in the analysis of linear

that an(O) = o(0*), latent variate models. British Journal of Mathe-
matical and Statistical Psychology, 41, 193-208.

Under the ICSF assumption, Satorra and Bentler Fang, K. -T., & Anderson, T. W. (Eds.) (1990).
(1986) and Shapiro and Browne (1987) showed that a Statistical inference in elliptically contoured and
= Ad, for some vector d. Then, under the kurtosis related distributions. New York: Allerton.

model (8) with the relation (10), the general matrix F Kano, Y., Berkane, M., & Bentler, P. M. (1990).
defined in (4) can be written in the form Covariance structure analysis with heterogeneous

F = 2K' (C®C)K + cc' - Add'A' (11) kurtosis parameters. Biometrika, 77, 575-585.
p p Satorra, A. (1989). Alternative test criteria in

where K' is a known matrix such that o = K' vec(E), covariance structure analysis: A unified approach.
and where c = K' vec(C). Shapiro (1986) obtained Psychometrika, 54, 131-151.
the result that if F could be expressed in the form F Satorra, A., & Bentler, P. M. (1986). Some robustness
W + AGA' for some symmetric matrix G, then under properties of goodness of fit statistics in covariance
some regularity conditions, at the minimum structure analysis. Proceedings, Bus. Econ. Stat.

n(s - 1(O))'W - l(s - 0,(O)) X(12) Sect., American Statistical Association, pp. 549-554.(p,*-q) Satorra, A., & Bentler, P. M. (1990). Model conditions
and the estimator W is asymptoticallyefficient. In prac- for asymptotic robustness in the analysis of linear
tice, one uses a consistent estimator W of W in (12). relations. Computational Statistics 64 Data Analysis,

10, 235-249.
It is apparent that (11) is of the form required for (12) Shapiro, A. (1986). Asymptotic theory of overparame-
to be applicable, with terized structural models. Journal of the American

W = 2K (C o C)Kp + cc'. (13) Statistical Association, 81, 142-149.W = Shapiro, A., & Browne, M. W. (1987). Analysis of

Some algebra can verify that the function (12) to be covariance structures under elliptical distributions.
minimized under (13) can be written as Journal of the American Statistical Association, 82,

F = tr1[S - E(O)]C-1}2 - 6{tr[S - E(O)]C-I}2 (14) 1092-1097.

where 6 = (2p + 4) - 1. The advantage of minimizing
(14) rather that (1) is that matrices of much smaller
order are involved. Also, since (14) is a variant of the
form given by Bentler (1983, eq. 3.13) for estimation
under elliptical distributions, only minor modifications
to standard programs are needed to implement
estimation by minimizing (14).
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Abstract
For the univariate case, 920 and b2., become the usual

In Monte Carlo simulation of multivariate univariate population and sample kurtosis coefficients.
distributions, it is often helpful to use a general class of
distributions which share certain defining characteristics Mardia (1970) also defines population and sampie
but which allow controlled variation of other multivariate skewness coefficients, 3, , and b,1 P. These
characteristics. We show how multivariate kurtosis, as reduce to ("/ 1)2 and (4"b,) 2 for p=1. Elliptically-
measured by Mardia's coefficient, 162, can be controlled contoured distributions are not skewed by any reasonable
across the class of elliptically-contoured distributions, skewness criterion; L e., P1=0.
This allows convenient assessment of the effects of
kurtosis on test power, robustness, or whatever the Largely following Johnson (1987, chapter 6), an
Monte Carlo subject of interest. We illustrate the elliptically-contoured random vector Y can be generated
method's utility by showing that common tests for via:
skewness are also very sensitive to kurtosis even in non-
skewed distributions. Y(px 1) -= RB(xP)U(x 1) + (p xl1)

I Introduction where
R is a non-negative random variable with finite

Elliptically-contoured multivariate distributions are variance;
those whose equal-density countours are ellipses U is a point uniformly distributed on the unit p
(bivariate case) or hyper-ellipses (for the p>2 case.) hypersphere;
Multivariate normal distributions are special cases, and R and U are independent.
elliptically-contoured distributions provide one approach B is a factorization of M=BBT, with M being
for organizing departures from multivariate normality, proportional to 2.
See Chmielewski (1981) for a summary and review of In this scheme:
elliptically-contoured distributions and their contributions
to robustness studies. Johnson (1987, chapter 6) describes E(Y) = M, and
an easily implemented approach for generating
elliptically-contoured distributions. Cov(Y) = I (p-)E(R2)BBT .

We are here concerned with controlling multivariate
kurtosis, as defined by Mardia (1970). For a p-variate The special case of spherically-contoured distributions
distribution, Mardia's multivariate kurtosis coefficient is arises when B=a(p x p. Thus, a generation scheme for

spherically-contoured distributions with = 0 and
P2,P=E[(X-M.t) TV (-/,)] 2,  X=p'E(R2)l is

where E(X)=y and Cov(X)=Y. The sample analog is X(p x 1) = RU.

b2P with I to order n
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R2-r(p/2,8)1 leads to multivariate normality.
As the above generation schemes imply, any Distributions which depart from normality in kurtosis but

elliptically-contoured random vector can be obtained by still have unbounded support can be obtained by using
an affine transformation of a spherically-contoured other gamma distributions for R2. Distributions with
random vector. bounded support and known kurtosis, can be obtained by

using a bounded-support univariate distribution on R2,
2 Controlling Kurtosis such as a beta distribution. 92p can be easily determined

so long as E(R 2) and E(R 4) are known.
Theorem 1: For spherically-contoured distributions

generated as X=RU, if E[R 2] and E[R 4
1 exist, then 3 Example or Application

2,p P2E(R4)/IE(R 2)12.
Skewness and kurtosis coefficients are commonly used

Proof: as tests for both univariate and multivariate normality.
We first note that E(U) = 0 and Cov(U_) = pA. ISee For instance, Mardia (1970) describes the use of b,1 p and

Mardia, Kent, and Bibby, 1979, p. 429, for both results.] b2, as tests for multivariate normality However, for both
It follows that: the univariate and multivariate cases, ther,- s also a

widespread presumption that these tests are "diagnostic"
E(X) =u = 0, and in the sense that they indicate the nature of departure

from normality. Put another way, this amounts to a belief
Cov(X) = Y = E[RU(RU)TI = p'E(R2)I that the skewness tests used to test the normality

hypothesis possess an additional valid interpretation as

/2.p = E = tests of a non-skewness hypothesis. For instance, Mardia
E{(RUTIp-lE(R 2)I -

1 (RU)}2  (1970) states: "To test 8,,P=0 for large samples, we
calculate A [a test statistic based on b1,P] and reject the

P2,P = p2E{[R2UTU] 2}/[E(R2)]2  hypothesis for large values of A" (p. 523).
Empirical results, however, do not support the

Since UU=I by definition of a point on a unit p- presumption that skewness tests are diagnostic. For
hypersphere, instance, here we present Monte Carlo results showing

skewness test powers against spherically-contoured

P2,P = P2E(R 4)/[E(R 2)1 2. distributions, all of which are non-skewed. We use six
# spherically-contoured distributions generated as X=RU.

These are, defined by the univariate distributions placed
Theorem 2: For elliptically-contoured distributions on R:

generated as Y=RBU + V, if E[R 2] and E[R41 exist, SCI: R-[F(8p,I/8)J ", yielding 932,=p(p+ 1/8) <
then 92 P = p2E(R 4)/[E(R 2)]2. 392p(MVN);

SC2: R-(r(4p,1/4) 2, yielding 392 =p(p+ 1/4) <
Proof: 93,P(MVN);

Mardia (1970) shows that if Y is an affine SC3: R-[F(2p,1/2)]"r, yielding 32P=p(p+ 12) <
transformation of X, then 13P2(Y) = f3Zp(X). Thus, P2.P(MVN);
Theorem 1 also establishes Theorem 2. SC4: R-[(p/2,2) "2, yielding 12,p=p(p/2) =
# 32,(MVN);

In application, to generate an elliptically-contoured Y SC5: R-[F(p/4,4)I"2, yielding 132.p=p(p+4) >
with a target covariance matrix, X, establish kurtosis via /32P(MVN);
selection of the distribution on R. Set M=pY/E(R 2), and SC6: R-IF(p/8,8) 1 2, yielding 32,p=P(P+ 8) >
obtain B via a Cholesky decomposition of M. /32p(MVN).

Choice of the distribution on R, often called the
"radius" random variable, controls P2,p and also controls Note that distribution SC4 is multivariate normal.
all higher-order even moments of the multivariate
distribution. Since for establishing kurtosis, the pertinent In this study, we used levels of
moments are E(R 2) and E(R 4), it is often more n=25, 50, 100;
convenient to differentiate among elliptically-contoured p=2, 5, 10; and
distributions in terms of differing distributions placed a= 0 .05, 0.10.
on R2.
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As an example of results, Table 1 reports results only distributions of b,.p differ greatly across the six
for p=5, a=O. 10. Results for other values of p and a=.05 spherically-contoured distributions used here. If, for a
are not qualitatively different. Our power results are all given n and p, the sampling distribution of, say, b,1 p was
based on 1,000 replications, approximately or asymptotically the same across non-

The table shows results for four skewness-based tests. skewed distributions, then a normality-based null
The rows referenced as b1.P(a) are powers of Mardia's distribution of b1.p might be generally useful to test
b .p, with critical values obtained from an (asymptotic) hypotheses of non-skewness. However, this is not the
approximate null distribution suggested by Mardia (1970). case. A more extensive discussion of this problem
The b,,P(e) rows are results for b,.p with critical values appears in Horswell and Looney (1991).
derived empirically from 10,000 multivariate normal
distributions. Q1 is a skewness test suggested by Small Table 1: POWERS OF SKEWNESS TESTS
(1980); while bp is a skewness test suggested by AGAINST SPHERICALLY-CONTOURED
Srivastava (1984). Critical values for Q1 and b1p were DISTRIBUTIONS p=5
obtained from the asymptotic distributions suggested by
those authors. Conceptually, Q tests for skewness in any Nominal test size = 0.10
of the p marginal distributions, while bp tests for Table entries are per cent of distributions rejected
skewness in any of the p principal components. These
are, therefore, both more specific and less comprehensive n=25 n=50 n= 100
skewness tests than are tests based on b,.p. SCI

Results in Table I suggest the following conclusions: bl.p(a) 0 0 0
1) For distributions with less than normal kurtosis, the b1p(e) 0 0 0

skewness tests' detection levels are deflated well Q, 0 0 0
below test size. bp 1 0 0

2) For distributions with greater than normal kurtosis,
the skewness tests' detection levels are inflated well SC2
above test size. This implies that a "skewness" test has bl.p(a) 0 0 0
a strong probability of misdiagnosing as "skewed" a b1p(e) 0 0 0
nonskewed distribution with high kurtosis. Q 0 0 0

3) These effects, at least the inflation of detection levels, b1p 0 0 0
grow more pronounced as sample size increases.
Thus, they do not appear to be small sample SC3
properties. b,.P(a) 0 0 0

blp(e) 0 0 0
This effect is not isolated or unique to our study. Q 1 1 0

Although the effect has often been overlooked, to our bip 1 1 0
knowledge, empirical (Monte Carlo) studies have been
unanimous in demonstrating that typical "skewness" tests SC4=multivariate normal
have detection levels strongly inflated (deflated) by b,p(a) 4 7 8
greater than (less than) normal kurtosis. Furthermore, b,.P(e) 11 10 10
other studies also suggest this is not a small sample Q1 10 12 9
property, but rather an effect that grows more bp 6 8 10
pronounced with increasing sample size. 1Se Horswell
and Looney (1991) for a review of relevant Monte Carlo SC5
studies and additional Monte Carlo results of ours along b,1P(a) 37 63 81
these lines.] b.p(e) 58 69 83

Q1 32 42 48
4 Discussion bhp 22 35 42

The poor "diagnostic" properties of skewness-based SC6
tests stem from the fact that the tests use normality-based b,.P(a) 88 99 100
null distributions. Normal distributions are not skewed. b" p(e) 94 100 1(X)
However, the sampling distributions of skewness Q, 72 81 86
coefficients (or skewness test statistics) differ greatly over bp 56 71 86
non-skewed distributions. For instance, the sampling
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Abstract negative and independent and identically distributed (i.i.d.).

The problem of inference for the mean of a highly To generate positively skewed data, we use the abso-
asymmetric distribution is considered. Even with large lute value of a Cauchy random variable. It has the density
sample sizes, usual asymptotics (i.e., normal theory) give 2 1
poor answers, and standard modifications, such as higher fx) W - 1 _T x !0.
moment correction factors, provide little help. We attempt If we censor at a threshold value T, the resulting random
to develop diagnostics to indicate when inferences are likely Iabe will av a mmes fanie but ritily rge.
to be valid, and we examine the performance of several variable will have all moments finite but arbitrarily large.

modifications to the standard procedure. The problem is The standard nonparametric approach to confidence
illustrated with data from particle physics. intervals gives intervals with nominal coverage rate 1 - a of

the form
1. Introduction s

When interested in measures of central tendency, i(G

robust estimates of location such as the median or the where X and s are the sample mean and sample standard
trimmed mean are commonly recommended if data are deviation, n is the sample size, and where 4-_.(1_2)-- is
asymmetric. Occasionally, however, the estimates of the is
population mean or total are needed. We consider an exam- the appropriate percentage point from the t -distribution with
ple from particle physics, in particular from the use of n-1 degrees of freedom. When the approximation to the i -
Monte Carlo to simulate neutron transport. As the resulting distribution is poor the performance of these intervals is
distributions of these complex processes are rarely known, degraded. In the case where the underlying random vari-
simulation is used to determine the values of physical quan- ables are positively skewed, the estimates of mean and vari-
tities, such as average flux passing through a region. Thus ance will be biased low and correlated. This results in inter-
the mean value of such a distribution is truly of interest. In vals that often miss the true mean on the low side. Figures 1
this paper, we examine performance of the standard and 2 illustrate this. Figure 1 is a plot of 1000 pairs of
normal-theory based estimator in developing confidence (I, s), each pair from a sample of size 1000 from a Gaus-
intervals for the mean. We will consider modifications of sian random variable with mean 6.5. The envelope formed
the standard procedure, as well as compute theoretical by the two diagonal lines contains the pairs which result in
moments for the appropriate reference distributions, confidence intervals which cover 6.5; about 95% of the

points lie within this envelope, as expected. Figure 2 shows
2. Nonparametric Confidence Intervals 1000 pairs of the same statistics for samples of size 1000

Efron (1988) has characterized the problem of non- generated from the absolute value Cauchy distribution, cen-
parametric confidence intervals for the mean as follows: "In sored at T = 10000 (with mean 6.5). Note first that each axisoneareneti ode itervls mpossib, sh e m lowin F in in log scale, resulting in curved cnvelope lines. The dis-
one sense this problem is impossible, since modifying F tribution of X and s is no longer elliptical, and significant
with a tiny probability of X being enormous ... can totally biases and correlations are present. In fact, only about 60%
change g without ever showing up in most samples ... On of the points result in intervals which cover 6.5. In most
the other hand, the problem is 'solved' every day by using cases 1000 is considered a large sample size but here it is
the standard Student 1-intervals ... " We will examine modif- clear that the t -appr.,:imation is a bad one, and that n is too

L;ations to these procedures in the "naive" case in which we small.
assume nothing about the data other than that it is non-
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Modifications to the standard procedure often try to is usually near I in the cases considered here. Thus .hcn y
better characterize the distribution of t = n (I-p)/s (e.g., is small relative to 1, the variance of t will be near that of a
Johnson 1978). Following Hall (1983), an Edgeworth standard normal. For the simulations from Table 1, y for
expansion of the distribution of t can be inverted to obtain a n = 20000 is 0.26, and for n = 50000 is 0.1 1; by the time y
modified confidence interval. The modifications involve has reached 0.1, coverages are near nominal levels. Unfor-
3rd- and higher central moments of the underlying distribu- tunately, an estimate of y based on sample moments does
tion; in the examples considered here, only the first not appear to be a useful diagnostic, because it is biased
modification (using 3rd-moment terms) improved coverage low. Work on developing useful diagnostics continues.
rates. That modification gives

References
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observed coverage rates for the mean of an absolute value Statist., 11, 569-576.
Cauchy random variable, censored at 10000. For each of the Johnson, N. J. (1978). Modified t tests and confidence
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tions were generated. Both the standard (denoted by std) tist. Assoc., 73, 536-544.
and 3rd-moment-corrected (denoted by 3rd) intervals were Pederson, S. P. (1991). Mean estimation in highly skewed
computed. samples. Los Alamos Report, 91-

Table 1
Obsevered Coverage Rates

(nominal level = 0.95)
n Standard 3rd-moment
1000 0.59 0.66 Fgur 1. Sample moments. Gaussian r. v.

5000 0.74 0.79
10000 0.82 0.84
20000 0.87 0.92 o
50000 0.93 0.94*,P

100000 0.93 0.94

The standard intervals cover at below the nominal /
rate for sample sizes less than 50000, and the 3rd-moment
corrections are modest at best. The intervals that miss are
almost always too low, as expected. These results suggest .5 0 5 10 15

that standard confidence interval procedures are inappropri- mean

ate in this problem for samples under 20000 in size, as there
is considerble undersampling of the tail regions. Fgure 2. Sample moments, absolute value Cauchy r. v.. T - 10000

3. Diagnostics

If standard modifications are limited by the sample
size and skewness of the problem, one would like to know > V

when such a situation exists. Geary (1947) computed the S
first four semi-invariants of t, from which moments can be
obtained, expressed in terms of the first four moments of the
underlying distribution. Pederson (1991) found that the crit- .
ical quantity in determining the convergence of t to a stan-
dard Gaussian random variable is y, the squared coefficient 5 10
of variation of s2 . To first order, the variance of t is mean
1 + .p2y, where p is the correlation between 1 and s2 and
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ABSTRACT (1978).
We consider estimating the mean of a positively skewed More modem views and analysis have taken a different

distribution. It has been noted that in random samples the approach. Rather than modifying the data to fit the prescribed
sample mean has a large probability of falling below the assumptions of the normal theory, much work in the past
mean of the distribution, because of such skewness. Various twenty years has gone into the development of estimation
ad hoc procedures have been proposed to correct this low procedures and statistical tests that are either resistant to the
coverage of the mean in order to estimate conservatively long- effects of these outliers or robust, that is relatively
term exposure to contaminated soils at toxic waste sites. We unaffected, by the lack of adherence to underlying
propose a direct estimate of the mean based on a penalized assumptions. These techniques are "becoming a core
empirical loss function. This loss function is made up of a component of statistical practice," Hoaglin, et al.(1985).
squared error loss plus a penalty for each observation that falls Tukey(1962) proposed that outliers could be explained
above the estimate. The resulting minimum risk estimate, through the use of "longer-tailed" distributions as underlying
called the penalized mean, is derived iteratively and shown to models. Numerous robust estimators of location in symmetric
be biased in favor of greater coverage, distributions have been proposed based on unequal weighting.

We show that, asymptotically, a one-step iterate of the In Huber(1981) and Hampel,etal.(1986)trimmedmeans, M-
penalized mean is unbiased, converges almost surely to the estimators, L-estimators, and reweighted estimators have
true mean, and with mild assumptions on the form of the been developed using theoretical and empirical approaches.
penalty, is normally distributed. Based on a penalized loss, we Fuller( 1970, 1991) has investigated simple estimators for
show that this new estimator is uniformly better than the mean of a skewed population using a technique suggested
thesample mean when sample size is large. The simulation by Charles Winsor and studied in Tukey and
results show that if we choose the penalty constant properly, McLaughlin(1963) and Dixon and Tukey(1968). In this
the new estimator has the same coverage as an upper technique the largest k observations are replaced by the
confidencelimitestimatorthathasbeenproposedbutwith less (k+l)st largest observation and similarly for the smallest
variance and bias. observations. The mean of the resulting sample was called by

Tukey a "Winsorized" mean. Fuller studied this estimator
1. INTRODUCTION assuming that the fight tail of the distribution function could

be well approximated by the tail of a Weibull distribution.
The normal distribution has long been the standard model A problem arises when using a sample mean to estimate the

for the development of statistical theory. Its structure, prop- mean of long-term exposure to contaminated soils at toxic
erties, and centrality in asymptotic theory allows for the waste sites under the EPA's Superfund program. Since the
construction of an elegant and concise theory of estimation. underlying distribution is positively skewed, the sample mean
But experiments and data collection often result in measure- has a large probability of falling below the population mean.
ments that are inconsistent with an assumption of normality. This results in a consistent under-estimation of the population
Statisticians often encounter samples for which a few very mean. The EPA Office of Emergency and Remedial Response
large or outlying measurements are included. Many ad hoc (OERR) convened a Workshop discussion on February 23,
procedures have been developed for the practical handling 1990, to examine methods for solving this under-
of such outliers, and a debate has often ensued on "whether, estimation problem. In the workshop, many approaches were
and on what basis, we should discard observations from a set proposed such as stratifying the data or interpolating the data
of data on the grounds that they are 'unrepresentative', using kriging, polygon methods or triangle methods. Advan-
'spurious' or 'mavericks', or 'rogues'," Barnett and Lewis tages and disadvantages of these methods were widely



Estimation of the Mean 473

discussed in the Workshop. But no final conclusion was loss defined in (2.1) imposes a penalty if the estimate falls
made. The under-estimation problem was left open. An upper below the parameter 0. A sample based approach to this
confidence limit estimator based on normal theory, that is, penalty would impose the penalty whenever an observation
UCL = X + 1.96sdv(X), was temporarily put into use. falls above the estimate, t.

In order to correct this under-estimation problem, in this Based on the form of the penalty term in (3.,), the more
paper, we propose a direct estimate of the mean based on a extreme an observation, the greater the penalty it imposes on
squared error loss plus a penalty for each observation that our estimate. To minimize the penalty, the estimator will tend
falls above the estimate. In attempting to minimize the to b larger, and thus havea,niall probability of falling below
average of such penalized losses we derive a new estimator of 0. With this sample based loss. the penalty is based on the
the mean of a positively skewed population with adequate underlying distribution of the population and not on the
coverage, where the coverage of an estimator defined as the distribution of the unknown estimator. The constant 2 used
probability of the estimator greater than the estimated param- in the penalty term is only for the convenience of' calculation.
eter, that is, P( 6 > 0 ). The empirical average loss. i.e. the empirical risk, is

R(t) = I/n -L(x, 02
2. A New Criterion --- Penalized Loss I I/n .(x. - W2 + 2". I/n VPt < X < x) (3.2)

We hope to find an estimator of ) ha: ed (n minimizing the
We define a new criterion, that is, penalized loss, a,: follows: empirical risk (3.2) such that it has small risk under the
L( d, 0 ) = ( d - 0 )2 + X ldt,,, (2.1) penalized loss (2. 1 ) but has adequate coverage.

where > >0 , .°= o(I) and 0 denotes the true mean in the We call the empirical risk in (3.2) a penalized empirical
population. risk.

The first term of the loss function is the square error loss.
We define the second term as a lack of coverage lo,,s. We 4. Penalized Mean and Its Large Sample Properties
define I to be the penalty constant. We penalize the estimate if
it is less than 0. In order to find the minimum empirical risk estimator of

Let T(X) be the estimator of 0. Then the risk of this the mean, we have proved several properties of this penalized
estimation, i.e. the average loss, is empirical risk as follows:

R(0) = E( T(X) - 0 )1 + X. P( T(X) < 0). (2.2) (1) R(t) is a continuous function of t.
This risk function consists of two terms. One is the mean (2) R(t) is piecewise differentiable. The derivative does not

square error term and the other is the penalty term. Minimizing exis-at t= x, butR'(x-) and R'(x) have the same sign, i =

themeansquareerrorpullsthe estimator towards 0. Minimiz- 1,...,n.
ing the penalty term pulls the estimator above 0. Hence, this (3) If lf'(t)l <_ M, then the minimum value of R(t)
risk is a kind of balance of the variance, bias and coverage, exists and is unique.
Minimizing thisrisk is difficult for the nonparametric problem Based on these results we have the following theorem.
considered here. We do not know the form of the underlying Theorem 4.1. Suppose lf'(t)l < M, then the empirical risk
distribution. We only know that the underlying distribution R(t) is minimized by the solution to the equation
is positively skewed. t = x + X,f(t)(l -F (t)), (4.1)

In order to find an estimate with small risk under penalized if it exists.
loss, we define a penalized empirical loss function based The solution of the equation (4.1) is not the minimum risk
directly on the sample. estimator of 0, since the equation (4.1) includes unknown pdf

of the population. In order to find the estimator we are
3. A Penalized Empirical Loss Function looking for, we substitute a density estimator l(t)into equation

(4.1), and define a new estimator of the mean as follows.
The risk defined in equation (2.2) includes a term for a Definition 4.1. If X 's are i.i.d. from a positively skewed

square error loss as well as a penalty term for lack of coverage. distribution, then
A sample based approach to measuring similar ideas can be 8 = R + X ")(i - FJA) (4.2)
developed from an empirical loss, like that seen in maximum is called penalized mean, where P(). is a density estimator of
likelihood or M-estimation. X, F (o) is the empirical distribution function of X and X. is

Define an empirical loss function based on sample as the penalty constant.
follows: Since equation (4.2) defining 0 includes an estimate of the

L (x, t) = ( x - t )l + 2XP( t < X < x). (3.1) underlying density function, it may appear that this density
Here, the penalty we impose is proportional to the probability estimate would provide adequate information to estimate 0,
that X falls between the observation and the estimate, t. The but this is not so. We need an estimate of the density function
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only at one point which we approximate by ?( ). checking the proportion of the estimates obtained in repeated
The penalized mean is defined recursively. So it can be sampling that fall in a given error range. We evaluate the

obtained iteratively. The recursive algorithm is the following, goodness of our estimators based on the following four
Given an initial estimate 0., different coveages.

+ X+,(6)(I -F (k)) k>O. (4.3) po=pP( qn(e -)> 0 ) (6.1)
It is not difficult to prove the following theorem. pl = P( - I/n < Nq _8)< 1). (6.2)

Theorem 4.2. Let f (x) be a density estimator of f(x). , - 2(
Assume that p2 = P( - /n < n( -0 < 2 ).(6.3)

(i) IIf -f 11 ->0,as n-- > oo; p3 =P( - I/n< Ln( a.-)<3) (6.4)

(ii) X - > 0, as n -> Note p0 is the same as the coverage defined in introduction, and
and 0, be the solution of (4.2). Then we have pi, i = 1,2, 3, are the probabilities of the estimator falling

i stan ird deviations of X above the true mean with an error
(1) 0 is an asymptotically unbiased estimator of 0; of the order of l/n on the left side of the mean.

U A

(2) Assume X. = O(n-112) , we have E( 0.- 0)2 <O(n-1) In order to slow down the convergence of the penalty term,
(3)0 P >f0; we choose
(4) 0 -. >0; = (6.5)
(5) Assume X = o(n-'1), then NFn( 6- 0 ) L > N(O, a2). in (5.1), and choose c such that our estimator has the same P0

as UCL.
5. One-Step Iterate of the Penalized Mean Here we only show the simulation results for lognor-

mal(0,1) case. The similar results hold in other common
Recall the definition of the penalized mean. It defines the positively skewed distributions.

estimator in terms of itself. Therefore, the penalized mean Table 6.1 shows that the pmean has better coverages than X,
forms the basis for a recursive algorithm. If we choose K as a and has almost the same p0 coverage as UCL. The p I and p2
starting point, the simulation results show that most of im- coverages of pmean are much greater than those of UCL.
provement of the estimate is after one step. We define the Pmean also has less mean square error than UCL. Note that
one-step interate of penalized mean as coverages p0 and p3 of pmean in all cases are almost the same.

0 = X +n 3(X)(1 - FD(X)). (5.1) This means there is no long tail on the right side of the
Under the same assumptions given in Theorem 4.2 and by distribution of pmean. Obviously, the pmean estimator is
using the same approach as we used for the penalized mean, superior to the UCL estimator. But the optimal penalty

we have constant c is still under investigation.
A

(1) 9 is an asymptotically unbiased estimator of 0; Table 6.1
(2) 0 converges to 0 almost surely; Lognornal (0. )Case
(3) if we assume X. = o(n-'), b is asymptotically normally (100 repetitions)

distributed with mean 0, and variance a2; =25est. 1.c. MSE PO P1 P2 P3
(4) 0 has better coverage than X. R .1845 .4000 .3200 .4200 .4300

And comparing with this estimator, we have proved X is UCL 1.099 .8600 .2800 .5700 .6900
inadmissible in a class of nonnegatively skewed distributions pmean 20 .2424 .8600 .5300 .8000 .8700
under the penalized loss in (2.1).

n = 35

6. Simulation Results. est. p.c. MSE P0 P1 P2 P3
X .1123 .4100 .3100 .4100 .4200
UCL .5235 .8300 .2500 .5200 .6700

We have found a point estimator of the population mean

for positively skewed distributions, the one-step iterate of pmean 25 .1601 .8300 .4800 .7800 .8400

penalized mean, under the penalized loss. But choosing the n = 50
penalty constant is still a knotty problem. In point estimation est. p.c. MSE P0 P1 P2 P3
problems, one of the traditional ways to evaluate the 'X .0930 .4300 .3100 .4000 .4200
goodness of a point estimator is to check unbiasedness of the UCL .5446 .9200 .3100 .5500 .8200

estimator. Now the problem we face is how to evaluate the pmean 36 .1497 .9100 .4900 .8600 .9200

goodness of a biased estimator with adequate coverage.

Instead of constructing a frequency distribution of the NOTE: (1) p.c. is the penalty constant c in (6.5);

estimates obtained - repeated sampling and noting how closely (2) pmean is the one-step iterate of penalized mean defined in (5.1);
(3) UCL = X + 1.96sdv (R)the distribution centers about the population mean, we suggest
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DIAGNOSTIC CLASSIFICATION OF IMAGES

Michael L. Goris
Division of Nuclear Medicine

Stanford University
Stanford, CA 94305

Formal quantification in Nuclear
Abs tract Medicine has usually been re-

stricted to dynamic parameters
Diagnostic classifications based extracted from dynamic images.
on the estimation of norm devia- In this approach, the image is
tions are based on homomorphic used merely to define sampling
features between images and regions, mostly on the basis of
pathology, pattern recognition (e.g. the
The measurement is the three generation of a time activity
dimensional mapping of a tracer curve from a region of interest
distribution, which reflects drawn over the renal region). On
regional myocardial blood flow. the other hand, quantification
This measured distribution or of spatial distributions has
image is compared to a normal been hampered by the inability
distribution, derived from to spatially match untransformed
measurements in subjects from a images.
population in which the myocar-
dial perfusion is assumed to be 2. MATERIALS AND METHODS
normal. In addition to the
normal (average) distribution, a The data are tomographic images
measure of natural variation is obtained after the intravenous
made. injection of thallium chloride
The comparison between a test at the end of a stress test.
case and the normal population Since thallium is a diffusible
distribution leads a measure of intracellular tracer ( a potas-
deviation from the norm. The sium analog ), for a short, but
degree of deviation is quantita- appreciable time following the
tively diagnostic only if larger injection, its distribution in
distribution indicate either tissues is proportional to the
more advanced disease or a relative distribution of cardiac
higher probability of disease. output in those tissues (1).
KEY WORDS : Quantitative classi- The image is a three-dimensional
fication; homomorphism; mapping of the spatial distribu-

tion of the tracer in the myo-
I INTRODUCTION cardium. The sampled value is

the maximum pixel value found
In the classical approaches, across the myocardial region.
medical images are interpreted To minimize biological variation
visually. Abnormalities are due to size and shape, and, thus
detected by comparing the find- to be able to define correspond-
ings with a virtual image of ing points, the images undergo a
normal cases. This comparison, polar transform as follows: The
to be effective, must take origin of the polar transform is
normal variation into account, located in the cavity of the
In great part, normal variation left ventricle. The latitude in
is due to biological variation the volume image is represented
in size and shape of normal by the angle P which has its
subjects. origin at six o'clock (or south
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pole or apex in the reoriented patient comparison, since it
image), and is mapped in the contains only directionality,
vector as r = SQRT[(x-32)**2 + but no information on size, and
(y-32)**2], where P = r*64/135. minimal information on shape.

It follows that one can con-
The longitude is represented by struct an average vector Av(x,y)
the angle Th, which has its and a standard deviation S(x,y)
origin at 9 o'clock in the from patients in the control
volume image, or east (septal) , group (2).
and maps in the vector as it- Comparison of a test case with
self, again with the origin at 9 the normative vectors consist in
o'clock. computing

D(x,y) = (Av(x,y)-A(x,y))/S(x,y)
The sample value found in the for each point in the vector A,
volume image along the radius and a sum (SS) of D(x,y) which
(P,Th) is located in the vector represents the global deviation
at x = r*cos(Th) + 32, y = from the normal in the test
r*sin(Th) + 32. case.

The transformation and sampling
Radii are sampled for O<P<135, result in considerable informa-
and O<Th<360. This sampling tion loss. One still needs to
follows a registration of the prove that SS is a quantitative
image such that the most proxi- diagnostic measure.
mal part of the basis of the One approach is to adapt Bayes'
heart lies along the radius at P theorem. In general if. Se is the
= 135 for any value of Th., and sensitivity, Sp the specificity,
such that the radius with angle P the prevalence and PP the
P = 0. goes through the apex, positive predictive value, then
and represents the long axis of PP=Se.P/(Se.P + (l.-P)(1.-Sp)).
the heart. But, this formulation presumes
If one wanted to map each radial that the sign or symptom is
sampling value one-to-one in the either present or absent, and
vector, one would be allowed not quantifiable.
only 32 radii for P ( over 135 However, if one defines the
degrees), and a variable amount values Sp and Se for increasing
of discrete values of Th, with values of SS (see above), then
the maximum being 256 at Th = the measure is diagnostically
135, and the minimum of 4 at P = quantitative if the PP does
135/64. Since this would lead to increase with increasing values
undersampling in the volume of SS. Alternatively the sensi-
image, the mapping has to be tivity must decrease or stay
many to one. constant, and the specificity
This requires a special strate- must increase ( if the latter)
gy. Classically, the sampling or increase or remain constant
value is the maximum value along (if the former).
the radius. Many-to-one mapping The test population consists of
needs special accommodation. The a cohort of serial patients
initial resident value at (x,y) stratified for risk of coronary
is -1. If the vector (P,Th) artery disease. The stratifica-
which maps in (x,y) has a sam- tion, as described in the work
pling value of A < the resident of Diamond and Forrester (3) ,
value at (x,y) AND >= 0, the A is based on the patient's age
is substituted for the resident and sex, the nature of the
value at (x,y). symptoms, and the degree of ST
The vector A(x,y) allows inter segment depression. Furthermore,
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the patients are classified as to match images by elastic
well-tested, if the end-point of deformation of the coordinate
the stress test was reached ( systems, one needs to achieve
either 85% of maximum predicted quantitative image analysis
heart rate, ST segment depres- following a transformation which
sion, blood pressure drop or eliminates size and shape infor-
significant arrhythmia. mation.
The patients are grouped accord- More importantly, however,
ing to this classification in 9 numerical extraction becomes
groups, according to the disease quantitative only if higher
prevalences. deviations from the norm have
The prevalence of the symptoms higher positive predictive
[P(S)] in any population can be values.
expressed as the weighted sum of
the prevalence in those who
have, and those who do not have 1. Sapirstein LA (1958): Region-
the disease: al blood flow by fractional
P(S) = Se.P + (l.-P).(l.-Sp) distribution of indicators. Am J
This equation can be rearranged Physiol 193:161-168.
to read: 2. Goris ML, Boudier S, Briandet
P(S) = P. [Se-(l.-Sp)] + (l.-Sp) PA (1987): Two-dimensional map-
If one sets P(S) = y; P = x ; ping of three-dimensional SPECT
[Se+(l.-Sp)] = a ; and (l.-Sp) = data: A preliminary step to the
b, the we obtain the regression quantification of thallium
equation: myocardial perfusion single

y = a.x + b. photon tomography. Am J Physiol
For each of the 9 groups one Imaging 2:176-180.
defines y as the frequency of 3. Diamond GA, Forrester
positive outcomes. S(1979): Analysis of probability
The sensitivity is given by ( a as an aid in the clinical diag-
+ b ) and the non-specificity by nosis of coronary artery dis-
b, the coefficients from the ease. N Engl J Med 309:518-522.
regression analysis of the 4. Goris ML, Bretille J, Askie-
paired observations x and y. nazy S et al (1989): Validation

of diagnostic procedures on
3. RESULTS AND DISCUSSION stratified populations: Applica-

tion on the quantification of
The results on a cohort of 135 thallium myocardial perfusion
cases confirms the hypothesis. scintigraphy. Am J Physiol
With SS = 0., Se = 0.92, and Sp Imaging. 4:11-15.
= 0.60. When SS = 10., Se = 0.74
and Sp = 0.93. The linear rela-
tionship measured in the regres-
sion analysis is maintained
until Sp = 1.00.
At that time one would expect
that higher values would detect
more advanced disease, but since
the analysis is based on rela-
tive distributions, local abnor-
malities tend to be less visible
in the presence of global dis-
ease. Homomorphy is present for
the probability of disease only.
Unless algorithms can be devised
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PARALLEL COMPUTING: A TUTORIAL
FOR STATISTICIANS *

William F. Eddy and Mark J. Schervish
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Carnegie Mellon University
Pittsburgh, PA 15213

The purpose of this article is to provide statisticians a brief executing it) might only consist of a small number of or even
introduction to parallel computing. We begin by discussing a a single instruction.
few basic notions which are fundamental to parallel process- A parallel program specifies the execution of one or more
ing. Next some important aspects of hardware for parallel sequential programs that can be executed as parallel processes.
computers are reviewed. We then provide a brief analysis Parallel processes can be implemented in one of three ways.
of system performance including a statistical approach to the
performance of one kind of distributed computing system. Multiprogramming: The processes can execute on a sin-
Next there is a discussion of a particular form of parallel it- gle processor from a single memory.
eration which we have found generally useful followed by * Multiprocessing: The processes can execute on distinct
a discussion of several statistical applications. We conclude processors but share a common memory.
with a review of some of the difficulties of programming par-
allel systems and mention one programming system we have * Distributed processing: The processes can execute on
used which helps overcome these problems. We recommend distinct processors each with its own memory.
Bertsekas and Tsitsiklis (1989) for the reader who is interested Multiprogramming is merely the traditional time-shared
in further details on many of these topics. version of "parallel" processing; each user seems to have a

private machine but is, in fact, sharing a single machine with

1 Fundamentals many others.
The execution path of any program, parallel or not, can be

There are a small number of key issues that are necessary for represented by an acyclic directed graph called the process
the understanding of parallel computing: flow graph. Each node in the graph represents a process and

each directed arc represents a dependency in the calculation.
1. Sequential processes, An arc from node i to node j means that the process at node

2. Synchronization of parallel processes, and j requires the result of the process at node i.

3. Interprocess communication. 1.2 Synchronization

1.1 Processes Synchronization of parallel processes is required in order to

properly execute the process flow graph of a computation.

A fundamental notion required for the understanding of paral- This controls the cooperation/interference of one process with
lel processing is the notion of a sequential process. A sequen- another.
tial process is the actual execution of a sequential program. Consider, as an example, the standard Jacobi iteration for
A sequential program specifies the sequential execution of a the solution x of a homogeneous linear system
list of program statements. Note that here we are using the ('+1) = Ax()
terms process and program in a slightly different way than is
customary. For our purposes here a program (and the process where A is a square matrix. If there is one processor for each

*This work was partiauy supported by ONR Contract N00014-91 -J-1024 row of A then all processors must complete the calculation of
and NSF Grant DMS88-05676 the dot product aj x (i ) (where aj is the jth row of A) before
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any processor can start the next iteration. The processors must 2. whether the machine can process more than one data
be synchronized at the end of each iteration. item simultaneously.

There are several standard programming techniques for im-
plementing process synchronization: The four resulting types of machines are:

1. Shared variables, DATA

2. Semaphores, and INSTRUCTION Single Multiple
Single S1SSIMD ]

3. Data flow. Multiple [MISD IMIMD

A more detailed discussion of synchronization with programs The SISD machines are traditional sequential computers,
implementing some of the methods is given in Eddy (1986). often called von Neumann machines after their designer. The

SIMD machines occur in a number of varieties, the most
1.3 Communication important being the vector processors such as the Cray and

the systolic machines. There are really no practical MISD
Communication among the processes in a parallel program is machines. The MIMD maLAiines occur in two varieties, both
handled either by the use of common memory (in a shared of which are very important:
memory system) or by the use of a communication network 1. the distributed memory machines such as the hypercubes
(in a distributed memory system). Typically, if the system and other networks of processors with local memory, and
uses shared memory then communication is handled through
shared variables stored in the common memory. Those vari- 2. the shared memory machines such as the multiprocessor
ables are usually accessed with hardware instructions such as VAXes and the Cray XMP and YMP machines.
"load and lock" and "store and unlock." In a distributed mem-
ory system communication is handled by means of message 2.2 Memory Hierarchy
passing.

One important aspect of communication is whether or not An important part of the design of parallel computers is con-
the communications are synchronized. Synchronizationofin- trolling the flow of data to and from the various components
terprocess communications in a shared memory environment of storage. We naturally think of a hierarchy relating speed
is handled through the use of the memory locking mechanism of access and capacity of these storage elements. Similarly, a
indicated above. Synchronization in a distributed memory critical problem in the development of parallel algorithms for
environment is typically handled through the use of I/O in- a particular hardware environment is the placement of data
structions which "wait until completion." items at various levels in the memory hierarchy. While the

A further complication is that synchronization can be differ- precise elements of the hierarchy can vary substantially from
ent at each end of the communication channel and at different machine to machine, a fairly general list of the available levels
times. Each time an actual read or write is issued, it can in- includes
clude an implied "wait until completion" or not. In the case
of asynchronous writes, one problem is that a large number
of writes may be issued without a corresponding number of 2. cache memory,
reads. Consequently, the receiving process must have avail-
able a nearly unlimited amount of buffer space to store these 3. local memory,
messages until the receiving process is prepared to read them. 4. distributed memory,

2 Hardware 5. disk memory, and

6. off-line storage.
2.1 Flynn's Taxonomy As one proceeds down the hierarchy, data items take ever and

Flynn (1966) introduced terminology for models of computa- ever greater amount of time for access but are simultaneously
tion which has become standard, although it is unfortunately available in greater quantity. Thus, for example, the most
imprecise. Flynn's scheme is cross-classification of hardware rapidly accessible items are those stored in the CPU registers
on the basis of two attributes: but there is a very limited number of them. On the other hand,

data stored off-line is only accessible after a considerable wait
1. whether the machine can process more than one instruc- but there is an essentially unlimited amount of such storage

tion simultaneously; available.



Parallel Computing: A Tutorial 481

2.3 Examples 4 Statistical Issues
In the actual presentation at the meeting a variety of different There are some statistical issues that arise in the study of
hardware systems were described. These included distributed system performance. These relate to the proces-

* bus-connected systems, sors and communication channels often being in use by other
applications besides the one of interest as well as other un-

* cross-bar switch based systems, predictable features of the hardware and software. There are
two natural ways to study the stochastic performance of dis-

" mesh-connected systems, tributed systems. One is to create statistical models for the
performance of the system and the other is to collect data on

* shuffle-exchange networks, the actual performance of a system.
" hypercube connections, etc.

Space limitations preclude that discussion here. The inter- 4.1 Statistical Models
ested reader might consult Dongarra et al. (1991) for similar Suppose that we wish to minimize the expected time to com-
examples or Duncan (1990) for a more technical survey. pletion of a task (the makespan). We need to divide the work

among the processors in some optimal fashion.
3 Performance

4.1.1 A No-Cost Model

3.1 Amdahl's Law Consider the following simple model to start. There is a task

Amdahl's law concerns the basic fact that not all parts of of "size" I unit and there are p processors among which we
a calculation are equally amenable to processing in parallel. can divide the task. Suppose that the task can be divided into

Assume that the execution of a program requires M total work smaller subtasks whose sizes add to I in such a way that the
and that a certain fraction f of this work can be done at a speed time it takes to complete a subtask of size 3 is an exponential
of S-I (sequential) and the remainder can be done at a speed random variable with mean /3. Suppose that communication

of P-I (parallel). The total time T required to complete the is fast enought so that there is no time lost between subtasks.

program is Suppose the task is divided into n > p equal subtasks of size
/3 = I/n, and one subtask is assigned to each processor. Each

T =f M S + (1 - f) M P. time a processor completes a subtask, another one is assigned
until the computation completes. Under these assumptions,

Consequently, the effective speed Rwith which the program the makespan can be calculated as follows:
is executed is given by

R= M/T= f .S+(l_ f).P, k=k n

This is minimized if n is chosen as large as possible. This isthis is Amdahl's law. The critical implication of Amdahl's c

law is that the time required for the execution of any parallel clearly nonsense in any real application.

program is bounded below by the time required to execute the Consider next, the case where the number of subtasks nifixed and suppose we are interested in choosing which n
sequential portion of that program even if the parallel portion ps fe askpto mae intte n subtsks. For e

is executed infinitely fast. That is, parts of the task to make into the n subtasks. For example, if
we have two processors and we can only divide the task into

T > f • A• S. three subtasks, we can still choose the sizes of the subtasks.
Retain, for now, the zero cost assumption. If we make all three
subtasks the same size, then the makespan is 2/3 from (1). If

3.2 Load Balancing instead, we make the sizes of the three subtasks l/ai,i =

There are two possible views of performance in a parallel 1,2, 3, we can still calculate the makespan. The completion
system. One view (that of an individual user) desires to times for the messages are exponential random variables with
complete a single job in the shortestpossible time (minimizing natural parameters al. It follows that the makespan is
the makespan). The other view (that of a system manager)
desires to keep all the processors of the system as busy as 1+ 0,7 + [a l I
possible. + - (2)posiblal + 02 03
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For each value of a3, (2) is minimized at al = a2 = a, say. can collect data on the performance of the system by giving
In this case, the makespan is (2a 2 - 5a + 5)/(20(2 - 2a), it various problems to solve which are similar to those for
which, in turn, is minimized at which one will want to use the system in the future. One

can vary the size and nature of the problem, the number and

5 + 2.721 types of processors, and the sizes of subtasks. As an example,
3 Eddy and Schervish (1986) report on a case for which the

application could be made arbitrarily large and for which the
The minimum makespan is then eu- 5/2 --0.6623, which subtasks could be made very small. Two different configu-
is not a great improvement over the equal subtask solution rations of distributed system were used, one containing eight
(- .6667). processors and the other 15 processors. (The systems were

In general, the optimal division into n subtasks will have heterogeneous in that there were three different kinds of CPU
makespan less than the division into 71 equal subtasks as in represented among the 15 nodes.) Figure 1 is a plot of the
(1). With exponential distributions, as n - oc,, the makespan times to completion of many runs using these two systems vs.
converges to I/p, the minimum possible value. Consequently, the natural logarithm of the number of subtasks (messages).
for these cases we believe that division into optimal size sub- We see that the time to completion is relatively insensitive to
tasks will not substantially improve upon the simpler division the number of subtasks within a certain range, but when the
into equal subtasks. number of subtasks gets very large, communication bottle-

necks cause inefficiencies. When the number of subtasks gets
4.1.2 A Random Cost Model too small, excessive time is lost waiting for the last subtask to

We could assume that each subtask carries an overhead c complete.

such that the time to complete each subtask of size 3 is an
exponential random variable with mean c +3. For simplicity, 5 Asynchronous Iteration
we will assume that all subtasks are the same size, so that,
if there are i subtasks, 3 =IIn. Suppose that there are Consider an iterative method in which each iteration is a sub-
p, processors. The first subtask to finish takes time equal stantial computation. A typical example is the solution of
to the minimum of p exponential random variables, so its atiae compuon. A typcexape i the lioeJ~p)/[ca fixed point problem by successive substitution, where each
distribution is e + 43]). The memoryless property of evaluation of the function is time consuming. If the evaluation
exponential distributions gives that the time between when of the function can be broken into subtasks, each iteration can
the i - 1st and ith subtasks finish also has cjp(p/[c + 3]) run on a distributed system. Since the subtasks are performed
distribution for i = 2... i - 1 + 1. For i = 1 . - 1, the asynchronously, these methods are called asynchronous iter-
time after subtask it - i finishes until subtask 71 - i + 1 finishes .has rp~/[c+ 3) dstrbutin. he akepanis henation. A theoretical problem arises concerning the conver-

gence of such an iterative method. Each "iteration" of such

[ + an asynchronous algorithm is not the same as an iteration
( , + of the corresponding synchronous algorithm. For example,

( , consider the following iterative method for finding the largest

cigenvalue and corresponding cigenvector of a large square
(+ + I n] matrix .-A. Let r( be a non-zero starting vector, and let r(0

1 2 P )be the absolute value of the largest coordinate of x0. For

n =0.1.2 .. dline
This is minimized at t = .(p)1c, where A(p) 0
L I/i.-'z ' 2 1 /'1

Of course, the memoryless property of the exponential dis- 3,, + - :1.,, - (3)
C')I

tribution makes it an implausible model for running times of
fixed sublasks. Other factors, such as network traffic and pre- If J.,,+. + .,,, then that vector is an cigenvector of .1 corre-
dictable patterns of usage in a distributed system also make sponding to the largest eigenvalue, -,, +1. Each iteration of the
the assumptions of this model seem unrealistic, usual synchronous algorithm for successive substitution con-

sists of multiplying the result of the previous iteration by the
4.2 Empirical Study matrix A and rescaling as in (3). If .1 is large, it might make

sense to have several processors doing different parts of the
If one is concerned about the performance of a distributed multiplication at the same time. For example, suppose A is
system, but is not confident in any of the simple statistical in x in and Yn = 7, + mi. We might let one processor calcu-
models which one can construct for their performance, one late .Al I',, and let another calculate .12 x, where .I is the first
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in, rows of A and A2 is the last m 2 rows. Similarly, we might xj = (xj .... z) be an n-dimensional vector represent-
splitA intom ... mp disjointsets of rows and use pproces- ing the ih iterate of an asynchronous algorithm. Let LJ
sors. Alternatively, we can split A into m1... m Mk disjoint represent the set of subscripts i (elements of { 1... n}) such
(or even overlapping) sets of rows and use p processors with that F will be calculated during the jh iteration. To calculate
p < k. Now the question naturally arises as to whether we each Fi, we need to choose an n-dimensional vector x as its
should wait until all k partial iterations are complete before argument. Let s be the iterate from which the th coordinate
forming x,+l or should we form a new x,,+, every time that of x will be drawn to be used as the argument of each I, in
we learn some of the new coordinates. The first scheme pro- the jth iteration. To summarize, the iterates are calculated as
duces what are known as Jacobi iterations, while the second
produces Gauss-Siedel iterations. With Jacobi iterations, the 4 F if i ELj
x,,+, which results after all k partial iterations are complete is -i t xj-1 (4)
the same as what would be produced if the entire multiplica-

tion were done at once. In the case of Gauss-Siedel iterations, We need the following conditions:
precisely which vector x gets multiplied by some subset of the 1. < 1 fal ad idth h e
rows of A at a particular partial iteration depends on which co- I . j - or jan in order to guarantee atthe

ordinates have been updated by the time that partial iteration scheme does not require future calculations to be done

begins, before past calculations.

As a simple illustration, suppose we split A into k = 3 2. lira-,, = oc for all i in order to guarantee that coor-
disjoint sets of rows A,, A2, A3 and we have p = 2 proces- dinates of the arguments to the F functions get chosen
sors. (For convenience, suppose that we know that the largest from newer iterations as time goes on,
eigenvalue is I so that we don't have to divide by the c, val-uis 3. for every i, i E Lj for infinitely many j in order to guar-
ues.) Let x0 denote the coordinates of the starting vector antee that every coordinate is updated infinitely often.
x0 which correspond to the rows in Ai. Suppose processor
i is assigned the subtask of multiplying Ax 0 for i = 1,2. The theorem proven by Baudet (1975) is
Now suppose processor 2 finishes its multiplication first. Let

X(2)Theorem 1 Let F : R" --- R" satisfy IF(x) - F(y)l<
1 stand for the m 2 coordinates returned. For a Jacobi itera- Theor 1 L F n m Ai sptisfy radiu - than KXlnshmwwodno *prcso thsuts - Akx - ylfor a n x n matrix A withispectral radius less than)1,

tion scheme, we would now assign processor 2 the subtask of where absolute values are to be understood coordinatewise.
multiplying A3xo. For Gauss-Siedel iterations, we construct Then, under the three conditions described above, the asyn-x, by ombinng x., x,2, and ( ). Processor 2 is then as-

iby combining o  and , o or2chroILous iteration scheme in (4) converges to the uniquefixed
signed the subtask of multiplying A3 X I. These two subtasks point of F.
will not produce the same output. For Gauss-Siedel iterations,
we can assign subtasks in a simple cyclic fashion 1, 2, 3, 1, Chazan and Miranker (1969) prove a similar theorem for lin-
2, 3, .... until some convergence criterion is met. Each time ear systems.
a new subtask is assigned, the vector x, consists of the most Theorem 2 If F(x) Ax + b with b non-zero, and *he three
recently updated values for all coordinates. When processors conditionsabove hold, then the scheme in (4) converges if and
have widely differing speeds, one needs to be careful to keep only if the spectral radius of A is less than 1.
track of how old a subtask is before updating coordinates. For
example, suppose that processor 2 finishes its second subtask For more general discussion of parallel matrix compu-

(3)
before processor 1 finishes its first subtask. Let A 3xI = X2 tations the interested reader should consult Gallivan et al.
Using the cyclic assignment scheme, we would construct X2 (1990) or Schendel (1984).

() (2) (3)out of X, 1 ,and x2 and then assign processor 2 the
subtask of multiplying A1 X2. Then if processor 2 finishes its
third subtask before processor 1 finishes its first, we would 6 Statistical Applications
have a value X3 A1 £2 which would supercede the re- Several statistical applications which made use of the system
suit of processor I, namely Al x0, when processor I finally of Eddy and Schervish (1986) were described by Schervish
completes. (1988). One application involved a calculation of the sum

There are conditions (see Baudet 1975, for example) under of a very large number of terms, each of which required
which Gauss-Siedel iterations of the asynchronous type de- only a small amount of computation. This is the application
scribed above converge. For example, let F = (F,..., F,,) whose running times are displayed in Figure 1. There were
be an n-dimensional function of n variables, and suppose 38,266,040 terms in the sum, and it took a single MicroVAX
that we are seeking a fixed point of F. For each j, let If computer 40,100 seconds to do the sum. The fifteen node
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system took 4,303 seconds. This system consisted of eight ther difficulty that there are no standardized languages akin
MicroVAX Ils, six MicroVAX Is and one VAX 11/750. This to Fortran, Lisp, Cobol, C, etc. for programming parallel
system was estimated to have the computing power of ten machines.
MicroVAX Ils, hence reduction in running time by a factor A significant complicating factor is that unlike a program
of .107 is quite good. Another benefit of the distributed com- written for a sequential computer, a program written for a
putation, compared to the serial computation, was numerical parallel computer cannot be easily "ported" to a different kind
accuracy. The computation was divided into 6129 subtasks of parallel computer.
of 6237 terms each. Single precision distributed computa-
tion agreed with double precision serial computation to five 7.2 Linda
decimal places, whereas single and double precision serial
computation differed by as much as 5%. We have recently begun to use Linda for our parallel pro-

Kim and Schervish (1988) analyzed survey response of gramming. Linda is an extension to existing languages which
9566 inmates in order to try to model criminal careers. Due to is based on computational model assuming a shared memory
the fact that the inmates were in jail at the time of the survey, machine. The shared memory is addressed by an associative
the sample had serious recognizable bias. The likelihood scheme. 'he particular model is both simple and easily im-
function was complicated by the need to correct the bias. plemented on a variety of real architectures and real program-
Also, a hierarchical model was fit, which required performing ming languages. Consequently, programs written in Linda are
a numerical integration for each inmate. Each evaluation of portable without change across hardware environments. They
the likelihood function took 57.5 minutes to compute on a are not necessarily efficient in the various environments.
VAXstation II. The application was distributed by dividing The actual implementations of Linda are handled as simple
the inmates into subtasks of size 100 each. Every time a extensions to existing languages such as Fortran and C. The
value of the likelihood function was needed, the computation version that we have used is C-Linda for a distributed network
was distributed. Each evaluation of the likelihood took 7.1 of processors. There are four extra functions added to the
minutes on ten VAXstation lls. usual C language for implementing the shared memory.

Not all applications benefit so dramatically from the dis-
tributed computation. Schervish and Tsay (1988) developed 1. in: remove data from the shared memory;
multiprocess models for time series which allowed for abrupt 2. out: add data to the shared memory;
changes in level as well as outliers at every time period. As
time goes on, more and more combinations of possible outliers 3. rd: copy data from the shared memory; and
and level changes needed to be considered. After each time
period, the probabilitiesof the 60 combinations which seemed 4. eval: evaluate and add data to the shared memory.
most likely were calculated and parameters were estimated for The key to the parallel execution of the program is the function
such combination. The 60 combinations were treated as 60 eval. If one of its arguments is itself another function then
subtasks and distributed after each of 20 time periods. It took that function is actually executed in a separate process on a
a single MicroVAX 11 1391 seconds, and it took a system of distinct processor.
six MicroVAX lls 360 seconds. In this application, there is a To demonstrate the simplicity of C-Linda programming,
significant amount of work which is not divided amongst the below wegivea "parallel" version of the classic "Hello world"
subtasks and this takes as much time for a distributed system proram.iTe only fers ta dee furtHelaon
as for a single processor. Amdahl's law strikes again! program. The only features that deserve further explanation

are

7 Programming 1. the name of the highest level routine

2. the operator "?"

7.1 Difficulties
3. the method by which entries in the content addressable

There is considerable difficulty attendant to writing parallel shared memory are accessed
programs. The most formidable obstacle is the lack of fa-
miliarity; programmers have been programming sequential realmain ()
machines for decades and various sequential programming #define NUMBER 30
paradigms are well-known. The need for the programmer to lint i, helloI ;
understand the issues related to synchronization and interpro- out (' 'number'',0);
cess communication make parallel programming inherently for(i=l;i<NUMBER;i++)eval (hello(i));
more complex than sequential programming. There is the fur- in( ' 'number'',NUMBER);
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Gallivan, K.A., Heath, M.T., Ng, E., Ortega, J.M., Pey-
hello (i) ton, B.W., Plemmons, RJ., Romine, C.H., Sameh, A.H.,
int i; Voigt, R.G. (1990). Parallel Algorithmsfor Matrix Com-
tint j; putations. SIAM, Philadelphia.

printf (''Hello world; %d. ?j; Kim, C.E. and Schervish, MJ. (1988). Stochastic Models
out(' 'number'' j+l); of Criminal Careers. in Bayesian Statistics 3, eds. J.
t 'Bernardo, M. DeGroot, D. Lindley, and A. Smith, Va-

lencia, Spain: University of Valencia.

The name of the highest level routine must be Schendel, U. (1984). Introduction to Numerical Methods for

real main() Parallel Computers. Ellis Horwood, Chichester.

operator"?" is used for selecting any item from the shared Schervish, MJ. (1988). Applications of Parallel Computa-
Theoperator"?aniasseciatrveescheng.aFyritnmitem to sh tion to Statistical Inference. J. Amer. Statist. Assoc., 83,
memory using an associative scheme. For an item to match 976-983.
the argument of an in function it is necessary that it match
both in type and in content if it is specified without the "?" Schervish, MJ. and Tsay, R.S. (1988). Bayesian Modelng
operator. Thus the in in the main program is not matched by an and Forecasting in Large Scale Time Series. In Bayesian
element in the shared memory until the subroutine hello has Analysis of Time Series and Dynamic Models, ed. J.C.
been executed NUMBER times. Also the in in the subroutine Spall, New York: Marcel Dekker.
hello is matched by any element in shared memory which
has a variable of type int for its second entry.
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Some Results in the Simulation and Analysis of the
Shape of Spread of Epidemics on a Grid

Michael Lloyd
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Abstract (partially-ordered) cell division T. Each cell can have one of
two states, referred to as White and Black. The cell which

Models concerned with the spatial features of epidemic contains the origin is coloured black at time 0 and all other
spread are often defined in terms of a nearest-neighbour grid cells are white.
network (Mollison & Kuulasmaa 1985). It is strongly
conjectured, and can be proved in certain cases (eg Cox & Next we impose G, a stochastic growth process, which
Durrett 1988), that the infected area has (asymptotically) a tends to change white cells with black neighbours into black
well-defined shape. cells. We consider CQ), the black shape at time t.

The present work concerns computer analysis of the shape of The most basic decisions in model selection from this class
spread of a discrete-time single-parameter infection process are (i) continuous versus discrete time and (ii) the neighbour
on an eight neighbour lattice. Data from such simulations structure. For example, we could have a continuous time
can be fitted with a particular group of three parameters model where each cell emits germs as a Poisson process and
which reveal features of the shape of the expanding these germs land on neighbouring cells by some rule;
epidemic. These three parameters are discussed in relation to alternately, we could consider discrete time where each black-
the effect of the basic model form upon them, with a view white neighbour pair becomes a black-black pair at time step
to a framework for making a priori statements about the t with probability p. Choices of neighbour structure include
various members of a more general model class. Such a 4 or 8 neighbours for cells drawn around locations with
framework would allow choices between various grid integral coordinates (the so-called Rook's Case and Queen's
epidemic models to be made, where in the past such choices Case models, the former being more common in the
have tended to be decided arbitrarily by other (colivenience) literature). These structures are quite easy to simulate by
factors. computer, where an array readily represents the model space,

but more complex tesselations can also be envisaged, such
Introduction as 6-neighbour hexagonal grids.

This paper considers a class of models for stochastic Known Results
diffusion. Historically, this type of model has had
applications in the modelling of epidemics and forest fires; it Some authours consider more complex model forms,
can be conjectured that it can cover other spatial modelling especially extra states for a cell: typically removal (Cox &
situations, such as rusting or tumour growth. The class is Durrett 1988), so that we have black, grey and white cells
sufficiently broad to allow many interpretations and many with white-)grey transitions by neighbours and grey --*black
choices between assumptions. Currently, little is known transitions purely by time. We can even consider regrowth
about the effects of the specific choice of model within the (black--white by neighbours, Mollison & Kuulasmaa 1985)
class; this paper attempts to establish a quantification of the or recovery (without immunity). For some such models,
behaviour of one model which can be generalized to others asymptotic existence results have been proven; as a typical
of the class, facilitating comparison, example, consider the Cox & Durrett Shape Theorem:

General Model Form Recode black, grey, white to healthy, infected and immune.
Each infected s'te emits 'germs' by a Poisson process, rate

Following Richardson (1973), define the broad class as t, uniformly distributed to the 4 nearest neighbours.
follows: Infected sites survive for a length of time following some
Starting with n-dimensional Euclidean space S, impose a specified distribution. Define:
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C. as the set of sites that will ever become infected from the p=0.1(0.05)0. 9 and T=5(5)60 - a total of 204 simulations.
initial infective at the origin This is small enough to make simulation an attractive tool

as the set of immune sites at time t for investigation of the behaviour of this type of model
as the set of infected sites at time t

Shown in Figures 1 and 2 are 3D plots of S (ij;0.2,30) and
For a sufficiently well-behaved (finite second moment) S (ij;0.6,30). These surfaces exhibit (surprisingly?) large
infected--immune process, and for a sufficiently large, areas for which S =1, and then a rapid drop to S 0. The

shape of this area can be shown to be non-circular; its nature
3 D, a convex set, s.t. V e>0, is most readily investigated with the aid of interactive
(1) P[ C, r) t(l-e)D c ct(l+)D V sufflarget] = I graphical software, such as Data Desk (Velleman 1990).
(2) P[ 4, c t(I+)D -t (-e)D V suff large t] = I The usefulness of EDA software in probabilistic modelling

has, in the opinion of the author, yet to be fully appreciated.
Note that the "well-behaved" assumption is only necessary This subject will be approached more comprehensively in
for (2). The process considered below does not have this future work.
property, but (1) still applies.

A Functional Form for S
This result is typical of those in the literature, in the sense
that only existence is proven, and only in an asymptotic It is conjectured that the form of S (ij;p,T) for this model is
form (-->oo). The shape of D is not known beyond well approximated by a combination of a logistic curve and
convexity (and obvious symmetry), and the form of a measure of the distortion introduced by the grid; explicitly,
approach to this "equilibrium" shape D is unknown. the suggested form is as follows:
Specifically, it can be concluded from Durrett & Liggett's
(1981) Flat Edge Result that, against expectation, D cannot S(ij) = I
be circular for many cases. exp(b (rct(ij) - a)}+l

The Process Under Consideration where rQ(x,y)= /xr +

To pursue finite-time results for such models, we turn to
simulation of a specific process as follows: Note that this form involves three parameters from a model
Time is to be discrete; start with one "ill" individual at the which initially has only two; any redundancy is not
origin and all others "well" (as usual) on the lattice of currently clear. The parameters ax, a and b are described
integer-valued coordinates in R2. Use an 8-neighbour below.
(Queen's Case) connection lattice. At each timestep, every
ill individual attempts to infect (separately) each well ax measures the distortion from the circular: cx=2 gives a
neighbour with fixed probability p of success. Iterate this circular S surface because r. becomes Euclidean r, Q=(o

procedure for T timesteps. gives a square S, and as ct increases from 2 distortion
increases monotonically. This distortion is akin to the

This process generates observations of C(T) (which must lie cross-section of a balloon being inflated inside a box -
inside [-T,Tjx[-T,TI). Re-code each element of C (T) as I for initially circular and eventually square.
ill and 0 for well, and take the mean of 3000 such
observations. This provides a collection of estimates a can be readily interpreted as the radius of the 0.5

S (ij;p,T) = P[(ij) infected by time TI probability contour of S in the metric generated by r., since
when rG= a we have S (ij) = l/(exp(O)+l)-0.5

(note: 3000 comes from the fact that a single proportion
estimate has SE VW , which is maximized at p--0.5 and b is a measure of the sharpness of the change from S = 1 to
has a value close to 0.01 for p=0.5,n=3000, so we obtain S=0; as b increases S becomes more like a step function
<1% pointwise error) from 1 to 0 at r.=a.

Investigating the Probability Surfaces Results from Fitting

It currently takes roughly 24 hours of processing time to Simulation sets have been collected as described
generate a complete set of surfaces S (ij;p,T) for (p=O.](0.05)0.9 and T=5(5)60) and a fitting procedure used
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to find a, a and b for each data set. Currently, the method exactly T for all T. Note that it may prove interesting to
used is to compute the sum of squared residuals between the relate this critical probability (currently estimated at roughly
simulation output and the fitted surface at each of the grid 0.51) to the many other critical probabilities to be found in
points, and a numerical minimization routine is applied to the literature for this type of problem. Above p, a must

4
the surface in R+. It is by no means clear that this is the asymptotically converge to T, but below it the limit is
ideal criterion for picking the a, a and b of best fit. f(p)T. The cubic form is a crude expression of f(p), and it is

very much hoped that a form with more meaning can soon
A section of a scatterplot matrix of fitted values for a, a and be found.
b against p and T is given in figure 3. Alongside are shown
evaluations of some suggested closed-form approximations b splits quite simply into independant functions of p and T,
for a, a and b which are proposed primarily on exploratory both exponential in form. Again, a cubic for p fits well but
grounds. The forms shown are computed as follows: can hopefully be replaced with a more justifiable function

with further research.
= 2 + 1.58 In(T) p3

(lTp)0.5 Finally it is stressed once again that these closed forms are

a eP-1 exploratory in nature. Once similar functions are availablea= I + 1.41 (p-p) TA [(I1-pc) e. + p, ]
T= for other model assumptions (other neighbour and time

-(P<Pc) (.07(pc-p) + 1.7(pc-p)2 + 3.35(p,-p) 3 ) structures) they will facilitate direct model result
comparison. Specifically, it is hoped that the a parameter

b = e-.2 8 -4 .0p+lS.5 p2- 9 .1p3 + e-0.04T will provide a basis for discussion of the distortion
introduced into the model by the assumption of a grid; the

or more succinctly model form with lowest values for a would be the most
desirable as it would have the most isotropic behaviour.

a 2 + cl In(T) pc2 qa References
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of the form I/T - the complicated exponent for T is just a
form that runs from p, to I as exp(p). Finally, for p below
a certain value, a increases linearly with T, but with a slope
less than 1. The final term accounts for this: p, is that
value of p for which (it is hypothesized that) a comes out as
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Figure 1: S(ij;0.230) Figure 2. S (ij,0.63O)
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Spatial Patterns of Trees Attacked by Beetles:
Pseudolikelihood Estimation and Iterative Simulations

Haiganoush K. Preisler
USDA Forest Service

Pacific Southwest Experiment Station
1960 Addison St., Berkeley, Cal. 94704

Fig. 1. Stand A after 1980 attack. + =trees
attacked that year. o = trees with dbh>23cm.

1 INTRODUCTION o
In this preliminary study a generalized linear 0o

model is used to describe the conditional proba- " '
bility of a tree being attacked by mountain pine a
beetles in a given year, given the characteristics of 1..
the tree (e.g., size) and the location of other at- .. a*. . "..
tacked trees in the stand. The model is used to '
analyze mountain pine beetle attack data in two .: . ..-

lodgepole pine stands in Oregon over a period of 10 .- • 0" ...
years (see Fig. 1 and 2). The data may be viewed . + .
as a realization of a spatial point process with the +. +
probability of a tree being attacked dependent on -b + .
the status of other trees in the stand. Although **0.+ O: . , * " "
full maximum likelihood estimation is apparently " e* " .. 

not feasible, maximum pseudolikelihood estimates .o "*• o .
of the parameters can be readily calculated with 0
standard statistical packages such as GLIM. The 0 20 40 0 80
pseudolikelihood function that is maximized is the
product, over all trees, of the conditional probabil- meters
ities. This method of estimation was first proposed
by Besag (1975). See also Strauss and Ikeda (1990). Fig. 2. Stand B after 1984 attack. + =trees

attacked that year. o - trees with dbh>23cm.

2 AN AUTO-LOGISTIC MODEL
Let Yk equal 1 if tree i was attacked in year k and 0

0 otherwise, where i 1,... ,nk; k = 1,. --,K and
nk= number of trees that have not been attacked .0. 0
in any of the previous years 1,-.-,k - 1. The +++ .' 0 " +
probability, Pik, of tree i being attacked in year k 7+"'. .+. . .
conditional on the status of all other trees in the + + . +

stand, will be modeled by .

pik =Pr[Yik=l IIyjk; j0i] t *..+ +
=Pr Yik = 1 10, dbhi, vigi,Dk] + + ..t . . +

±e '7ik' (2.1) + . . + + +'. ;
l '* ++

with .+ 4i" +  .. +++ ++ +

7i= k ak +f31Dik + 32 log(dbhi) +. + +

+ I3vigi  (2.2) 0
Si I

ik j yjk (2.3) 0 20 40 60 80

meters
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4 STANDARD ERROR ESTIMATION
where dbhi=diameter at breast height, vigi=vigor In this section standard errors of MPE's are es-
of tree as measured by the amount of stemwood timated using a parametric bootstrap procedure
produced per square meter of crown leaf area per (Efron 1982, 1990). An iterative sampling scheme is
year (Waring el al. 1980), dij = distance between used to simulate samples from the joint distribution
trees iandjand9= {ak,fl1,02,,63;k= 1,.--,K} -" = Pr YIYl,. . YnynO] given the condi-
is a set of unknown parameters. The variate Dik
could be viewed as a measure of the density of tional probabilities pi = Pr [Yi = yiI(yj; J i), j]
attacked trees surrounding the i th tree. Dik is large for i = 1, .. , n. The sampling scheme is as follows:
if tree i is near other attacked trees. Starting with an arbitrary set of initial values

The conditional probability model in (2.1)-(2.3) (0) .. (0))gnrt a new value y~)from the
is an auto-logistic model (Besag 1974) with the logit ( , generate
line distribution of Y1 Iye 0 ,y 0),. .. , yn, next, generate

17(y) = oi + Eflijyj (1) from the distribution of Y2 y Yl),yiO),. -, y 0 )

jin" and so on up to yn(n) from the distribution of

where 13ij = Oji = 01d 2 and a i = a + Yn y ) , .,y nl2
1. This is a Markov chain

32 1og(dbhi) + /33vigi. Auto-logistic models satisfy sampling scheme with transition probabilities given
the constraints in the Hammersley-Clifford theorem by the conditional probabilities pi. In this scheme
(Besag 1974) which guarantees that the conditional only one variable is changed in each transition
probabilities defined above are consistent with a and after n transitions we arrive at the sample
joint probability distribution. (y1 ,...,yn). Hastings (1970) showed that

if the matrix P of transition probabilities is
3 POINT ESTIMATION reversible and irreducible then ir is the unique

3 iven POINT E aoN stationary distribution of the Markov process P.
Given the above generalized linear model, a For the present data, the only states with positive

maximum pseudolikelihood estimator (MPE) for transition probabilities are those of the form so. =

the unknown parameter vector 0 will be defined as -

the vector 0 which maximizes the pseudolikelihood {Yi = 0, Y' E s- t }, and Sl = {Y = 1, -' E
function st-, where Y-' = { ; j A i} and sri is the

K nk Ith state space (or possible outcome) of the vector
f11lPr[Yik I Yjk Ji] Y-'. Therefore,
k=1 i=1 rsoPso,s

K nk =Pr[Yi = 0,Y- ' E S' ]Pr[Yi = S1
- ' I

k=1 i=1 =Pr[Yi = 01Y -' E sl-i]Pr[Y- i E sri
Pseudolikelihood methods were first proposed by x Pr[Yi = II Y - ' E S-i]
Besag (1975) for estimation of parameters in a
general Markov random field context. Strauss =Ps,,SoIrs ,
and Ikeda (1990) showed that for a logit model In other words, the Markov chain is reversible.
similar to (2.1), maximization of (3.1) is equivalent The chain is also irreducible because in any given
to a maximum likelihood fit of a logit regression stand the distance between any two trees is finite
model of the form in (2.1) with independent and, therefore all the conditional probabilities are
observations Yik. Consequently, estimates can nonzero.
be obtained using an iteratively reweighted least Geman and Geman (1984) called this sampling
squares procedure. Any standard logistic regression scheme the 'Gibbs sampler' and developed some
routine can therefore be used to obtain MPE's of general results about the convergence and rate of
the parameters. However, the standard errors of the convergence of the joint density of (Y ( ) )

estimated parameters calculated by the standard to the true joint density of (Y1,'", Yn). For
programs are not directly applicable because they the present problem, t iterations of the above
are based on the assumption of independence of the sampling scheme replicated M times will produce
observations. M independently identically distributed samples
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and the use of alternative measures of distance
(Ylm,'",lm), (m - 1,.. M), from the distri- with, perhaps, more biologically meaningful inter-
bution lrt that has f" as its stationary distribution.

Figures 3-6 are plots of the MPE's of the pretations.

parameters calculated after each iteration using the REFERENCES
spatial locations of trees in stand A (see Fig 1). Besag, J. (1974), "Spatial interaction and the
Each iteration involved the generation of n = 576 statistical analysis of lattice systems," (with
random variates (where n= number of trees in stand discussion), Journal of the Royal Statistical
A). Initial values were generated assuming spatial Society, Ser. B, 36, 192-326
independence (i.e., assuming a logit model with - (1975), "Statistical analysis of non-lattice data"
01 = 0). Results of the simulations seem to indicate Statistician, 24, 179-195.
that the MPE's are unbiased. The values seem to Efron, B. (1982), "The jackknife, the bootstrap,
oscilate around the actual parameter values used to and other resampling plans," CBMS Mono-
generate the data. Also, the rate of convergence was graph #38, Society for Industrial and Applied
very fast. The rate of convergence of the sampling Mathematics, Philadelphia.
scheme did not appear to depend on the initial - (1990), "More efficient bootstrap computa-
values. For example, use of pi = p, (i = 1, .. . , n), tions," Journal of the American Statistical As-
to generate initial values gave the same results (i.e., sociation, 85, 79-89.
convergence within a few iterations) as the more Geman, S. and Geman, D. (1984), "Stochastic re-
informati" n initial values used above. laxation, Gibbs distributions and the Bayesian

restoration of images," IEEE Transactions on

5 RESULTS Pattern Analysis and Machine Intelligence, 6,

Data from the first three years in stand A and 721-741.
the fourth year in stand B were used to calculate Hastings, W. K. (1970), "Monte Carlo sampling
two sets of estimates (one for each stand) of the methods using Markov chains and their ap-
parameters in (2.2). Data from the remaining plications," Biometrika, 57, 97-109.
years were not included in the analysis because Payne, C. D. (ed). 1986. The GLIM system release
the numbers of attacked trees were either zero or 3.77 Manual. Numerical Algorithms Group,
small (< 10). Table 1 lists the values of the MPE's Oxford, U.K. 305p.
and two estimates of their standard errors. MPE's Strauss, D. and Ikeda, M. (1990), "Pseudolikeli-
were calculated using the GLIM statistical package hood estimation for social networks," Journal
with the logit link and binomial error options. The of the Statistical Association, 85, 204-212.
standard errors from simulations are the standard Waring, R. H., W. G. Theis, and D. Muscato. 1980.

deviations of 6m, (m = 1,...,200), from 200 Stem growth per unit leaf area: a measure of
simulations using the sampling scheme described tree vigor. Forest Science 26, 112-117.
above. For each simulation, the variates generated
after 20 iterations were used to fit the logit model Table 1. Pseudolikelihood estimates of
in (2.1)-(2.3). parameters and standard errors produced

In both stands A and B the covariates dbh and by fitting the auto-logistic model to

D seem to have significant effects on the conditional stand A 1981 and stand B 19 84 data.
probabilities. Figures 7-8 are contour plots of Parameter Estimate Standard Error
the estimated conditional probabilities versus A = from

1/yv-. For a given tree, its distance measure, A, is Simulations GLIM
small if the tree is close to other attacked trees. The Stand A

contour plots seem to indicate that the probability -20.30 2.252 2.214
of a small tree (dbh less than 15 cm) being attacked 17.66 2.018 2.264
is small unless it is close to other attacked trees. 6.24 0.787 0.753
However, large trees seem to be attacked even when -0.003 0.007 0.009
their distance measure, A, is large, i.e., even when Stand B
there are no attacked trees nearby. -12.60 1.313 1.410

Further studies that are in progress include as- 3.06 1.124 1.008
sessing the goodness-of-fit of the auto-logistic model 4.54 0.443 0.484

-. 0013 0.008 0.007

.. . .. .~~~~~ ~~~~~~~ ~~~~. ...... ....... ......... .... .... .. . .. . .. . . .. .. . . . .. .
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Fig. 3-6. Parameter estimates from simulations.

Fig. 7-8. Estimated conditional probabilities of attack.
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Statistical Analysis of Anthropometric Data
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Abstract 2 Kriging

A major source of problems in poor fitting environmen- Typically, the kriging process consists of two phases:

tal protection equipment is the lack of proper consid- structural analysis to determine the spatial distribution

eration of the possible variation among aircrew facial of the variables, and estimation using a best linear unbi-
feature sets. The design of flight equipment is cur- ased estimator. In the first phase, the variogram is used

rently based on rather outdated mechanical anthropo- to quantify the structural information and is defined as:

metric measuring techniques with limited justification y(h) = 2Var[F(z - h)) - F(x)]
for specific size and shape characteristics. This paper

discusses the preliminary attempt to statistically cap- where F(x) describes a random function over the sup-
ture this variability in an organized manner. Three- port x, h E R2 . In practice, a model is fit to the ex-
dimensional data collected from a laser scan of 200 sub- perimental variogram using weighted least squares or

jects were statistically summarized for presentation and graphical techniques. One commonly used theoretical
analysis. However, the techniques applied to the prob- variogram is the spherical model which is defined as fol-
lem go beyond the classical Fourier or trend surface lows:
methods. Statistical methods traditionally reserved for wCs: _ h' ] + Co h < a
geology were applied allowing full consideration of the () 2a - + C0  h > a
correlation structure of the facial area. An "average"

face along with upper and lower percentiles were then 0 h = 0

available as input to computer-aided design programs. For estimation, we desire an unbiased, linear estimate
P (x) that has minimum expected estimation error. The

estimate of F(z) = F(z) is assumed to be a linear esti-
mator involving N observations in the neighborhood of1 Introduction F(r):

N
The objective of the study was to develop techniques P(z) = AF,(z)
for statistically analyzing anthropometric data so that =

physical models could be developed to support the de- where the weights A,'s are chosen so that the estimate
sign of flight equipment such as oxygen masks and lim- is unbiased: E[F(z) - F(x)] = 0 (i.e. F I A = I), and
ited visibility goggles. estimation error variance

The statistical methods used in this study are founded
in the spatial analysis techniques associated with krig- or = Var[F(x) - F(x)]
ing. Because relatively very little has been published
on the applications of kriging outside the geostatistical is minimized. In terms of the variogram the estimation
co.nmunity, a brief introduction to this technique is pro-
vided. = -ZZ AA,7(h,)+2 Aj ,(hjF)

or i j -th j

*This study was sponsored by the Human Engineering Division
of the Harry G. Armstrong Aerospace Medical Research Labora- Minimizing this variance subject to the unbiased con-
tory, WPAFB,OH. straint results in the following set of linear equations:
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A total of 200 subjects were available for analysis and

'A (h, ) + A = "Y(hi F) all associated data sets were aligned to a common axis
system. From this population of 200, a random sample
of 35 subjects were chosen for structural analysis.

A, =

3.2 Structural Analysis
where i = 1. n, u is a Lagrange multiplier, hj is thevector distance between observations F1(z) and Fjx) An artificial grid of 50 by 100 was established and super-
and hit is the vector distance between F(x) and the imposed upon each of the 35 data sets. Initial estimates
point to be estimated F(r). This form of the kriging of the global trend were determined using a simple near-poin tobe etimted ~x) Ths fom o thekriing est neighbor method for a selected grid structure. After
equation is generally refered to as punctual kriging. est or thod forta eld rid suctu ter

Theremoval of this initial trend from a subject, the resid-
udt e oint teseeqatis, of thesfan aethe uals were analyzed to determine the nature and extent

used to make point estimates of the surface at z: of the correlation structure. A spherical variogram with

F(z) = E,\*F'') parameters C = 2.226, CO = 0.689, and a = 6.645 was

found to best describe the spatial correlation for the

region of the face of interest in this study. Figure 1
along with estimates of the prediction error: displays the theoretical variogram overlayed on the ex-

perimental variograms (for four directions) for a typical
2a- p + Z A;Y(hF) subject.

For a more detailed discussion on kriging, the reader
is refered to the geostatistical literature (e.g. Cressie

(1989), David (1977) or Journel and Huijbregts (1989)).
to . . , . . , - , . _

- Subject ?60

3 Problem Solution 8E-

The end product of this study was a prototype for eye-
protection gear. The following discussion outlines the 6"
problem solution and describes data collection and anal-
ysis, structural analysis, and spatial estimation. 4

3.1 Data Collection and Analysis 2

Personnel from the Armstrong Aerospace Medical Re- 0

search Lab collected the data using a Cyberware Echo 0 2 4 6 8
digitizer. The laser scanner is mounted on an arm which h (distance)
rotates around the head of the seated subject, providing
measurements of 131072 points over the entire surface
of the head (512 locations on the plane of rotation, and Figure 1. Variograms for Subject 160
256 locations on the vertical plane). The correspond-
ing third coordinates are determined by measuring the
depth at these points using a triangulation procedure 3.3 Individual Spatial Estimation
based on the scanner's reference point.

Prior to analysis of the spatial properties it was nec- An artificial grid of 50 x 100 points was superimposed on
cessary to orient the subjects relative to a common axis the residual data sets and the kriging equations estab-
system. The data for the region surrounding the eyes lished for each of the 5000 points. The resulting estimate
was established by truncating the data sets to the points when added to the global trend provides an estimate of
within the glabella, pronasale, and left and right tra- the function describing the subject face as well as an
gions. The subjects were aligned using a multivariate estimate of the variance of the surface estimate at any
optimization routine for minimizing the squared euclid- point. Figure 2 depicts the results of kriging one subject.
ian distance between these four landmarks and four pre- It was assumed that the variogram and the global
determined external reference points, trend surface based on sampled 35 subjects, represented
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the population and would not change. Using the original 4 Results
variogram and trend surface, an estimate for each sub-
ject was determined individually and then aggregated This scheme was applied to all 200 subjects. Figure
sequentially using a recursive relationship to update the 3 represents the final surface estimate for the limited
population mean and variance, visibility goggles developed with this procedure.

2oo0 zoo-,O~jo ioo o

Figure 2. Kriged Surface for Subject 9 Figure 3. Night Vision Goggles Surface Estimate

Following the estimate of the upper facial surface,
3.4 Population Spatial Estimation the data was reformatted for input to a numericallycontrolled milling machine and a physical model con-

If the subjects are assumed to be uncorrelated, an esti- structed. This model has since been used to develop and
mate of the population mean and variance at a partic- evaluate alternative night-vision goggle support struc-
ular grid location for the kth subject can be estimated tures.
by: Engineers now have the statistical methods to sup-

port the design of flight apparatus which accounts for
Ak = pkbk the shape of facial features. In addition, research is al-

with: most complete on extending the methods to include not
1 only analysis of surface features (2-dimensional data),

Ph- k but also analysis of 3-dimensional data from magnetic
"i=1 Wi resonance image data.

bk = J: i
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Abstract The meta-element contains the sub-graph of related elements,

Most engineering application programs are designed to but appears as a single icon. These meta-elements then repre-

model, analyze, design, or monitor complex systems. Such sent another "level" in the schematic structure, and convert

systems can often be represented by schematic diagrams. the two-dimensional graph to a tree-structured acyclic graph;
Hierarchical modeling is a method by which complicated acylic in the sense that data flow between the nodes or levelssHeacica ding s a ethpresd b ich omo sicorn- is directional. Each level contains a sub-graph. Connectors
schematic diagrams can be expressed in a more easily cor still actually terminate at elements, but appear to terminate at
prehended form. This paper describes a software "layer" for the meta-element that represents the next level down in the
editing hierarchical schematic diagrams that can be used as ageneic ntefac ino mny apliatin pogrmstree. If the contents of the mets-element are displayed, the
generic interface into many application programs. isolated piece of the schematic is visible; connectors to ele-

Introduction ments in the "parent" schematic appear to run to the edge of

Schematic diagrams are a graphical method for repre- the window. The entire schematic becomes a hierarchy of

senting complex systems. These diagrams consist of icons meta-elements.

representing system elements and connectors representing a Meta-elements can provide a dramatic simplification of
logical association of the elements. Examples of the wide- complex schematics. Fig. 1 shows an EASY5 schematic
spread use of schematic diagrams in modeling are in control model of a complex aircraft control system before(a) and
system analysis, simulation, flowcharting, and communica- after(b) grouping elements into meta-elements, and the
tions (Hammond et al.[1989), Ozden[1991], Sargent[1986], appearance of the sub-graph within one meta-element
Stanwood et al.[19861). A schematic diagram is a particularly formed(c). The schematic structure can become quite com-
powerful tool as a user interface to any set of programs that plex without the user losing an intuitive grasp of the system.
analyze, model, monitor, or control these systems. The above description specifies a graphical process to

One of the key advantages of schematic diagram based form a meta-element. No changes to the represented system
interfaces is that many tasks of model validation can be per- structure are involved. Meta-elements may also be created in
formed within the graphical interface. The user simply does which the functionality of the individual elements is com-
not make many mistakes (such as mis-connections) that are pletely isolated from the rest of the schematic. Access to the
easily missed in other formats. Some application-specific
error checking can proceed and trap errors before analysis
commences.

This paper describes one such interface created initially
for EASY5, a controls analysis and non-linear simulation
program written by Boeing Computer Services. An important
aspect of the interface is that it was written to be independent
of and isolated from the underlying program or application. It -

was therefore possible to include features generally desirable
in many applications of schematic diagrams; the interface is
currently being used in at least two quite different areas.

Hierarchical Structure
A natural simplification of the schematic diagram results

when collections of elements that perform related functions Fig. l(a). Schematic diagram of complex control system,
or operations are grouped into a single new meta-element. before forming meta-elements.
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Fig. 1 (b). The same schematic diagram but simplified with Fig. 1 (c). The result of an examine operation on one of the
the formation of meta-elements. meta-elements formed. Note the off-page connectors.

variables and parameters of the meta-element is provided filled by variables from other elements, they become static
through a specified subset of all possible connectable inputs parameters of the system. Fig. 2 shows a data viewer for an
and outputs. In this way a grouping of elements becomes an element that contains editable FORTRAN code and defin-
entity similar to a true element, and is referred to as a param- able inputs and outputs.
eterized meta-element. A schematic diagram is a representation of a system.

Both types of meta-elements have a certain utility in sim- The topology of the system refers to the mathematical struc-
plification. We chose to implement graphical meta-elements ture represented by the graph itself, and not to the appear-
only, as they are easier to understand, create, and manipulate. ance of the schematic diagram. This implies that operations

Meta-elements are an aid to configuration control, as that simply affect the appearance of the schematic, such as
they can be stored in libraries and included as "plug-in" or moving elements, grouping elements into meta-elements,
reusable subsystems in any system. Testing can proceed on etc. do not require application-specific interaction.
new enhancements to a subsystem while other users of the Interface functions are called by the schematic program
same meta-element can rely on the older versions; when the whenever modifications are being made to the system topol-
testing is complete, all schematics can access the improved ogy. These opcrations include adding or deleting elements or
version. connectors. This allows the specific application to approve

Programming Concepts or reject the change or inquire for more information.

Schematic diagrams, by their nature, lend themselves to Information not directly related to or contained within
an object-oriented treatment. Each object in the diagram con- specific elements or connectors may be added to the sche-
tains common attributes such as appearance-related informa- matic as drawings, i.e., collections of graphics and text infor-
tion (size, color, position), current state ("selected" or other mation not required by the system but helpful for
application-related states), and a unique identifier. Applica- documentation.
tion-defined data is stored in "pigeonholes", or pointers to Elements and drawings store their appearance as vector
data that the schematic program passes without processing. It or other scalable graphic information, editable by the user.
is this latter aspect that allows the separation of application Bitmap icons, while sometimes superior in appearance, are
end use of the schematic and the schematic interface itself. difficult to scale.

Data contained within the pigeonholes can be observed General Appearance of the Interface
with data viewers. These pieces of the interface are applica-
tion specific and allow a user to "examine" elements of the The interface appears as a window surrounded by some
schematic diagram for content and change that content, as control panels and menu bars. In the large central window, the
well as observing and editing aspects of the data flow within user may add elements (icons) from a menu of available func-
the system. For instance, EASY5 elements have defined sig- tions and position them in the window. The appearance of
nal inputs and outputs. If the inputs are not connected or individual elements may be changed with a graphics editor,
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obstacles such as elements.

4 _-_-_.. ._____-- A (3) Creation and destruction (the inverse operation) of
"-' meta-elements should be very transparent to the user.

(4) Navigation or view control between levels of the[-1 F,... schematic (i.e., between meta-elements) should be quite fac-

_ I"-il- le. By executing an examine operation on any meta-element,
--- the user should then view the level within that meta-element.

E. t.- __ I, Navigation is facilitated by a dynamic list of available meta-
- -elements, and labeling that indicates the current level being7--ql-- -J-I'-.,-I. . .. iewed.

''p:~ :' z. and(5) Hardcopy must be presentable as a final document
... . ,and contain as much information as possible without being

• i vt Qto!cluttered.

Conclusions
Fig. 2. EASY5 data viewer during an examine operation A schematic interface is an excellent enhancement to
on a FORTRAN element, many existing computer programs that are quite mature in

their computational ability but require detailed and complex
and text or other symbols or drawings may be added to the input from the user. It is also a useful paradigm for building
schematic. By selecting (moving a cursor over and clicking a an analysis program from scratch. The interface we built is
mouse button) an element, it is identified for subsequent oper- being used for both cases. In the case of EASY5, more than 6
ations such as moving its location, deletion, copying, or years of experience with a commercial product that has
attaching a connector to another element. Clicking another included an increasingly sophisiicated schematic front end
button on the mouse performs an examine operation which has demonstrated vastly increased productivity for the engi-
gives the user some feedback as to the contents or signifi- neers that use it.
cance of the examined object (Generally, a data viewer is Acknowledgments
invoked.). The window may be "panned" over the schematic
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make the interface more intuitive and easy to use as well as Applications". IRE Trans. on Electronic Computers,

performing some of the laborious engineering tasks of mod- Sept. 1961, 346-365.

cling: Ozden, M. H. (1991). "Graphical Programming of Simulation

(1) The schematic must allow scaling operations such as Models in an Object-Oriented Environment". Simula-

zoom and pan so that the diagram may be viewed in its tion, 56, 104-116.

entirety or enlarged to study a specific portion. Sargent, Robert G. (1986). "The Use of Graphical Models in
Model Validation". Proc. of 1986 Winter Simulation(2) Connectors must initially be routed automatically. Conf., 237-241.

This removes the onerous task of cleaning up connectors

whenever the position of elements is changed in the sche- Stanwood, K., Waller, N. and Marr.,G. (1986). "System
matic. There are many rule-based algorithms for connector Iconic Modeling Facility". Proc. of 1986 Winter Simula-

routing available (see Heller et al.[19821 or Lee[19611). tion Conf., 531-535.

Automatic routing here implies rectilinear routing that avoids



92-19653 Array Language 501

M++, an Array Language Extension to C++ - -n
Ronald Schoenberg

Dyad Software Corp.
16950 - 151st Ave SE

Renton, WA 98058 [

ABSTRACT attempted with FORTRAN or C.
All array languages of any significance, however, are

Two major developments in statistical computing in the interpreters, have few low level features, tend to be weakly
eighties were array languages and object oriented typed, and are not extensible. While array languages
programming. These developments have been realized only provide a convenient method for the manipulation of arrays
fragmentally until now. M++ is a collection of C++ classes, of data, their syntax may become overburdened when
methods, and functions for array manipulation, linear applied to large, complicated tasks.
algebra, eigensystem analysis, matrix factorization, and Many researchers who have moved to the array languages
general numeric and statistical computation. M++ extends are now beginning to encounter tl'eir limitations. They may
C++, creating a powerful, object-oriented array language regret having left FORTRAN's superior numeric standards
with direct access to all of the features of C and C++. behind, and they may be frustrated with their inability to

develop large, complex applications in the array language
environment. On the horizon, though, is something new, an
array language extension to C++ called M++ (Dyad

1 INTRODUCTION Software, 1991), that may alleviate these problems. M++ is
a complete array language extension to C++ containing

Scientific and statistical computing have splintered in the multi-dimensional arrays of all of the C++ built-in data

eighties into parts: a part using the new array language types, along with a full range of statistical and mathematical

interpreters such as S, GAUSS, MATLAB, and operators and functions. C++ is a superset of C, giving it

MATHEMATICA; and another part remaining with and M++ access to all of the low level functionality for

FORTRAN. Both of these have ignored, to a large extent, which C is well known. Translators and native compilers

the development of the C programming language, which exist for C++ on most platforms that support C, which

seems to have captured a major part of the rest of the means nearly all operating systems that exist, and therefore

computing world. M++, a non-interpretive, full featured array language with

There have been tentative movements toward C from direct access to a powerful, low-level language, will be

FORTRAN. but the obstacles are formidable. There is a available on just about every computer.

large investment in FORTRAN code that cannot be ignored,
nor are C arrays really convenient for matrix computation.
C also seems to require a significant amount of training: 2 C++, AN OBJECT-ORIENTED EXTENSION OF C
acquiring FORTRAN is a less intimidating problem.

While many researchers have stayed with FORTRAN, C has a number of features not available in FORTRAN -
others have been turning to array languages. The ability to run-time allocation of memory, more convenient 1/0. scope,
write code manipulating arrays of data with a simple, and structures, for example. Together they may not add up
intuitive syntax often proves irresistable. Mathematical to enough advantage for the researcher to move to C. The
expressions translate directly into code and many lines of features C++ adds to C, however, are substantial and may
FORTRAN and C code are replaced by a few statements. prove to be worth the attention of the researcher. The
Productivity is dramatically improved and this can convert implementation of the object-oriented concept in C++
to the undertaking of more advanced projects than would be provides for user-defined data types with data-hiding.
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derivation and inheritazc, function and operator
overloading, as well as control over the creation, destruction, /- COMPUTATIONS /
declaration, and assignment of objects (Ellis and Stroustrup, for(n=o; na n0; Ob; n.+> i++)
1990). Other implementations of the object-oriented mn[i] += data[n][i];

for(j = 0; j < numVars; j++)
paradigm exist, but C++ is particularly suited for the mmti][j] += data[nJ[i]*data[n][j];

researcher because of its efficiency and because of the
availability of the built-in numerical types and operators

for(i 0; < a numVars; i++) {
inherited from C. Most C++ compilers (not to mention C mn [i] /= numObs;for(j = 0; i < numVars; j++)
compilers) have yet, however, to incorporate the IEEE fr i 0;) /a numObs;

numeric standards that have always been a part of
FORTRAN. An exception is the ZORTECH C++ "Science for(i = 0; i < numVars; i 4)

and Engineering" compiler that fully implements the sail = sqrt(mm[i][i] - mn[il*mn[il);

standards set by the ANSI Numerical C Extensions Group, /- PRINT RESULTS */
printf ( \n\nMeans\n");

based on the IEEE numeric standard (Ladd, 1991). The for(i = 0; i < numVars; i++)

researcher typically works with large sets of data, and often printf(" %f\n*,mn[i));

the operations on these data can be described mathematically printf ( * \nStandard Deviations\n");
for(i = 0; i < numVars; i++)

in a simple form. A program written in C, however, must printf(I %f\n*,sdti);

deal with each number in an explicit way. A generalprogram written to compute soebasic statistics, for
p some In C++, a class can be designed to take care of much of this

example, must first allocate and initialize memory for every tedious work. Initialization and allocation of memory can be
number to be stored. It then reads the numbers in one by handled in the construction of the object. 1/O operators can
one, and provides instructions in loops to compute the be overloaded to handle the reading in and writing out of
statistics, number by number. For example, the following C objects. Math operators can be overloaded to perform theprogram reads in data and computes masand standardro s imeansa calculations. All of the loops can be eliminated and essential
deviations: information about the objects can be hidden away in the

#include<stdlib.h> object so the researcher doesn't need to be concerned with
#include< stdio. ht
#include<math.h> them once the objects have been declared. The solution of
*include<biosh> the above problem in M++ with a class called doubleArray
void main(argc,argv) (for array of double precision numbers) is found in the more
int argc; ~blw
char **argv; readable program below:

char *fn; # include<darray .h>
fn = argv[l]; Oinclude<astdlib.h>
numObs = atoi(argv[2]); # include<stream.hpp>
numVars = atoi(argv[3]);

void main(int argc, char * argv)
/* DECLARATION /

FILE * filen; char * fn;
int numObs,numVars,i,j,n; fn = argv[l];
double **data, **mm, *mn, *sd;

// DECLARE AND READ IN DATA
/* ALLOCATE MEMORY */ doubleArray data;

data = (double**)malloc(numObs*sizeof(double*)); data.readASCII(fn);
mm = (double )malloc(numVars*sizeof(double*));
for(n = 0; n < numObs; n++) // COMPUTATIONS

data[n] = doubleArray mn,vc, sd;
(double*)malloc(numVars*sizeof (double)); mn = mean(data,0);

for(i = 0; i < numVars; i++) vc = transpose(data).product(data)/numObs;
mmii] = vc -= transpose(mn)*mn;

(double *)malloc(numVars*sizeof(double)); sd sqrt(vc() (Index(0,numVars,numVars+l)));
mn = (double *)malloc(numVars*sizeof(double));
ad = (double *)malloc(numars*sizeof(double)); / PRINT RESULTS

cout << 'Means\n" << mn;
/* READ IN DATA / cout << "Stardard Deviations\n" << ad;

filen = fopen(fn,1r*);

for(n = 0; n < numObs; n++)
for(i = 0; i < numVars; i++) Declaration, allocation of memory, and initialization of the

fscanf(filen, %If',&dataln)f ii); arrays are accomplished in single statements replacing many
/* INITIALIZE ARRAYS */ lines of C code. One statement handles the input of the

for(i = 0; i < numVars; i++) d
mn[i) = 0; data, dimensioning the arry automatically so that command

for(j = 0; < nuaVars; j+) line arguments are no long necessary. The many loops in
tmhijC = ; lo T few f) the C code are reduced to a few lines of code.
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The critical feature of C++ is its ability to provide a concern themselves with how the data were stored in the
syntactical interface that fits the conceptual parts of the object. All they would know is that they have created a
problem. It is possible to design a set of functions in a non- Moment object that may be interrogated for various kinds
object-oriented language that performs the above task in just of information about the data. For example,
about as few lines of code. There wouldn't, however, be
any fit of these functions to the elements of the problem. #include<drray.h>
Each function would require a series of arguments that #include<stdlib.h>

would have to be documented and referred to for their use #include<stream. hpp>

because there wouldn't be any natural way to handle them. void main(int argc, char * argv[2])

The researcher's task in a functional language involves char * fn;

assembling and arranging arguments, and thus the problem fn = argv(1];
must be translated into a structural form dictated by the / DECLARE AND READ IN DATA

syntax of the programming language. doubleArray data;

C++, on the other hand, has a syntax that can be designed data. readASCI I(fn);

to fit tie problem. The researcher's problem can be broken // DECLARE MOMENT OBJECT

down into parts in a natural way. If arrays are a doubleMoment M(data);

fundamental part of the problem then an array type can be // PRINT RESULTS
cout << "Means\n" << M.mean(;created and the program will now be developed with arrays cout << 'Standard Deviations\n" << M.stdDevo;

as a fundamental type. cout << 'Correlation Matrix\n" << M.corr(;

We have now reduced our original problem to the simple act
3 M++, AN ARRAY EXTENSION TO C++ of declaring an object While we still haven't done anything

that couldn't be accomplished by a statistical package, C++
For the researcher the array type is necessary. While C++ is just beginning whereas the statistical package stops there.

offers them an opportunity to design their own such type, Now that we have a Moment object, we may treat it like
they may also turn to a well designed class library such as any other object. Operations can be defined to manipulate
M++. Three years have been devoted to the development of it. For example, pooled moment matrices can be created by
the M++ class library that turns C++ into a powerful array adding Moment objects, or they can be updated with more
language with a fundamental array type having four observations by adding the Moment object to an array
dimensions, but easily extendible to any number of object containing a data set. Or arrays of Moment objects
dimensions. It incorporates a full complement of can be created and manipulated in higher order array
mathematical and statistical operators and functions, operations. The statistical package is at the end of a creative
including many based on EISPACK and LINPACK. effort, but C++ is only the beginning of the creative

Using M++ as a base the researcher can go on to more mathematical and statistical imagination, and M++ is a step
complex abstractions. Consider the problem described in the on the way.
previous section. The covariance matrix is computed in a
standard way. However, the symmetric matrix result entails 4 CONCLUSION
the calculation of n*(n-l)/2 redundant elements. This
duplication of effort as well as certain problems in precision C++ has opened the way to object-oriented program design
could be avoided if the result could be computed from an for numerical analysis. M++ is the foundation for the
update to a Choleski factorization. application of C++ to numerical problems by providing the

To solve this problem, first we create a Moment class array classes for handling memory allocation and
derived from the M++ Choleski class. The Moment initialization as well as the operators and functions for
constructor would take a data set as an argument and manipulating them. As is, M++ has the functionality of a
compute a Choleski factorization via the update method complete array language, but it needn't stop there. New
augmenting the data set with a column of ones. It would objects can be derived from the classes available in M++
then store the result as a private data member in its base that fit the problem the analyst has in mind. What is
class. The Moment class would have methods for needed? It might be arrays of rational numbers - certain
computing moments, means, covariances, and so on, from kinds of problems can be posed entirely in rational numbers.
the factorization. It would also be able to use the base class Or, perhaps, interval arithmetic is required in which an upper
methods for computing inverses and determinants. and lower bound is stored rather than a single number. A

When actually using this class, analysts wouldn't have to derived interval class with a set of overloaded operators and
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functions would allow an analyst to develop large, complex
programs with a syntax that relieved them of having to think
about the intervals.

Whatever the analytical problem, the researcher will find
in C++ and M++ a powerful tool for solving it.
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Building a program for Multifactor Cross-Tabulation :
Some Structures & Systems
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Introduction importantly it is a fully structured language.
Further discussion on Pascal's general virtues are

This paper discusses programming principles and given in the references [2,3,41.
practices required to construct a crosstabulation
program, a subset of a statistics package substantial Data Structure
enough to illustrate these principles, without
involving numerical analysis problems. This is a We only read one case at a time from the data file,
preface to our construction of a simple but powerful so the input structure is simply an array. The tables
tabulation program via extracts from the code in our formed will also be in a single array. Respectively,
own packages (e.g. StatZ [1]) we define types and variables:

type
Objectives and Limitations DataArray - array[l..maxVars] of real;

TableArray = array[1..maxCells] of real;
For the present purposes, we envisage users who
are moderately experienced researchers, typically Var DataCase : DataArray; Tables : TableArray;
wanting many tables of modest complexity from
potentially large data - for instance, researchers It is of considerable relevance how the second
with surveys of 300 readings on each of 10000 array is actually used; for the moment note again
subjects. This is not really ignoring the masses that at any point in the computation the all the
with smaller jobs and less expertise; efficiency tables within the table array are updated using only
considerations will also usually be similar. the data line just read. We assume that data

elements are real numbers; more general situations
The major initial technical decision to be made in of mixed reals, integers & text, transformations,
the face of limitations concerns data storage. In a recodings and selection criteria are merely later
sense the decision is finally simple - data cannot be refinements.
held in memory as it is prone to be too large. Thus
it must be treated in segments. 'Paged' memory is Essential Structures 1:
an attractive option, but as not all systems are Record and Set Types in Table Definitions
particularly well set up for it, program developers
would probably have to implement it themselves for We consider a table definition as having three
their package input, and it would have system components -

dependencies. Thus the extra programming implied 1) a classifying factors array defining
by taking the data in on a per case basis and fully the variables and their order within the table
utilising that line to contribute to all the relevant 2) a set defining the statistics to be placed
tables, before replacing it with the next line and in the cell defined by the indices of 1)
repeating the table construction calculations, is 3) the object variable, if any, to which
easily justified, and is in fact the method used by the statistical computation is applied
most of the older statistical packages too. Thus our
initial program emphasis here is on formal The first component is illustrated by the description
structures in the language Pascal (Wirth, [5]) for AgeGroup * Sex * Country , say,
the tables description, which dictate the table meaning that we are defininga three way table of 24
computations to be done as each data line is read. cells, where there are, say

4 AgeGroups [<18, 18-37, 38-62, >62 years]
We have used Pascal as the programming language 2 Sexes [male female] and
to show this work on the grounds that it is the best 3 Countries [Australia, US, UK].
known language of serious programmers, and more
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If we want simply a table of counts of our cases the values of the classification variables found in
according to this cross-classification, the statistic the data line. The statistic wanted determines what
required as the second component is 'count', and is done in the target cell - if a count is required the
this is the default computation. However the cell is merely incremented by unity, while for a
structure optionally allows us to request means of a mean of Salary, the cell is incremented by the
(continuous) variable, say Salary, by selecting the case's value of Salary; or a substitution may be
statistic to be 'mean' and the component 3 'object needed if maximum/minimum is required.
variable' as Salary. Component 3 is not relevant
unless component 2 is other than 'Count'. As computing efficiency matters do not impact the

structural considerations, we pass over them here.
The use of record type constructs, a variable with
many component sub-variables, is well entrenched Essential Structures 2:
in the structured languages, and we use them Group Variables
heavily throughout our code. It is appropriate here
to define a table specification by a record type: Most surveys use group variables, often more by
type TableSpec = accident than design. These are of two structurally

record different, though related, forms.
ClassSet : array[1..maxFactl of integer;
TabSize : integer; The first is illustrated by the following. Suppose
TabBase : integer; an opinion pollster conducts a survey on
StatsWanted : StatSet; newspaper readership, in which persons are asked
ObjectVar: integer; to name up to three papers they read regularly. The

end; survey form would have three slots to fill, and
where TabBase is the address in the table array of these would usually become three variables, say
the first cell of the constructed table, and the set Paperl, Paper2 and Paper3. However these three

type variables are equivalent in the sense that each has
StatSet=('count', 'mean', 'stdev', 'min', 'max'); the same range of possibilities - one respondent

is the set of possible statistics to be calculated for could name the Daily Bugle in Paper2 while
each object variable given, another respondent does not have it at all and a

third names it in Paperl. The pollster usually
This formulation makes it possible to specify many wants as one of the results, a table of the form
tables to be obtained in a single pass through the Paper by AgeGp by Sex ,
data, each specification being stored as an element in effect combining the three simple tables
of the vector of TableSpec records Paperl by AgeGp by Sex

var Paper2 by AgeGp by Sex
TabslnPass = array[1..maxTabs] of TableSpec; Paper3 by AgeGp by Sex

We solve this by effectively processing each case

Each table's memory allocation is visualised as a three times, using Paperl first time, then Paper2
linear array, and the collection of table arrays are (with same Age and Sex values), then Paper3. In
stored contiguously to form the single linear array the present structure this is easy to organise - three
of all the table cells as declared above. The i'th tables are formed but the trick is that each is given
table then has an origin at location number the same base address. Hence the cumulative table
TabslnPass[il.TabBase within this large array. We is formed without physically getting the separate
detail later a further payoff in this structure in that constituent tables and adding them. This means we
multiple response ('group') variables are efficiently do not have to reserve space for three tables, nor
handled within the same structural processing. waste time with exceptions-testing code in the

innermost loops. All exceptions processing work
At runtime, for each data line we simply cycle then occurs in the time non-critical phases of table
through all the elements of the TabslnPass array of definition and output configuration.
table definitions. The target cell within the i'th The second group variable situation is an extension
table has an offset from TabBase computed from
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of the above (conversely, the first is a 'cheap' form procedures themselves to handle sub-commands.
of this one). In this, the survey carries a (usually
large) list of newspapers to be considered, and the On the other hand, modules which are needed in
respondents tick all relevant. So we have Paperl, short term only can be put outside the mainline,
... Paper25 say, and any number can be ticked by a and this determines another level of structure called
single respondent. Here we consider the group overlays or segments, in which independent
variable Paper as a 'super variable' having Paperl, procedures alternately use the same memory area
...Paper25 as its 25 'levels'. Again, processing when they are being executed. The level of power
cases is transparent if we define twenty-five tables of this structure is that, on most sophisticated
as above, now with appropriately modified base compilers on PCs, it can allow sets of procedures
addresses, and leave the fact that there is only one to be constructed and compiled as independent
real result table, a concatenation of the 25, to be units and stored externally to the main program. In
easily sorted out at print time (this involves some execution, the mainline procedures remain in
structural detail for aliased and non-printed tables). memory at all times, loading an external module
The wastage of table definition space is offset by into memory only when it is required. The external
the economy gained by the fact that target index modules use the same physical memory area, as
computations for the 25 tables to be updated for a each overwrites the space used by the earlier one.
single case have all but one source index identical. The program skeleton is

The record structure describing both types of group Program StatsCrossTables;
variables uses a set type variable for group, and is: (Driver loop and global defintions)
type groupvars = const ......... type ............ var ............

record
GrpName : string[15]; external procedure Tab(ok : boolean;
GrpType : (e,s) external procedure Tran(ok : boolean;
GrpLo, GrpHi : integer;
Grplndxs : Array(1..maxlnGrpl of integer; ($1 SupportProcs) {for i/o & general needs)

end; ($1 SundryStatsProcs) (common simple stats)

Essential Structures 3: var {Local defintions)
The Driving Program and Overlays endit, (Quit flag)

OK : (operation successful) BOOLEAN;
Having considered specific calculation modules,
we turn to the main-line or driver program, and the begin {driver)
structure it requires. endit := false;

while not endit do
At one level, the driver is a very simple looping begin
procclure which presents a prompt to the user, and write(outfile, '==>');
read- in the user's next command. It determines readln(wd); (user give 'command' keyword)
what the command is, and proceeds to call the case left(wd,3) of
procedure/module enacting that command. At a 'qui': endlt := true;
second level, it houses global variables, and all 'fil' : openToRead(FileName, ok);
utility procedures needed permanently in memory 'tab': Tables( ok);
for more than one module. In particular, it holds 'tra' : Transforms( ok);
the case read/select run time procedures, for these 'Iev': defineLevnames( ok);
will also be needed if in the future we add new 'var': deflneVarnames( ok);
statistical modules which must also read the data. end (case)

end: (while)
We find this loop structure very useful as it can be write('Goodbye.);
extended as the program grows by simply adding end. (driver)
new control keys and corresponding procedure
calls. It can also be replicated within statistical Such overlaying is essential in constructing large
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systems of any kind, though text books on the must be passed over here. Particularly useful ones
subject are in fact rare. Note that external modules in crosstabulation are fully discussed in [2,3].
are not strictly standard in Pascal, but all modem
compilers like Apple's MPW do support them (and Essential Structures 5:
hence our recent move to Modula2 sytems, where Graphics User Interface
they are defined as standard). A full discussion of
these matters is given in [4]. Besides space problems, there are interlocking

reasons for omitting this discussion also - we find
Essential Structures 3: that users eventually move to batch methods and so
Sets & Pointers a 'command line' interface, as here, is always also

needed. Further, it is relatively easy to put up a
We have referred briefly to sets in earlier sections. grapics interface preprocessor to construct the
This program does not require any more complex commands at a later time, in accord with the
usage of sets than that used in the StatsWanted programming Principle of Successive Refinement.
item of the TableSpec record, but more complex
set constructs are useful elsewhere, as shown in [2] Summary
for ANOVA and Log-Linear models.

We indicate in this note that structures commonly
We find pointers very necessary where we must used in developing large commercial packages by
allocate temporary space for large arrays, usually of professional programmers are equally relevant to
dimension which cannot be determined until run statisticians' programming. We also hope that our
time. Space is allocated/deallocated in ('spare') programs StatZ etc. using these will be found
heap memory and allowing great flexibility in larger more than a cerebral exercise.
programs. Relevant here is the LevelsNames
array, an array of text for the levels of a 'factor' or References
classification variable. The structure is used within
the variables information record: [1] Klobas JE, & Murphy, BP (1990) The
type VariablesRec - STATZ Manual, Westat Associates Pty. Ltd.,

record Nedlands, Western Australia
VarName String[15];
mean : real; (if/when available) [2] Murphy B.P., Rohl, J.S., Cribb, B.P.(1986)
stddev: real; (if/when available} Recursive Techniques in Statistical
min : real; (if/when available) Programming. In Proc. Compstat '86
max : real; (if/when available) IASC Conference, Springer-Verlag, Vienna.
NoOfLevels integer; (O=not factor)
LevelsArrayPtr ALevelsArray; [3] Murphy BP ,and Bartlett GA (1988) Further

end; Recursive Algorithms for Multidimensional
and we define the array Table Computations. In Proc. Compstat

Varlnfo : array[l..maxVars] of VariablesRec '88 IASC Conference, Springer-Verlag, 261-9
to contain useful information about each variable in
the data file. The first six items are obvious, and [41 Murphy BP & Bartlett GA (1990) Statistical
the last points to the Platforms - Dreams to Reality. Statistical

LevelsArray= array[l..classes] of string[15l; Software Newsletter,15,2, 2-7
which is allocated at run time when classes size is
known. This structure also leads to efficiencies of [5] Wirth N (1970) Algorithms + Data
storage as many variables may be allocated the Structures = Programs, Prentice Hall
same names (e.g.'Yes', 'No').

Essential Structures 4:
Recursive Procedures MPW and StatZ and are proprietary products of

the software houses indicated.
For space reasons, discussion of this vital topic
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ABSTRACT ing parameter A determines a balance between fidelity
to the data (small residuals) and smoothness of f.

This paper describes how a flexible object-oriented pro- The issue mentioned above can now be stated as
gramming environment can greatly enhance possibilities
for interactive model building and for the choice, anal- What roughness penalties R[f] are appropriate ?
ysis, and estimation of models. In our case we want
to model y = f(x) with the non-orthodox requirement In nonparametric density estimation, the MPL approach
that f have as few inflection points as necessary but f has been investigated in much detail; see Good and
is otherwise unconstrained (nonparametric). One pos- Gaskins (1971), Tapia and Thompson (1978), and Sil-
sibility is to express f" as f"(x) = ±(x - wl) ... (x - verman (1986), section 5.2, where some of the earlier
wi) exp h1(x), and model h] as linear spline. There are work is discussed. Although Good and Gaskins (1971)
many ways of dealing with a penalty to be added to do discuss the choice of penalty, it is usually selected in
the log-likelihood, and of estimating the different groups such a way that the subsequent problem is "tractable".
of parameters. Using the object-oriented CLOS-based MPL has a more recent history in the context of re-
ARIZONA environment, these different possibilities are gression, but considerable investigation has been done,
quite easy to investigate, including generalizations for dealing with generalized

linear models; see, e.g., O'Sullivan et al. (1986), Gu
1 Introduction: Penalizing the Proper Rough- (1989) and Wahba (1990), ch. 9. Here, the rough-ness penalty is always assumed to be the squared semi-

ness norm of a (linear) projector in some (function) Hilbert

In order to think about scatter plot smoothing, let us re- space. The methodology of reproducing kernels leads

consider how we measure smoothness. For convenience, then to simple characterizations of the solution, some-

we are going to measure 'roughness' R.f of a function f times called generalized splines.
war gopos to smeasuro'ouhness r oach t ating In contrast, we want to choose a roughness penaltyas opposed to smoothness. Our approach to estimating according to a more qualitative notion of smoothness.f in the model i~ -- f(z,) +-ei, i -- 1,.. .,n, (Ci are

i.i.d. with E [ci] = 0) is a Maximum Penalized Likeli- The penalty which leads to polynomial spline functions,

hood (MPL) criterion as follows: R[f] = ff(-)2(t) di, (m = 2 gives cubic splines), was
originally motivated by the fact that f"(z) is in some

n way "proportional" to the curvature of f at z. Ideally,
min p(yi - f(xi)) + A R[fI. (1) R[f] would measure an average (squared) local curva-

SEC[,zi,',] ture. The domain of integration, here and subsequently,

The first term in (1) is the negative los-likelihood when is the full range of {zi}. As seen in Machler (1989)

ci are i.i.d with density g(t) oc e-P(I. For Gaussian and below, this is not true in general. We have devel-
errors it is the usual residual sum of squares. Allow- oped a new roughness penalty trying to incorporate aerrfor at isothe usal r esi ualsm g osurs Alow- global notion of smoothness. Approximately measuring
ing for a more general p, e.g., using "Huber's rho", change of curvature instead of curvature leads "natu-
pc(X) - (, 2 

- (I -_ c) )/2, we make sure that our es- rally" to consideration of inflection points, i.e., points
timate of f will be robust against outlying observations where the curve goes from convex to concave or vice
yi; see Mchler (1989), and Cox (1983). The smooth- versa. The final approach, denoted by "Wp", can be

*Research supported in part by the National Science Fund of considered a parametric-nonparametric hybrid: Assum-
Switzerland ing a given number of inflection points J, we consider
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the MPL problem where the roughness penalty now mea- imately one might just look for f ut each i separately
sures the "remaining change of curvature", given J in- requiring, e.g., f" > 0, and f" = 0 at the intervdl bound-
flection points; J can be varied on top of this as well. aries. The minimization of fl, f" 2 (t)dt now will often

An example with real data is given in figure 1. yield whole subintervals where f" 0, i.e., f is locally
This data set hs.data is available in S by the state- almost linear.

2 "Wp": Change of Curvature Roughness, In-
Housing Starts in USA (n = 108): Smoothers with the same RSS C an ounes

flection Points

The traditional smoothing splines approach is motivatedby the idea of penalizing high curvature ic with the

penalty RVf = f K(t)2 dt. Because the curvature is given

-by r.() = f"(z)(I+ f(X)2) - 3/2
, it may be approxi-mated by K(u) ; c. f"(z) (if f'(z) const !) which

S"•leads to cubic splines. This approximation to r. need not
be good in some cases (see Michler (1989)) and is used
mainly because of the simplicity of f'2 (and its corre-

sponding solution to the variational problem) compared
to r 2. But the more important issue is

-- c sw.V.1 t55 Does high curvature reall mean "roughness" ?
LOWESS with Var.1155

.... M.chler (1989) argues that it may be more 'natural' to
IM6 It" 1970 1972 1974 take the "standardized Change of curvature"

Figure 1: Ezample of (deseasonalized) housing starts (in .-- f"'/f" - 3f' f"/(1 + f'2 ) "
the U.S.) for 108 months. Three different smoothers,
tuned to have identical residual sum of squares. "Wp" as measure of roughness. The approximation f"/f" ,Z
smoother with J = 3, i.e., 3 inflection points. c'/, holds exactly at all the local extrema and inflection

points (the most interesting points of the curve) and is
ments s.hs <- sabi(hstart); hs.data <- s.hs $trend+ qualitatively better than f"(z) K(z) in many situa-
s.hs $regular. Cubic splines, "lowess" (Cleveland tions.
(1979)) and our "Wp" smoother (with J = 3) were This approximation for the relative change of cur-
tuned to have identical average squared residual. Note vature leads to the preliminary penalty &[f] :=
that the two classical smoothers suffer somewhat from f(f"'(t)/f"(t))2 dt. Now, let us assume that f has J
"erosion" at the two local minima and both have extra inflection points, say wl,..., wj. Equivalently, f" has
inflection points. exactly the zeros wi, j = 1, ... , J. Then f../f" has first

Perhaps the most closely related work to ours is work order poles at these locations and R[f] "contains J times
on "isotonic" and "constrained" splines. Wright and o". But we can "rescale" the problem by expressing the
Wegman (1980), e.g., prove the existence of splines un- second derivative as
der restrictions such as (piecewise) monotonicity, con-
vexity, etc. A corresponding algorithm has been pro- f"(z) = s (z - w)(z- W2) ... ( - wi) ehl(z)

vided by Irvine et al. (1986) and put into the IMSL _±_

library subsequently (as 'CSCON'). Examples of other " "
approaches using regression splines with a few (possibly) P M1 (z) eht(z). (2)
variable knots were taken by e.g., Dierckx (1980), and Here, syeh,() represents any function with no zeros
Ramsay (1988). (E R), and P,,,(z) is a polynomial of degree J. We
These "smooth" curves, however, often are 'nearly' can now express hl as hj(x) = log(f"(z)/P=,(z)) -

piecewise linear with 'brisk' changes of slope which is j. This gives
very unsatisfactory. This behavior is well explained in- log If"(a)/s, - j= log ja - T s

tuitively: One is looking for a function f minimizing fflY 1
f f"2 (t)dt under restrictions as (-1)'f"(z) _ 0 on some h/(x) - x(z) - . (3)
sub-intervals I4 C [a, b]. To solve this problem approx- f It j=1-
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Expression (3) is f"'/f" (as in ][f) minus all the poles. problem of determining the {wi}'s and {bk }'s. Also,
If the inflection points wt,. . ., wj are unknown param- some investigation about the choice of the knots {tk}
eters, the choice of the penalty (number and location) has to be done and we may want

to include this choice into the minimization probleti.

R[f] : h'(t)2 di, (4) In the remaining sections, we will see that an object-A foriented interactive graphical system such as ARIZONA
is ideal for investigating this minimization problem.

still penalizes the change of curvature and prevents more

than J inflection points. The "order" J (the number of
inflection points) is assumed to be given. For each J we 4 CACTUS in ARIZONA
have a class of functions with a fixed number of inflection
points. Arizona is a software system under development at the

In Miichler (1989), the resulting variational problem University of Washington, Seattle, by John McDonald
was considered and a (quite involved) numerical algo- and coworkers (McDonald (1988)), based on Common

rithm for its solution was devised. Here, we solve the Lisp ('defined' in Steele (1990)) and CLOS, the Common

problem in a restricted (but still rich) function space to Lisp Object System (Keene (1988)). Citing McDonald

make it more feasible for inference. Namely, we model and Sannella (1991),
hf as a polygon, or linear spline. "Arizona is intended to be a portable,

public-domain collection of tools supporting
3 "Wp" parametrized; hf as linear spline scientific computing, quantitative graphics,

and data analysis."

Assume the xi are ordered and split the data interval

into M subintervals Ik = [tk, tk+l [, by knots X, = to < The above report and release of ARIZONA are available
ti < ... < tM = Xn. We now parametrize h! as a via anonymous FTP from belgica.stat.vashington.edu
(general) linear spline with knots {tk}. In each knot in the directory pub/az. More documentation can be
interval, we set found in the IXTEX file collection doc .tax .Z. Release

0.0 (as of Feb. 91) contains four modules, TOOLS, GE-
h1(z) = hk + bk(z - tk), for X E Ik. (5) OMETRY, SLATE and CHART, in hierarchically increasing

order. SLATE (relying on GEOMETRY and TOOLS) pro-
We want hf to be continuous at all the inner knots, i.e., vides an object oriented user interface to bitmap graph-
hk(tk+l) must equal hk+l(tk+l), or equivalently, ics and event driven user input, i.e., a Lisp toolkit fof

k X1i, using CLX. CHART provides output-only high level
hk+1 = hk + (tk+1 - tk)bk = ho + k(ti+1 - tj)bj. (6) plot functionality.

I Z) ( CACTUS is a (not yet released) module for numerical
j=0 and abstract (!) linear algebra and optimization par-

for k 0,..., M - 1. Therefore, h! is completely spec- tially described in McDonald (1989). It uses all mod-

ified by the given knots (to,...,tM) and the parame- ules above. The object oriented approach enables flex-

ters (ho, b0 , ... , bM- 1). Even f(x) itself can be seen as a ible experimentation with different optimization meth-

parametric function (though semi-parametric in nature), ods. Both optimizers and objective functions are objects
and, because we restricted h! appropriately, we can ex- that can be changed or replaced. At the same time,
plicitly express f(z) (piecewise as linear plus the product the modularity of the graphics modules allows dynamic
of polynomial and exponential). Because of the dou- graphical monitoring of the minimization process.
ble integration from f" to f, there are two integration
constants fo and fo which are new free parameters for 5 "Wp" with CACTUS
f. The penalty, f h/ 2 (t) dt is trivial to compute, since
h/' is piecewise constant. Our whole MPL criterion (1) The interface with CACTUS requires an objective func-
is now the minimization of a function of the parame- tion, i.e., a Lisp function mapping a vector of unknowns
ters (wi,...,wi), (bo, ... ,bM-l), h0 , fo and fo where (over which to minimize) into a real number. In our
the last three can easily be determined as (linear or ro- case, we have the two parameter vectors (Wl, .. . , wj)
bust, depending on the choice of p) regression coefficients and (b0 , ... , bM-1). We now have (at least) two possibil-
(given the other parameters), and where we assume that ities. First, we may concatenate the two vectors into one
the "curvature sign" sf and the knots tl,.. .,tM-1 are vector of unknowns, and pass this to the minimizer(s).
given. Given data, we have the (nonlinear) minimization Or, we can use two objective functions, one for each of
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The Symbolic Computation of Asymptotic Expansions
James E. Stafford and David F. Andrews

University of Toronto

Abstract estimate may be accomplished by expanding the score
function in a Taylor series about (0-0-) to the third order

We describe a collection of procedures, coded in and inverting it. The observed information may be

Mathematica, for the systematic computation of asymp- expanded in (-6) to the second order and the composi-
ion of this series with that of the maximum likelihood

totic expansions common in statistical theory and practice. tintof thi resaith that of the maximu lieho
The procedures permit the expansion of maximum likeli- estimate, while retaining terms of order n - , will give an
hood estimates, the associated deviance or drop in likeli- asymptotic expansion for the observed information. The
hood, and more general functions of random variables expansion for the estimate of the variance of the score,
involving one or an arbitrary number of parameters. Gen- -- , {L (8)/O l e) 2 , may be found in a similar way.
eral expansions, written in standard notation, are produced n.
by these procedures and they can be evaluated tbr a partic- This must then be composed with an expansion for

ular distribution through the specification of the appropri- (l+x) 2 and then multiplied by the expansions for the
ate moment generating function. These procedures per- maximum likelihood estimate and the observed informa-
form complex, lengthy derivations in a fraction of the time tion. When this is done, and terms of order n- 1 retained,
it takes by hand, with very little chance for error. They the expansion is compete. By hand, the expansion requires
permit the statistician to concentrate on the structure of a several hours of algebra, checking and rechecking. When
symbolic calculation rather than on the detail of term by done by computer the correct expansion is obtained in a
term evaluation. The procedures are illustrated with couple of minutes,
examples involving general laws.

Lawley [AsymptoticExpansion [ (thetahat-
I Introduction theta)*Sandwich (thetahat) (-1/2), 211

Much of statistical theory and practice is based on X 2. + 2

asymptotic expansions. Many programs are available to
assist in the numerical evaluation of such expansions but .3 110., -l1t6.0 it,.

there is a need for computational tools to assist in their 8 ).., XV. 2 X82 +

derivation and symbolic evaluation. 3 . 3 ,l - l + l _

Symbolic computation is an underused facility avail- 2 X. + 12 .'.,
able to research statisticians. Packages like Mathematica,
Maple and Reduce are typically used to perform limited X.lt Xes.e efl Xs,1t 3 Xsest Xl

tasks such as obtaining derivatives or integrals. Applica- 2 .ki 2 ;X. 3 X2.+ 2 'X - 2 Xl
tion of such packages in more general problems is uncom-
mon, although some work does exist (Kendall 1988 and In general the task of deriving asymptotic expansions,
1990, Bamdorff-Nielsen and Blacsild 1986). This may be though simple, is very large. When performed by hand,
due to the sparsity of problems that are broad enough to the probability of error increases with the length of the
merit the development of symbolic tools to solve them. expression. Few statisticians would willingly take on this
Deriving asymptotic expansions is such a problem. challenge. Fewer would do it correctly. The computer

procedures presented here perform these expansions in aThe derivation of asymptotic expansions is typically a salfato ftetm ttksb ad

simple, but tedious, task usually involving complicated

and laborious algebra. Consider, for example, the calcula- Asymptotic expansions are useful both in their general
tion of the asymptotic expansion for the maximum likeli- form and in particular cases. General expansions provide
hood estimate standardized by the sandwich estimator, an avenue for the comparison of statistics and families of
S (0) = {-1a 2L(0)/a02 1e}2 [ 2 (aLi(O)/a)le.} 2 1 distributions. For example, in a robustness study the above

n n =I expression could be compared to the expansion of the
L is the log-likelihood function with components Li. The maximum likelihood estimate when it is standardized by
parameter 0 is scalar and the expansion is to include the the observed information. In particular cases, explicit for-
n -1 term. An expansion for the maximum likelihood mulae, such as Edgeworth approximations, are required
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for application. Such formulae are easily obtained by Ali = -. "(oli - 11) = -X-1 .(ili -21)- (- 21)+ "

evaluating general formulae through the specification of -

the appropriate moment generating function. ._ .I[ )

Section 2 presents a summary of the notation and pro- AO[i ] is of order n 2 .The series converges to the max-
cedures used. Section 3 presents applications of the pro- imum likelihood estimate if it is unique.

cedures to derive general asymptotic expansions. Section The function Max.LikEst~i returns the expansion of the
4 contains concluding remarks. -i

maximum likelihood estimate correct to order n 2

2 Notation and Procedures
2.2 General Functions

We shall assume that the reader is familiar with the
summation convention and use the notation below which The change in log-likelihood, 2 [L (0) - L (0)] may be
is similar to that of Lawley(1956). expanded in a Taylor series in 0-0 and the maximum

likelihood estimate, to the correct order, substituted. This
1, =n aLjiaO,, L,, =n ZaPLti,/, L,, =n 'L,1aON,aO,, requires a procedure which calculates expansions of func-

tions, whose arguments are themselves expansions, while
..=n aL1/aO, aL1/ae,. L,., = n aL1/a8,aLIIea" etc., retaining only terms of the required order. The following

.,, =E(/.,), X,,, =E(L,,) . ,.,=L,,, ,. =E,.,. ec., definition of the expansion of f(g) where, g[iI is an

,=L,,-,,4.I,,=L,,,-.I,.,=L,,-X,,, ,,,=L,,-....etc., expansion of g correct to order n 2 , can be used

ExpandFlf. g. g. (olr=der(I- i,)rE(dh,,. A,)+

The procedures that have been written to derive
asymptotic expansions, produce output that is peculiar to . I [order - i 1)

the symbolic package Mathematica. A procedure, called ,. .
Lawley, was written to translate output into the above -1
notation thus making it readable and greatly simplifying where f2. 2 , - E(A,.k2,...k,) has order n"

2

the preparation of this paper. Styles of other authors can Repeated use of this procedure allows the expansion of
be emulated. Computer input is presented in which sub- such functions as the square root of the observed informa-
scripts are denoted as lists in braces so that they may be tion.
entered from a keyboard. For example, 1,, is represented
by l[{r,s)]. Greek letters are spelled out. The following 2.3 Expected Vaiaes
display illustrates both the input and output ofL the system.

Lawley[lambda[(r,s}lj The expected value operator is defined by the usual

_ .basic relations:

E(X + Y) = E(X) + E(Y),

E(a X) =a E(X),

The only hand operation required to produce a typeset ver- E(a) = a
sion of this paper was to insert line breaks in long equa-
tions. The only difficulty arises with terms involving sums of

2.1 Maximum Likelihood Estimates arbitrary length. These are evaluated using

Mnnm
To obtain an expansion for the maximum likelihood Expect [-Xk. a] = k-=1Expect [IlXk il

k=li=l I. Ok--I

estimate we use an algebraic analogue of Fisher's scoring
method. Consider the algorithm based on where so denotes the number of distinct subscripts in s,

and S denotes the set of ordered sets of m subscripts s such
8,101 = 8, that the first subscript is 1 and any following subscript is at

most I larger than the maximum of those preceding. The
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Xki's are independent of each other with respect to i. Here - It.- "
they are derivatives of the log-likclihood, although other 1- J 2

applications are possible. The definition is quite general
and leads to direct algorithmic implementation. The pro-
duct of m sums is evaluated with less than m! term.,
independent of Lawley [ExpandF [2 (L (thetahat) -

The above procedures are central building blocks L(theta)),thetahat,2]]
derivation of asymptotic expansions and may be used for
the to obtain expansions of many common statistics. + i  2

2.4 Identities

3
Reduction of expressions, usually moments or cumu-

lants, makes use of many identities involving expected , 1,tAI.I,)'

values of the derivatives of L. All of these follow directly 6 12

from one basic identity: IIt, x- ,
ll")"" 2 + l4I,."9-" +

_ u + E aLaE (g = E ( ag0 )  ( EQ 6L~~,k"-

AlA, ao .+ +5

1
h. - 6 +

This is used to define E_.________.____-___ _( __________
-

___
'

_
-

ao' 4 6

Bartlett identities are a group of identities useful in l 'h ,x-,X-' hi , .'k -

simplifying expressions. They equate to zero linear combi- 4 6
nations of the expectation of derivatives of the log-
likelihood function. The k"' order Bartlett identity is _,_,__,___-_.__ _+_,

derived by, 4 4

i. noting that fel(x;e)dx = c, 4 6

ii. differentiating both sides, with respect to k non- + +

distinct components of 0, - - -

The first two of these identities arc well known: tI.I,.-X "

X, = 0, and

Xr, = -.Xrs
Lawley[Expect [ExpandF[L(thetahat) -

Machines are useful for repetitive tasks -- there are L(theta),thetahat,2111
infinitely many more of these identities. I + .. X"X - +

4 3
3 Examples

25X,k-X'X _ "
12

In the following examples we derive asymptotic
expansions for the maximum likelihood estimate, the likel- , ',,'.""

+ +

ihood ratio statistic and its expected value. The expres- 3 2

sions are correct to order n-1 and the examples are X
displayed showing the computer input and output. 6 +

Lawley[MaxLikEst[211 7X.Xk-(,) 2k+'X ',.)
6 3
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"l,(,) ________-_) Andrews, D. F., Stafford, J. E., & Wang Y., (1991), On

6 3 Reading Lawley(1956): An Application of Symbolic Com-
. . , putation. Technical Report, Department of Statistics,

2 2 University of Toronto.

."_._,_ 2" .".,(,) Bamdorff-Nielsen, 0. and Blaesild, P. (1986) A Note on
6 + 3 the Calculation of Bartlett Adjustments. J. R. Statist. Soc.

B, 48,351-358.

2 Barndorff-Nielsen, 0. and Cox, D. R. (1989) Asymptotic
Techniques for Use in Statistics. New York: Chapman and
Hall.

This last expression agrees with Lawley's equation 4 DiCiccio, T. J. (1984) On Parameter Transformations and
except for an error in the printed version of his term Interval Estimation. Biometrica, 71,477-485. p
divided by 6. Our algorithm for collecting terms is not
quite efficient; a further reduction is possible. However Ferguson, H. (1989). Asymptotic Properties of a Condi-
most of the reduction from 6 6 terms to 20 has been tional Maximum Likelihood Estimator, Ph. D thesis,
achieved. University of Toronto.

Evaluating expressions, like the ones above, for Lawley, D. N. (1956), A general method for approximat-
specific distributions simply requires a translation of thesummtio conenton o anactal sm ad ten ater by ing the distribution of likelihood ratio criteria, Biometrika,summation convention to an actual sum and then a term by 43, 295-303.
term evaluation of the sum. Discussion of such procedures
may be found in Andrews, Stafford, and Wang(l991). Kendall, W. S. (1988). Symbolic computation and the dif-

4 Cfusion of shapes of triads. Advances in Applied Probabil-4Concluding Remarks ,2,759.
ity, 20, 775-797.

Symbolic computation is a useful tool that can relieve Kendall, W. S. (1990). The diffusion of Euclidean Shape.
statisticians from hours of tedious and laborious algebra. In: Disorder in Physical Systems, (Grimmett, G. and
The use of the above procedures greatly reduces the likeli- Welsh, D. ed.) pp.203-217, Oxford: University Press.
hood of producing errors in expansions. In fact, their use
lead to the discovery of errors in Lawley(1956) and the McCullagh, P. (1987) Tensor Methods in Statistics. New
printed versions of the Ph.D. dissertations by DiCiccio and York: Chapman and Hall.
Ferguson. These proceljarcs reproduce expressions from
Bamdorff-Nielsen & Cox(1989), DiCiccio(1984), Fergu- Wolfram, S. (1988). Mathematica A System for Doing
son(1989) and McCullagh(1987) without error. Such tools Mathematics by Computer. Addison Wesley, NewYork.
are meant to accelerate research and encourage ambitious
projects in the area of asymptotics. The development of
symbolic procedures in other areas of research is highly
recommended.
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MAXIMUM LIKELIHOOD ESTIMATION OF THE ACCURACY RATES
OF DIAGNOSTIC TESTS BY MEANS OF THE EM ALGORITHM

T. S. Weng
FDA/CDRH/OST/Division of Biometric Sciences

12200 Wilkins Ave., Rockville, MD 20852

Abstract for evaluating the performance characteristics of clinical
diagnostic tests. Specifically, the purpose is to compute the

An EM algorithm has been developed for computing the maximum likelihood estimates (MLE's) and standard er-
maximum likelihood estimates and standard errors of the rors (SE's) for the accuracy rates of both T and R, as well
accuracy rates (j&., sensitivity and specificity) of a new as for the different prevalence rates of D in an arbitrary
diagnostic test and an established reference test, based on number of populations NLB, Hui and Walter's formulas
the outcomes of both tests when applied to individuals for computing the MLE's are limited to only two pop-
sampled from an arbitrary number of populations with dif- ulations), presuming that R may be less than perfect in
ferent prevalence rates of a given disease. This algo- accuracy and the disease state of each individual is not
rithm is heuristically appealing in that it also estimates the known. Thus, instead of working directly with the likeli-
prevalence rate within each source population and aids the hood equations .pr e, an EM algorithm [3] has been
perception of the effects of numerical constraints im- worked out which is easy to program and to embed with
posed on some of the rate parameters. An example is numerical constraints selectively imposed on the rate
given to illustrate the application of this algorithm to parameters. This approach is extremely versatile,
practical clinical situations. permitting the user to extend the applicability of the

NOTE: The views presented here are those of the maximum likelihood principle to the computation of
author. No support or endorsement by the Food and Drug MLE's and SE's for the rate parameters in a wide variety
Administration is intended or should be inferred, of cases encountered in clinical practice, such as: (1)

when both R and T have unknown accuracy rates; (2)
1 Introduction when R has known accuracy rates; (3) when both R and

T have a specificity equal to 1; (4) when R alone has a

Consider a new diagnostic test T which is to be evaluated specificity equal to 1; or (5) when some or all of the
source populations have known disease prevalence. Foragainst an established reference test R when both tests are Cases (2) through (5), in particular, the value(s) of the

used to detect a disease D in a given population of which known parameter(s) can be embedded as numerical

each individual is assumed to be either diseased (D) or constraint(s) in the EM algorithm set up for Case (1),

non-diseased (D2). If the outcome from each individual is thereby to yield "constrained estimates" for the remaining

also expressed dichotomously as positive (T1) or negative parameters.

(T'2), the accuracy of T may then be assessed by its

sensitivity (,q) and specificity ( ) defined as j1 = 2 Nature of Problem
Pr(TI I D1) and = Pr(T2 1 D2), respectively. These
quantities are generally referred to as the accuracy rates
of T, and their complements a = 1- and P = 1- ,i, as the The essential problem here is to evaluate the new test T
error rates of T. For the case in which the accuracy rates against the reference test R by comparing the MLE's of
of both T and R are unknown, Hui and Walter [I] these tests' accuracy rates (namely, 17h and h,, where
employed the standard maximum likelihood method to 0< ,7h <_ 1, 0 < h 

< 1, h = t for test T or r for test R,
estimate the accuracy rates of T and R when both tests and 1 < vr +, < 2), based on random samples of size Nk
were simultaneously applied to individuals sampled from drawn each from K populations with prevalence rates WIk,

two populations with different prevalence rates of D. This k = 1,...,K, where at least two 7r,'s must be distinct from
method, however, has been found to have too many each other. If no numerical constraints are imposed, the
problems to be practical [2]. parameters to be estimated may be represented by the

(K+ 4)-vector
In this paper, an attempt is made to expand the method of
Hui and Walter into a more widely applicable alternative k = (17r,, , , t, e,)"
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3 Nature of Data 5 Derivations for EM Procedure

When the sample from the k-th population is subjected to The overall data, incomplete as well as complete, may be
testing by T and R, the outcome data may be summarized respectively denoted by a 4K-vector
by the 4-vector of counts

Y = (Y1, Y2, YK)
Yk =(Yk,1, Yk12, Yk2 l, Yk22), kl. , K,

and by an 8K-vector
where the values 1 or 2 of the second and third subscripts
denote, respectively, the outcomes T1 or T2 for test T and X = (x111 1, X1112, . XK221, xQ 22 ).
R1 or R2 for test R. The data vector Y k, though
observable, is "incomplete" in the sense of Dempster SJ al. The likelihood for 0 given X = x, say, is proportional to
[3). It should be noted that each yklj count (i, j = 1, 2) can
be regarded as a pooling of two unobservable component Xk111 Xk121
counts xkiIl and xkIj2, where the fourth subscript indexes L(x 0) 1k( rklt7,) (7k7tr)
the unknown disease state of the individual tested, with 1
or 2 denoting Di or D2, respectively. Thus, in contrast to Xk211 xk221
Yk, the unobservable 8-vector of counts X (7rkflt'7r) (rk'6t#r)

xk =(xk111, xk112, ... , xk112), k=l ... , K, Xk112 Xk122
X (Trkat71/)  (r k~tt )

is referred to as the "complete" data vector.
Xk212 Xk222

4 Theoretical Basis X (rkCtr) ( ktI)

The EM algorithm developed here is based on the idea of where k r k (k= 1,...,K), ah =1- 0h and eOh m h

Dempster _t al. 131. To fix the idea, let A and B denote, (h=t or r). For the parameters in 8 to be estimable it

respectively, the sample spaces of the random vectors X requires that K > 2 and that at least two of the 7rk's be

and Y with the associated polynomial distributions Px(x 10) distinct from each other. For the special case K=1,

and Py (y10 ). For the problem in question, X is not direct- appropriate numerical constraints may be imposed on

ly observable but some image of X = x c A can be some of the accuracy rates of R and/or T.

observed in the form Y(x) = y e B, where the mapping Y: The E-step consists of setting the components of x equal
A - B is many-to-one. Now consider finding the MLE for their conito f etti onen or k equal
0 utilizing y instead of x, of which the latter is only known to their conditional expectations given Y=y. For k =
to lie in a subset A(y) defined by the mapping Y: A-, B. In this yields
this context, the idea of the EM algorithm is to utilize the E(Xkill I, (n-))
fact that the likelihood of y: L(yJ0) = rIkPY(YkI 0 ) is Xk =  1Y
related to that of x: L(x 10 ) = Uk PX(xk 18) by the equation Yk117k(n-1) th(n-1)17r (n-1)

L(y 18) =ZA()L(x1) Irk(n-1) 1t(n-1) r(n-1) + / k(n-1) t(n-l) ar(n-1)

and to find a value 0" of 0 which maximize logL(yl0) by Xk,,2 ( Ykll - Xkll, (n)
iteratively maximizing the expected value of logL(XI1)
given Y=y. Specifically, it proceeds by introducing an
initial estimate 8(0) and generates a sequence { (n) } by ....................

repeating the following double step at each iteration: (n) = Yk22 Xk22(n) "

E-step: Evaluate 0(800=(n l) = E[logL(X ) ly, n1 The M-step is executed by equating to zero the gradient

M-step: Find 8 =0(n) to maximize Q(O Ie(n ") vector (a/00 )logL( n) 9 I (n8 ) ) and solving the resulting

Continue until {0 (n) } converges, equation for O(n-i). The solution, denoted by g(n), is an
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improved estimate for 8 of which the components are Being diagonal, the information matrix 1(U) can be easily
expressed as follows: inverted to give an asymptotic estimate for the variance-

covariance matrix of L.
€ = ( Zjxk,)/Nk, k= 1 .... , K,

Since the MLE's 1'k (k = 1,...,K), 1it, !F,, i , and Cr are ap-
proximately normally distributed with large N, confidence

17t(n) = (V 1jJ (n) )Nol(n) intervals for these estimates may also be easily obtained.
Taking, for example, the estimated sensitivity ,j7 of test T,

............................... the 95% confidence interval for its expected value 17, may
be calculated from

r 
n) = (kkZiXk 2 2 n) )/ND2 

(n)

Pr{-1.96_< ('i, -v/t)/ 6St : 1.96} = 0.95,

where N0 (=) 4 Z-jxkg1(n) and N. 2
(  =Y-,,jXkIJ2 

.

Here N 0 1(n) and 02( ) are readily identified as the where 6, is the standard error of ij" obtained as the
estimates for the total numbers of the diseased (D1) and positive square root of 1/l(6,), the observed variance of1u7t .
the non-diseased (D2), respectively. It is also noted that Standard errors and confidence intervals for the re-

maining MLE's can be calculated in similar fashion.
N1 

(n) + N0 2
(n) = - N k = N,

7 Example
which is the grand total of all individuals tested.

The data in Table I are reproduced from Table 1 of Gart
6 Standard errors & Confidence Intervals and Buck [5]. These data have been rearranged to keep

with the format and notations adopted in this paper.

Following Louis [41, let
Table I.

2 = E(xly, 0) = (21111,9.12, 2.. 21112), Outcomes of VDRL (T) and FTA (R) slide tests for syphilis
from a sampte of the population of Maichew, Ethiopia
(Source: Buck & Spruyt [6], cited by Gart & Buck [5])where U = (*1 ,...,K, ,l,i,r) isthe MLEfor 80______________

obtained at the last EM iteration, and let S(x, 0) and T e s t 0 u t c o m e s

H(x, 6) denote respectively the gradient vector of k (age grp) TIRI T1R2 T2R1 T2R2 Total

logL(x j) and the negative of the associated second 1 ( 5-14) 1 10 4 62 77

derivative matrix (also known as the curvature matrix). 2 (15-24) 5 5 2 31 43
Then the observed information matrix for 0 given the data 3 (25-34) 20 17 6 7 61

4 (35-44) 20 17 5 19 61

vector y is expressed as 5 (45+ ) 18 9 5 17 49

I(t") = Diag{E[H(X, 8)ly, d] - Var[S(X, 0 )ly, f1) TIRI = Positive to both T and R;
T1R2 = Positive to T but negative to R; etc.

and the diagonal elements of 1(0') as Here the new diagnostic test VDRL (coded T) was to

l = (1/* kfk)1Nk - (lk1k) Zi j ( 2
kijl 

2
kij2 /Ykij )], be evaluated against the reference test FTA (coded R) for

k=1 , K, its accuracy in detecting syphilis based on a random
sample of individuals from the town of Maichew, Tigre

lq) =(1/6t2) =Zk [Rkljl " (-kljl lj2/Yk )l Province, Ethiopia. The random sample had been strati-

fied by age decade beginning with age 5. Following Gart

+ (1$/)t2) YkZj12k2)1 - (2k2ji2k2j2/yk2j) and Buck who posited that 1h = 0.95 and t, = 0.90 on the
basis of past experience, we embedded these specified
values as constraints in the EM algorithm and estimated
the appropriate sets of parameters from each age group as

l(C'r) = ( l kMk22 - (2 k121tki22/Yk12)1 well as from all age groups combined. The results are
shown in Table II, along with those reported in Gart and

+ (1/6r 2 ) 4712kIl2 - (k11 2 k12/ykWl)]. Buck. We then remove the constraints from the EM
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Table II.
Parameter estimates ± SE for the data of Table I.

AgeSource grou V1_ 'ff Ir Tr,- 1 %_ __.7r ,

1 .0000±.033 -- - --- --- --- 0.95* .8571t.040 0.90*
2 --- .07351.066 -.-- --- 1.0000t.854 0.95* .8919t.058 0.90*

Gart & 3 --- -- .2681t.071 --- --- .8059±.149 0.95* .6681t.040 0.90*
Buck* 4 --- --- --- .3645t.074 --- .8621±.099 0.95* .5400t.124 0.90'

5 --- --- --- --- .4346±.084 .8455t.091 0.95* .6223t.095 0.90*
Weighted Mean --- --- --- --- --- .8459t.061 -- .7675t.024 ---

1 .0000±.014 --- --- --- --- 1.0000 0.95* .8572t.040 0.90*
2 --- .1094±.003 --- --- --- .9999t.075 0.95* .8918t.004 0.90*

EM-de- 3 --- --- .2681±.068 --- --- .8058±.132 0.95* .6680±.075 0.90*
rived* 4 --- --- --- .3645±.072 --- .8624t.095 0.95' .5402±.085 0.90*

5 --- --- --- --- .4346±.081 .8453±.098 0.95* .6752±.096 0.90*
ALL .0000±.016 .1027±.056 .2633±.066 .3859t.073 .4358±.082 .8792±.058 0.95* .7539±.030 0.90*

EM-der# ALL .0140±.027 .1823±.075 .4953±.083 .6779±.078 .6476±.086 .8091±.048 .6254±.053 .8758±.031 .9451t.022

*Constrained with 71, = 0.95 and t, = 0.90

#Unconstrained

iterative procedure, thereby to compute the unconstrained 8 References
estimates using data from all age groups. The results are
given at the bottom of Table II. As can be seen from i1] Hui, SL, Walter, SD. Estimating the error rates of
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specificity of T are given as t = 0.8792 ± 0.058 and 't =
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by comparing them with the unconstrained EM estimates. [41 Louis, TA. Finding the observed information matrix
First of all, let us construct a 95% confidence interval for using the EM algorithm.nJ.oR. rtinmoc,a.i.,
the sensitivity and specificity of R utilizing the standard 1982; 44: 226-233.
errors associated with the unconstrained estimates ^7r =
0.6254 and Cr = 0.9451, yielding (0.5224, 0.7285) and [51 Gart, JJ, Buck, AA. Comparison of a screening test
(0.9016, 0.9885) for Y1, and r, respectively. It is no small and a reference test in epidemiologic studies. II.
surprise to find that none of the specified values Tir = 0.95 a probabilistic model for the comparison of diagnos-
and , = 0.90 is contained in the corresponding confidence tic tests. American Journal of Epidemiolo v, 1966;
interval. We are thus led to infer that the specified values 593-602.
did not fit the data well and that the unconstrained esti-
mates for the sensitivity and specificity of T, namely, ti"t = [61 Buck, AA, Spruyt, DJ. Seroreactivities in the
0.8091 ± 0.048 and C't = 0.8758 ± 0.031, would be more venereal disease research laboratory slide test and the
preferable to the constrained ones. It also follows that fluorescent treponemal antibody test. Amer. Jour.
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of syphilis in different age groups (or subpopulations) may
have been underestimated in the light of their counter-
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1 Introduction Larntz and Weisberg (1976) and de Jong, Greig and
Madan (1983), the mover-stayer model as discussed by

For data which take the form of a two-way contingency Morgan and Titterington (1977) and the model of Lemoi
table, many authors have examined models other than and Chatfield (1971), which is an alternative to a Markov
the common model of independence of two classifica- chain model. Larntz and Weisberg's model can be ob-
tions. lit the literature are quasi independence models, tained from Leion and Chatfield's by folding along the
clustered sampling models, intraclass models, and the main diagonal.
Bradley-Terry model, among others. It order to esti- These models are all for data which take the form
mate model parameters, iterative methods are required, of a contingency table with entries on the main diagonal
and this leads to the problem of developing efficient al- which are zero a priori, with the exception of Larntz
gorithmis. and Weisberg's model, where the entries on or below the

main diagonal are all zero a priori.
In order to fit these models to data, various imeth-

2 Quasi Independence Models ods have been proposed. Iterative proportional fitting

If there are cells in a contingency table which a priori (IPF) is commonly used. IPF requires that the model

have a zero count, antd there are cells in that row or be log linear, which is not the case for de Jong, Greig

column which have non-zero counts, the independence and Madan's model. The Newton-Raphson method con-

model is not appropriate. To cope with this problem of verges quickly, but it is not easy to implement if the
Hessian is not diagonal. Thte llessian is diagonal for tihe

so-called structural zeroes, the notion of quasi indepen- Hnist ia don g Treiand aa s

deuce is useful. In a quasi independence model the row movpr-stayer model and de Jong, Greig and Madan's

and coluin classifications are independent, provided the

cells with a priori zero counts are ignored. Fixed point iterations have been used by a number of

Examples given in the literature of quasi indepen- authors, but these can be slow to converge. Brown

dence models include the random pairing models of (1974) developed a method for dealing with a priori ze-
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roes, which iterates over the cells which are known to (31 de Jong, P., Greig, M., and Madan, D. (1983). Test-
he zero. Brown's method becomes less and less efficient ing for random pairing. J. Amer. Statist. Assoc., 78,
with an increasing number of zero cells. de Jong, Greig 332-336.
and Madan (1983) developed a method for fitting their
random pairing model which involves a reparameterisa- c4 Haber, M. (1982) Testing for independence in intra
tion, then fixed point iteration. This method can also class contingency tables. Biometrics, 38, 93-103.
be adapted to fit other quasi independence models. (51 Larntz, K. and Weisberg, S. (1976). Multiplicative

It can be shown that when the table is symmetric, models for dyad formation. J. Amer.Statist. Assoc.,
the parameter estimates obtained for Lemon and Chat- 71,455-461.
field's (1971) model are identical with those obtained
from fitting the mover-stayer model. This means that [61 Lemon, R.E. and Chatfield, C. (1971). Organisation
the models of both Lemon and Chatfield, and Larntz of song in cardinals. Anim. Behav. 19, 1-17.
and Weisberg may be fitted by symmetrising the data
and fitting the mover-stayer model. Thus a readily ira- [7] Morgan, B.J.T. and Titterington, D.M. (1977).A
plementable Newton-Raphson approach is available for comparison of iterative methods for obtaining mnaxi-

these models. nmmu likelihood estimates in contingency tables with

All the methods so far discussed estimate a proba- missing diagonal. Biometrika, 64, 265-269.
bility distribution and involve a multivariable iteration. [8] Scott, David J., and Wang Doung Qian (1990). An
The authors have developed new methods for fitting iterative method for estimation of parameters in a
quasi independence models which require the solution of clustered sampling model. Aust. J. Statist., 32, 317-
a nonlinear equation in a single unknown. This equation 325.
is readily solved using Newton's method. This gives fast,
very easily-implenmented methods. No programming is
required, and well-known packages such as Minitab or a
spreadsheet may be used to do the calculations.

3 Other Models

In the clustered sampling model with clusters of size two,
if a number of clusters are observed, and each member
of the cluster is classified according to some character-
istic, the data take the form of a two-way contingency
table. Cohen (1976) has given a method which requires
a two-stage iteration procedure, with one stage being the
solution of a non-linear equation. Using a reparameteri-
sation the authors were able to reduce the computations
required. A two-stage iteration is still required, but only
simple expressions need to be evaluated at any stage.
This work is reported in Scott and Wang (1990).

Attempts were made to develop improved methods
for intraclass models (see Eaber(1982)) and the Bradley-
Terry model, without success.
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Abstract than the stock market, while securities sold by these in-
vestors tend to do worse than the overall market. A

This paper is concerned with the open-market transac-
study by Seyhun (1988), in turn. showed that insidertions of corporate insiders. The Securities and Exchange trading provides advanced signals about the stock mar-

C'ommission (SEC) publishes information on the buying ket movements. According to Seyhun, insiders increase

and selling activities of insiders, which market analysts purchases before stock market rallies and increase sales

use to uncover insider sentiment about the prospects of before stock e retis

their own corporations and of the entire market. How- Howe tc m a sit ti m a t c

ever, the law requires that these transactions be reported However, thcr if, a significant time lag between ac-
to the SEC by the tenth day of the month following tual insider transactions and their full reporting by thet SEC. Also, the inflow of reports is subject to ups and
a transaction. Moreover, many insiders do not comply downs due, for instance, to deadline effects on report-

with this regulation. Therefore, the available data are

always out-of-date in a random manner. We also found ing, etc. Moreover, our study of time lags in reporting

that the time lags in reporting buy and sell transactions showed different distributions for buy and for sell trans-
actions. For instance, the mean time lag between the

are different. Since the available data are truncated, it actual t r nsac e a the fil g a twh the

was necessary to adjust the observed probability density
was only 30.3 days for sales and as much as 32.6 days

function (pdf). We used distributed lag models to study for purchases.
their out-of-sample forecasting performance. frprhssMany of the above factors are subjective in nature

1. Introduction and do not exhibit steady patterns. This makes it very
difficult to capture fully their effects. For example. an

Important officers of a corporation, called "insiders," attempt to explain the insider behavior with the help of
trade on the stock market in the securities of the firms Rao's (1965) weighted distributions, as in Vinod (1991),
they work for according to their own hunches about the has not yielded useful patterns.
company. the overall market, personal financial needs Instead of focusing attention on explaining insider be-
and other circumstances. Market analysts abstract from havior. in this paper we study the information content
the personal behavior of insiders and the prospects of in insider activity and its effect on market agents. We
the companies they work for by aggregating the data on consider the problem of forecasting Standard and Poor's
trading by these investors. Stock market analysts rou- 500 Index with the help of insider trading data. Thus,
tinely use the insider trading data as indicators of major we make insider transactions a part of our conditioning
trends and turning points in the market. Insider trad- set. However, the reporting lag and different lag dis-
ing has also been the subject of many academic stud- tributions for purchase and sale transactions mean that
ies. The overwhelming majority of these papers sup- the forecast of major turning points and trends based di-
ports the notion that insider trading provides valuable rectly on the initial and incomplete SEC insider trading
long-term information. For instance, Finnerty (1976) data may be misleading. Therefore, this paper attempts
showed the usefulness of insider trading information for to answer the following questions: (i) Are the available
the purpose of selecting individual securities. The prices insider trading data worth using? (ii) How should we
of stocks purchased by insiders tend to appreciate faster distill useful information regarding short-term market
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trends from insider data? (iii) How do we evaluate the showing the number of transactions reported to the SEC
information objectively? with a certain time lag in days. For example, of the

8,192 buy transactions, only two reports came within
2. Data Analysis one day of the actual transaction date. Similarly, out

We studied the phenomenon from January 6 through of the 14,317 sale transactions, only one was reported

May 29 of 1987, or during 101 trading days (N). We within one day. Most filing (80 percent) is done with

took the insider trading data from a computer tape pro- a lag of fifteen days or more. The data on the num-

vided by the SEC. The tape showed that corporate offi- ber of purchases and on the number of sales reported
with a certain time lag are denoted by PUR(LAG) and

cers executed 22,509 open-market transactions over this Sae respctiely, re LAG b 1,2.N. We
perid. he ataon nsier radng verthee 11 bsi- SALE(LAG), respectively, where LAG = 1, 2,..... N. We

period. The data on insider trading over these 101 busi- obtain separate "unadjusted" lag distributions for pur-
ness days are separated into purchase (PUR) and sale
(SALE) transactions. Thus, we visualize two massive chases and sales, denoted by UP(LAG) and US(LAG)lmatrices with rows representing dates when transactions by dividing PUJR(LAG) and SALE(LAG) by the total
octicurred, anh cols seing dates when transactions number of purchases and sales, respectively. These ag-occurred. and columns showing dates when transactions

were reported. So, pur(i,j) and sale(i,.j) indicate the gregated data are found to be representative of the fun-

number of transactions executed on day i and reported damental lag structure.

on day j. Note however, that because of the reporting In principle there is a separate lag distribution for
lag. pur(i, j) and sale(i,j) =0 for all . < i MINLAG, each row of data. and it is not a reliable guide for any

where MINLAG is the minimum time lag between the other day's lag distribution. The flow of data is er-
transaction and the arrival of the insider report at the ratic, however, and, for that reason, our lag distributions

SEC (at least one day). UP(LAG) and US(LAG) are not sufficiently smooth to

Now define cumulative sum matrices be a useful guide to the distribution of an arbitrary
lag. To overcome this difficulty we use Tukey's (1977)

N "smoother" called 3RSSH. Here, 3R stands for the mov-
CUMPI'R(i,j) = ' pur(i, j) ing median of three consecutive values repeated three

.,=i times, which is followed by an "end correction." SS
N stands for "split-smooth" applied twice, and, finally,

C'UMSALE(i.j) = Esale(i,j) H stands for "hanning" or a weighted average of con-
j=i secutive three values with weights 0.25, 0.50 and 0.25.

for purchases and sales, respectively, giving the cumu- We denote AP(LAG) and AS(LAG) these "adjusted"

lative number of buy and sale transactions for day i as smoothed UP(LAG) and US(LAG). respectively. We

known on day j. For instance, the elements along prin- use the reciprocals of AP(LAG) and AS(LAG). which
are smoothed again, as our expansion factors. The

cipal diagonals of the matrices (j = i) show the infor- areasmoo again, as ourtexansin tos. eThe
mation on insider buying or selling activity as known on expansion factors are positive and decline to one asthe ame ay.we get more complete data on insider activity. i.e.,
the same day.

At any point, one can obtain data on these initial cu- lim AP(LAG) = 1 and lim AS(LAG) = 1
At ay pont.LAG-oc LAG-=o

mulative daily numbers with a time lag (L) represented Applying the expansion we get
by (j - i). The greater the L, the more accurate the data
we can read from these matrices. However, our objec- P(i,j) CUMPUR(ij)iAP(LAG)
tive is to obtain a good approximation of the true insider S(i,j) = CUMSALE(i.j)/AS(LAG)
activity as early as possible, because only the informa-
tion that is not widely distributed among investors really where LAG = j - i - I for j > i.
matters in the marketplace. Therefore, we seek an ex- Finally, we calculate the adjusted purchase-to-sale ra-
pansion of the early data which would allow us to predict tios (PSR's) for each day.
the actual cumulative amounts of purchases and sales as
they are eventually reported. We propose smoothed re- PSR(i,j) = P(ij)/S(i,j) (1)
ciprocals of smoothed lag distributions for purchases and Statistical properties of PSR's may be studied by
sales as our expansion factors. bootstrapping surveyed in Vinod (1992).

The following section discusses an econometric appli-
cation of the above procedure to the study of insider

From a study of the 22,509 insider transactions we con- trading, where the data on purchase-to-sales ratios of
structed two vectors, separate for purchases and sales, insider transactions are necessarily truncated because of
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the lag between transaction dates and their reporting to Note, that dividing both sides by (1 - OIL) (2) repre-
the SEC. sents an infinite order lag structure with exponentially

declining weights provided flu 1 < 1.
4. An Application of the Expansion to Tables I and 2 report our Ordinary Least Squares es-

Stock Market Forecasting timates of (2) when the data points having zero PSR's
are omitted. Equation I refers to the OLS estimates for

In order to answer the questions that the introduction the expanded PSR's, equation II has unadjusted PSR's,
poses, we employ a model combining insider trading data and equation III has PSR's omitted. Note that the last
with the level of interest rates, represented here by the equation uses the same input data matrix as the first
end-of-the-day yield on the 30-year Treasury Bond. two.

Of the 22,509 insider open-market transactions exe-
cuted over the period of January 6 through May 29, 1987, Table I
only 3,590 buys and 6,887 sales were reported to the SEC
by the last day of the above time range. This particular I 1
subset is the basis for our calculations of PSR's and for Eq. Coef. Estimate St. Error -stat.
the Ordinary Least Squares (OLS) estimation. 3. -14.39 32.05 -0.45

The reader should note that the above structure of I 01 0.92 0.04 20.51
transactions is consistent with the overall pattern of in- 02 4.79 5.28 0.91
sider trading as reported by various stock market fore- /33 2.10 1.18 1.79
casters. They agree that on average there are two sales 1 _3o -5.63 34.06 -0.17
for each purchase. The disparity between the number II 01 0.91 0.52 17.35
of purchases and sales stems from the fact that insiders 02 4.31 5.62 0.77
can obtain shares of their companies through non-open- _ 3 -0.80 1 1.61 -0.50
market transactions, such as various incentive plans, f00 -6.95 32.58 -0.21
pension plans, etc. III '31 0.91 0.05 19.94

The PSR's are calculated on a daily basis. However, _ 12 4.25 5.41 0.79
the data on the most recent insider activity is very lim-
ited, and it is normal for the reported number of total Table 2
sales or buys to be zero. In the former case the PSR's
are not defined, in the latter, the ratios are equal to zero. I I
Nevertheless, in both instances, we set such PSR's to 0. Eq 1 R F-val SFE SDFE MFE H-M

A researcher faces a dilemma here: either to wait for 1 0.952 299.0 13.20 2.19 4.70! 0.78

more data and to deal with more reliable numbers, or to 00 5.11 I0.56
make early predictions and to risk significant errors. On 111 1 0.936 208.9 13.72 2.28 4.61 0.78
the basis of empirical tests we choose the lag of fifteen
days to be an optimal one. For the 15-day lag we have The results in Table 1 clearly show the superiority
enough data to construct a sufficient number of PSR's, of the model containing adjusted PSR's, although /3

and at the same time we are close enough to actual in- in eq. I is statistically significant only at the 10 per-
sider activity to be able to use this information to our cent level, when we compare the I-statistic with the I

advantage. We propose a new technique for adjusting tables. It should be noted, however, that the -statistic
for the time lag between the transaction date and the for adjusted PSR's is better than that of 132. the yield on
report date. Treasury Bonds. From the -statistics alone, one may be

We propose the following so-called rational distributed tempted to omit the Treasury Bond yield variable. How-lags model (see Judge et al.. 1985) for forecasting the ever, its omission leads to worse overall out-of-samplelg 5 dex dseteJde by aforecasts. That the interest rate has an important ef-S&P 500 index denoted by s,. fect on stock prices is also well known in the financial

f= 3 O + 1 8 1 t- 2 
3

t -4 33Pt-15 4- f (2) economics literature (see Lorie et al., 1985).
The adjusted PSR's. as expected, vary directly with

where y, is the end-of-the-day yield on the 30-year Trea- the S&P 500 index, while the unadjusted ratios show
sury Bond and Pt is the PSR and (I is the error trin. an inverse relationship to the stock market. The former
Writing (2) in terms of the lag operator, we have indicates that insiders correctly anticipate changes in the

market direction, and therefore, investors can learn from
(1 - 01 L)as =00 + 32yt - 3Pt-1S + ft (3) them. The latter, contrary to the popular view, would
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result in losses to insiders and those who follow in their Conclusions
footsteps.oothteps. aOur paper illustrates the benefits one can obtain fromthe application of smoothing techniques developed inble 2 stand for the sum of out-of-sample forecast errors, the context of robust statistical estimation. Expanded
the standard deviation of out-of-sample forecast errors, PSR's (1) not only offer a better short-run forecast, but
the maximum of out-of-sample forecast errors, and the they give researchers the correct picture of insider senti-
Henriksson-Merton (1981) test, explained below, respec-
tively. ment. On the other hand, the unadjusted data show no

The Henrikson-Merton statistic indicates the results of statistically significant relationship with the stock mar-ket. Therefore, we posit that adjusted PSR's should be
a nonparametric (distribution free) test of timing. The ied inoefore ast th e stoc mrke in te
test is based on the direction of the predicted movement,
not the magnitude. It is not sensitive to the distribution near-term.
of stock prices, it does not assume symmetry in the abil- References
ity to make "up" forecasts and "down" forecasts, and
it allows for nonstationarities. The null hypothesis is Finnerty, Joseph E. (1976). "Insiders and Market Effi-
that the forecaster has no skills and forecasts randomly. ciency." Journal of Finance, 31, pp. 1141 48.
Therefore, sometimes he can make correct predictions. Henriksson, R.D. and R.C. Merton (1981). "On Market

Let N1 and N2 be the number of down and up obser- Timing and Investment Performance, 11: Statistical
vations, respectively. Thus, the number of total observa- Procedures for Evaluating Forecasting Skills." Jouy-
tions N = N 1 + N 2 . Let ni denote the number of correct nal of Business, 54, 513-533.
down predictions that must be in the range of Judge, G.G.. W.E. Griffiths, R.C. Hill. H. Lutkepol.

max(0,n - N2 ) < n, S min(NI, n) = ni and T.C Lee (1985), The Theory and Practict of
Econometrics, 2nd edition, J. Wiley, New York.
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Abstract the number and locations of targets from the data

In a study of two sensors polling data on emitting received from two independent sensors for identification

targets one sensor may observe a target while the other of targets. Finally, in section 5 we discuss the lines of

may fail; even if both sensors observe a target, then research to be followed in the future.

there is a random noise that distorts the picture. In
this paper a general algorithm is developed for 2 Criteria
detecting the pairs of observations made by the sensors
on same targets and for fusing each pair as a single Let Xi, i = 1, . . . , n be observations detected by a
target. sensor, and Y, j 1, .... , m be observations by

another sensor. We assume X's and Y's are normally
and independently distributed with true positions of the

1 Introduction targets as their means and known standard deviations

MICOM/TACOM initiated in 1982 the Setter al and 0 2 respectively. These observations may

program in which three sensors, namely, radio indicate that there are at least the maximum of m and

frequency interframeter, non-imaging and radar poll n targets, but not more than m+n targets. Once a pair

emitting targets, detect for potential threat in an air- (Xi, Yj) is isolated for fusion and determined as a

land battle scenario, and provide the operator/gunner a single target detected by both sensors, then an efficient

synergistic effect through a microprocessor based data estimator is given by a weighted mean

management system and an integrated display with 2
enhanced real-time integrated information. The sensors (U 2

2 Xi + ur 2 YJ)/(ur 2 + u 2 ). (2.1)
exhibit variation in their detecting capabilities ofdxifert varatypes o trdet tn al d er dff t We present the following criteria for possible fusion of adifferent types of targets and also under different pi XY)
terrain and weather conditions. The complexity of the pair (X, Y,):
problem arises when the different sensors detect the 1 Comnatibilitv Xi and are said to be compatible
same targets with varying noise levels or one sensor
detects a target while others may fail to detect. The
first task is to determine the number and positions of I X 2 2

targets from the data collected independently by I - Yi _ U1 + U 2
multiple sensors; this should take into consideration the with preassigned probability 1 - a, where za is the
fact that a single target may be distorted as multiple value of the standardized normal variate
targets by sensors and vice versa in the presence of corresponding to the tail probability a/2. Otherwise,
random noise accompanying the data. Once the they are said to be incompatible and represent 2
resolution of targets is accomplished by the processor,
the task of determining the nature and priority will targets.
follow. 2. Monoyamy Given YJ there is at most only one Xi

In section 2 we define the problem and set forth that can be fused with Yi.
some criteria and their rationale for fusion of the data.
In section 3 we present a general discussion of the 3. Maximum number of fusions The number of fusions
problem which leads to the development of an of X's and Y's subject to the compatibility and
algorithm given in section 4. This algorithm finds monogamy criteria is maximized.

*Research supported by US MICOM DAAHO1-82-D- 4. Least souare error (La) The optimality condition for

A008 while at the University of Alabama in Huntsville. selecting one of several X's compatible with a given
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Yy and one of several Y's compatible with a given we arrive at contiguous figurations in which each Y has
Xi is that at least two X's compatible and certain geometrical

S( X ,- (2.3) properties will hold good.

where the summation is taken over all possible sets FIGURE 3.1
of pairs (Xi, Y,) that satisfy the preceding criteria.
This is simply a Euclidean distance. If we use a Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12
different metric for least square error, we get an X1  0
entirely different set of fusions. X2  * 0

The error probability a can be so chosen that the X3  0 • 0

overall error probability of misclassifying some single X4  x

targets as multiple ones being bounded by a multiple of x5 + X

a meets a certain threshold. The monogamy criterion x6*

is to rule out the possibility of a sensor seeing an object X7

as two images. This may eliminate studying a possible X8 0 a

malfunction of a sensor seeing double vision from our x9 0

present analysis. The criterion of making maximum x10  D

number of fusions reduces a of viewing a single target Xi[

as multiple targets based on two sensors. Finally the X12  0

optimality condition is the same as the well-known X13

least square error principle in statistics. X 14  
0

X15 0
X 1 6  *

3. Discussion Legend
0 Compatible

Without loss of generality, X's and Y's are sorted in + Closest Compatible X to Y
a nondecreasing order. They are all plotted on a real 0 Closest Compatible Y to X
line and for each Yj associate all X's that satisfy (2.2). x Fused pair

For illustration, let Ylbe compatible with X1, X2 and * Fused and closest X to Y
X3 , Y2 with X2 and X3 , Y3 with X3 , X4 and X5 , and
so on. This information can be presented in a n x m Figure 3.2 given below is a good example of table
table !ike Figure 3.1 given below. Compatibility of pruned for obvious matches and nonmatches. Let us
(Xi, Y,) is noted in Figure 3.1 by a symbol such as consider the portion of the table with 7 rows and 4
+, , x, and O. columns giving rise to the first contiguous block. Since

Observe X7 is not compatible with any Y, i. e., X7 is there are 3 compatible X's for Y1 , 2 for Y2 , 3 for Y3
observed only by the first sensor; similarly, Y10 is and 3 for Y4, we have 3x2x3x3 = 54 possible sets of 4
observed only by the second sensor. X6 is the only one pairs. However, by the monogamy criterion this
compatible with Y5 so we can fuse them into a single number is reduced to 19 which can be enumerated as
target. On the other hand, X5 is compatible with Y3
and Y4. Since Y3 has two other compatible X's, Xs  2345, 2346, 2347, 2356, 2357, 2365, 2367, 2456,
should be fused with Y4 in spite of the fact that X5  2457, 2467, 2465, 3456, 3465, 3457, 3467, 4356,
may be closer to Y3 than Y4 ; otherwise, Y4 will have 4357, 4365, 4367
no matches thus violating the third criterion of
achieving maximum number of fusions. Now that X5  where, e. g., 2345 denotes the set of pairs (X 2, Y1),
is fused with Y4, X4 is automatically fused with Y3. (X3 , Y2 ), (X 4, Y3 ) and (X5 , Y4 ). It can be shown that
In case of X8 it has 3 possible Y's for possible the LS criterion implies that Xi<Xj< X 1 < X, since
matching. Obviously the Y closest to X. will be their counterparts satisfy Y1 :< Y2 :5 Y3 :5 Y4. We call
chosen for fusion. this principle seniority prolocal, that is, if Y's are

After we have matched the X's and Y's in the sorted in increasing order, then their corresponding X's

discussion above, do recursively this obvious type of are also sorted in increasing order. By this principle
we can eliminate 7 of 19 sets, e. g., 4365. Among thematching and dropping the matched or fused pairs as 1 es nytost oti aiu ubro
12 sets, only two sets contain a maximum number ofwell as those X's and Y's that cannot be matched, until
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X's that are nearest to their Y's so that the least square Y's into three sets A, B and C, where A is the set of
error will be smaller. They are 2346 and 3456 for matchable pairs (Xi, Yj), while B consists of
which we need to compute the LS error and choose the unmatched X's and C of unmatched Y's. Then the
one with a smaller value. number of distinct targets is the sum of the sizes of

An easy way of arriving at these two sets is to begin these sets. We present the algorithm in a language-free

with 3446 composed of the closest X's to Y's. To avoid step-by-step format:

duplication of the second and third digits, there are two 1. Screen the data and categorize them into two
possible choices, namely, either to decrease the second
digit by one or increase the third one by one. When arrays X(1: n)and Y(I: i).

the second is decreased by one, which is the same as the 2. Sort X(I: n) and Y(I: m) in a nondecreasing
first digit, then we decrease the first by one thus order.
obtaining 2346. Similarly, by increasing the third digit 3. Assoiate with each Y2 , f,, 1, and cj, the
by one in 3446 we obtain the second possible set 3456. subscript of the first, last and closest compatible

In the second contiguous block of Figure 3.2 X respectively. Form a linked list of distances of
consisting of rows from 8 to 16 and columns from 5 to compatible X's from Yj.
7, we may arrive at 3 possible sets for verification of 4. Do recursively until each Y has at least 2
the LS criterion respectively. This is one of the worst compatible X's:
cases one may encounter for verification of the LS
criterion. It can be established that the number of i. Remove Y's with no compatible X's and place
possible sets of pairs to be checked for the LS criterion them in set C.
is at most the minimum of number of X's and that of ii. If a Y has only one compatible Xi then
Y's in a contiguous block. consider the set of all Y's which are

Using these observations we formulate a general compatible only with X i . Match the closest
algorithm in the next section. Y with Xi . Remove and place this pair in

set A. Remove all other unmatched Y's and
FIGURE 3.2 and place them in set C.

5. Partition the remaining X's and Y's into
"1 Y2 Y3 "4 ¥s Ys "7 Ys Y9 Y'0 "1 "12 subgroups such that each Y in a subgroup has at

least two compatible X's and each X has at least
X2  0 two compatible Y's within the subgroup.
X3  + Moreover, fj < li_ is true for all j with Yj in the
X4  O ++ subgroup.
X5  0 0

6 [ + 6. Without loss of generality, we assume a subgroup
X7  0 consists of X(I: p) and Y(I: q). Consider the
X0 0 0 0 array (1: q) of subscripts of closest X's to Y's. If
X9 0 0 0 elements of this array are distinct, then we have
x10 0 0 0 found the set of matched pairs (XC(,), Yj).
Xll 0 0 0 Otherwise, from c(l: q) we form several arrays
X12+ + + such that the resulting ones contain as many
X13 0 [ O elements of c(l: q) as possible and other elements
X14 0 0 0 are closer to those of corresponding positions in
X15 D D 0 c(l: q). The elements of these arrays are such
X16 0 0 0 that they are nondecreasing and conform to the

Legend monogamy and maximum number of matches
0 Compatible criteria.
+ Closest Compatible X to Y 7. Verify for each array obtained in step 6 the LS

criterion and select the one with the least value.
4. Algorithm Remove the X's and Y's corresponding to the setof the matched pairs and place them in set A.

The algorithm we develop here will separate X's and Remove unmatched X's and place them in set B
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while unmatched Y's are removed and place in set No algorithm is applicable unless it is implemented
C. on a processor and real time for computations

performed should be studied. The question of
8. Repeat steps 6 and 7 for all subgroups. practicality in a simulated battle scenario is to be

In implementing this algorithm one can combine explored, which will, in turn, force us to refine our
several steps and do them in a single step. The algorithm.
algorithm employs essentially the backtracking strategy Since the targets are moving and the sensors are
with criteria as bounding functions. continuously polling, the fusion of the data can be

The space complexity is not of concern since n will dynamically verified and updated. This would be an
be less than 50 and m less than 20. The time immediate line of extension of this study.
complexity includes times for screening, sorting and Finally, the results obtained in the study have
computation of the LS criterion. It is estimated as of applications in areas such as medicine where multiple
order O(mn). sensors may be used for monitoring patients'

conditions. How the brain of an animal processes the

5. Extension information from the data received through several
senses will be another application. Fussy logic which

There are two aspects to be considered for the seems to play a larger role in electronics and its
algorithm to be useful: applications to photography can be interfaced with the

1. Extending to the three-dimensional observations; multiple sensors.
2. Fusing the observations from more than 2 sensors. The author acknowledges generously the US Army

Our discussion has been centered on real-valued X's Missle Command and Mr. Richard Jones for his patient
and Y's. With some modifications we can extend the and helpful briefings and suggestions.
algorithm to the case when the observations are real
vectors. REFERENCES
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In order to use the algorithm the metric defined in
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Y's for sorting and for maintaining the seniority
protocol. This will be a study for the future.
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lowever, this will introduce a large error probability.
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Abstract against the number t for t = 1,2,... where To = u,
-h < u < 0. An out-of control signal is issued at the

The performance of control charts is usually evalu- first t for which Tt :5 -h. A two-sided CUSUM chart
ated by assuming a step change in the process mean. is obtained by running the lower-sided and upper-sided
However, it is more appropriate to evaluate the perfor- CUSUM charts simultaneously.
mance of control charts by assuming a drift in the mean An exponentially weighted moving average (EWMA)
for processes where a gradual drift models the shift in the chart is obtained by plotting
mean more accurately. Three major methods for com-
puting the average run length (ARL) of control charts
assuming a step change in the mean are reviewed. Gen- against t = 1,2, ..., where A is a smoothing constant
eralizations of these methods for computing the ARL such that 0 < A < 1 and Qo = u, -h < u < h. An
of control charts assuming a drift in the mean are then out-of-control signal is issued by an EWMA chart when
examined. Qt < -h or Qg > h.

KEY WORDS: Average run length; Cumulative sum; The run length of a control chart is defined to be

Exponentially weighted moving aver- the sample number when an out-of-control signal is first

age; Integral equation; Linear drift; issued. The ARL of a control chart which is the expec-

Markov chain; Normal distribution; tation of run length is often used as a measure of per-

Statistical process control. formance of a control chart. Three major methods for
computing the ARL of control charts assuming a step

1 Introduction change in the mean are reviewed in Section 2. Gener-
alizations of these methods for computing the ARL of
control charts assuming a drift in the mean are then ex-

Let il, i2, ... , be a sequence of independent and iden- amned in Sci 3.

tically distributed measurements of quality from a man-

ufacturing process and f(z) be the probability density
function of il where p is the mean of il. Without loss 2 Step Changes
of generality, assume that the in-control process mean to A common method for computing the ARL of a con-
be zero and the standard deviation of l to be one.bezerand p er-snd d cumulati sum ( ) cr is otrol chart assuming a step change in the mean is through
obtained by plotting the use of integral equation. The ARL function of aCUSUM chart was first derived by Page (1954) as an

Si = max{0, S,..I + it - k), integral equation

against the sample number t for t = 1,2,... where k is L(u) = I+L(O)Pr(X( < k-u)+f L(z)f(z+k-u)dz,
a positive chart parameter and So = u, 0 < u < h. Jo
An out-of-control signal is issued at the first t for which where L(u) denotes the ARL of a CUSUM chart given
St > h. A lower-sided CUSUM chart is obtained by that So = u.
plo! ing Using an argument similar to Page (1954), the ARL

Tt = min(0,T_ 1 + it + k), of an EWMA chart was expressed by Crowder (1987) as
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an integral equation where I is the n x n identical matrix and I is an n x

I X - (1- A)U I vector of l's. The Markov chain method may also
L(u) = 1 + h L()fp ( A ) dz, be used in a similar manner to compute the ARL of a

where L(u) here denotes the ARL function of a two-sided CUSUM chart.

EWMA chart given that Qo = u. The third method is Monte Carlo method which is
The CUSUM integral equation can be approximated easily programmed but highly inefficient. These three

numerically by replacing the equation with a system of methods allow the ARL of a control chart to be evalu-
linear algebraic equations using a Gaussian quadrature ated for any particular value of p and hence allow the
and solving the system of linear equations. A compre- performance of control charts to be evaluated assuming
hensive discussion of methods used to obtain approxi- a step change in the mean.

mate solutions to integral equation can be found in Baker
(1977).

Let Wl, W2 , ... , w, and u1 ,u 2 , ..., u, be the n-point 3 Linear Drift
weights and abscissas of a Gaussian quadrature such that

g(x)dz wig(u,). The Monte Carlo method can be generalized easily

Ji= to handle the case when the process mean is drifted and

Using the Gaussian quadrature, the CUSUM integral will not be discussed any further in this paper.
equation can then be replaced by a system of linear equa- The performance of CUSUM charts under linear
tions in n + 1 unknowns L(ul), ..., L(u,),

drifts in the process mean was investigated by Bissell

L(uj) ;t 1 + L(0)Pr(f( < k - ui) (1984). It is assumed that the first sample is taken when

n the mean is in control and the mean is drifted gradually
+ _ wL(ui)f;,(uj + k - ui) at a rate of Aoag per sampling interval where oX is the

1=1 standard deviation of sample mean and A is a positive
constant. Based on a modification of the Markov chain

where j = 1,2, ...,n,n + 1 and Un+1 = 0 < U1 < U2 < method developed by Brook and Evans (1972), Bissell
... < u, < h. The ARL function L(u), 0 < u < h can computed the ARL of a CUSUM chart under a linear
then be approximated as drift. A nonhomogeneous Markov chain is obtained for

L(u) 1 + L(un+l) Pr(X < k - u) the linear drift case. However, Bissell noted in a corri-
n gendum that the ARL computed using his Markov chain

+ E wjL(uj)f,(uj + k - u). method is not accurate, possibly due to rounding er-
rors. Based on simulation results, Bissell showed that

The EWMA integral equation can be approximated in a the ARL computed using his Markov chain method is

similar manner. at least two times larger than the actual ARL for a

The second method for computing the ARL of a con- CUSUM chart with h = 5.0, k = 0.5 and a drift co-

trol chart is to use standard results from the Markov efficient A = 0.005. The accuracy of the Markov chain

chain theory. This method is first proposed by Brook method has been greatly improved due to a refinement

and Evans (1972). Consider an EWMA chart with chart of Asbagh (1985).

limits (-h,h). This interval is partitioned into n subin- Gan (1991a, 1991b) generalized the integral equation
tervals and let R be the matrix containing the one-step method to handle the case when the mean is drifted. Let
transition probability for the transient states. The ARL the mean be POPi, ...,Jm-.,Pm,Jm, ... when random
vector Q = (ul, u2, ... , u.)T is then given by samples of products are taken from a production process.

Note that p,, can be set to an arbitrary large number to
S= (I - R)- 1I approximate a linear wear process. Let the sample mean
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be independently distributed with probability density and linear drifts are reviewed in this paper. Both the
function fo, (z). Note that Pm is the stabilized process Markov chain and integral equation methods yield ac-
mean. Suppose that Li(u, pj), j = 0,1,2, ..., m is the curate ARL values of control charts under linear drifts.
ARL of a two-sided EWMA chart given that Q0 = u and The methods discussed in this paper may also be used
random samples of products are taken when the mean is to study the run length properties of control charts with
at Pj, j+, ... ,Pm. Gan(1991a) showed that drift that is not linear in nature.

L1 (u,p1 ) = 1
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1. Introduction point in the domain image (e.g. the surface of the earth)

Analytical problems in a number of scientific dis- there is a unique pair of (infinitesimal) lines or direc-

ciplines concern comparisons of two sets of distances tions at 900 that intersect also at 900 in the response
among labelled points. These two sets of distances (or image (e.g., planar map), unless the transformation is

metrics) correspond to different Euclidean representa- conformal. These lines are the axes of Tissot's indica-

tions of the points. The comparison between these two trix. The distinctive feature of these cartographic appli-

sets of distances, or between the two configurations of cations is that projections relating the surface of the

points in space, is often expressed best in terms of a earth to the map are known analytically. Tobler (1978)

deformation that maps the set of labelled points in one suggests other problems in the study of geographic pat-

representation into the corresponding set in the second tems where the mappings must be computed from data.

representation. In this paper we discuss the computa- Problems in biology, or more specifically
tion and interpretation of these deformations for two morphometrics-the measurement of biologic shapes,
particular fields of application and the visualization of their variation and change-motivated the development
these deformations using the graphical technique of of the algorithms presented here. In 1917, D'Arcy
biorthogonal grids (Bookstein 1978). Thompson introduced the idea of using mathematical

Perhaps the primary examples of comparisons of deformations for describing or reifying the theoretical

sets of points through deformations is in the field of car- construct of biological homology. Two biological
tography. Distortions induced by representing the sur- forms were to be compared in terms of a deformation of

face of the earth with (planar) maps are studied in terms one form into the other. Images to be compared might

of the properties of various map projections (Richardus be of two distinct biologic species related in evolution-

and Adler 1972). In fact the basis of the method of ary terms, or images of the same biologic specimen

biorthogonal grids presented here was established a cen- observed at two different ages in a longitudinal study of

tury ago by Tissot (1881) for just such problems. growth. For visualization Thompson used the method

Tissot's theorem shows that the image of any small of transformation grids in which a square or regular grid
(infinitesimal) circle under a continuous transformation superimposed on the image of one biologic form is tran-

is an ellipse-known in cartography as Tissot's indica- formed into an irregular grid over a second form.

trix. The axes of the ellipse represent the local principal Many investigators attempted to place
(maximum and minimum) strains of the transformation Thompson's seminal idea on a precise mathematical
and the ratio of the area of the ellipse to the area of the foundation suitable for computer analysis and measure-
circle represents the proportionate change (distortion) in ment of shape change. This was not achieved until
surface area. The theorem further states that at any Bookstein's (1978) introduction of the method of

biorthogonal grids. (Closely related methods were sug-
° Research supported by a contract with the Electric gested independently by Tobler (1978) at about the

Power Research Institute, Palo Alto, CA. same time.) Bookstein's approach focusses on labelled
+ Research supported by NIH grants NS-26529 and points called landmarks of anatomical or evolutionary

GM-37251. significance in the biologic images to be compared. The

purpose of Bookstein's analysis was the depiction and
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measurement of shape change interpolated smoothly ably be generated for monitoring stations located any-
from the sets of corresponding labelled landmarks in the where in the geographic region of interest.
two images. The method involves (a) interpolation of a However, in the morphometric applications
correspondence between n pairs of points in R2 into a correspondences between images cannot generally be
differentiable mapping defined everywhere in the plane, established except at a finite (or one-dimensional) set of
and (b) the drawing (and labelling) of integral curves of points. The biorthogonal grids provide an illustration
the infinitesimal perpendicular lines guaranteed to exist referring only to the landmarks available for analysis.
(for differentiable transformations) according to One cannot argue that they represent (estimates of) real
Tissot's Theorem. A formal definition for these curves deformation as correspondences (homologies) cannot be
is as follows, defined everywhere. (See Bookstein 1991.)
Definition. Through almost every point of a differenti- In Section 2 we explain the interpretation of
able transformation pass just two differentials which are biorthogonal grids for a pair of simple examples based
at 90' both before and after transformation. The on a hypothetical square configuration of four land-
integral curves of these differentials form a grid whose marks. We utilize thin-plate splines to represent the
intersection-, are at 90* in both images. These are called deformations we compute from corresponding land-
the biorthogonal grids of the transformation. marks in pairs of images. Section 3 explains the

Another field to which the method of biorthogo- rationale for the choice of thin-plate splines and reviews
nal grids has been applied is the statistical analysis of their algebra. Section 4 details the algorithms for draw-
spatial data obtained in routine monitoring of environ- ing biorthogonal grids for a specified mapping. The last
mental processes. Examples include spatial analyses of section presents a pair of (very different) real applica-
mesoscale variation in solar radiation (Sampson and tions.
Guttorp 1991), wind speed (Guttorp and Sampson
1989), rainfall, and acid deposition (Guttorp et al 1991). 2. Interpretation of biorthogonal grids
Sampson and Guttorp suggested that the spatial covari- We begin with simple linear or affine transforma-
ance structure of environmental monitoring data could tions, u = f (x) = Ax, where A is a 2x2 matrix and x
be represented and estimated in terms of a function and u represent coordinate vectors in two images to be
mapping the geographic locations of a set of monitoring compared, respectively. Linear mappings are character-
stations (with coordinates generally being planar coordi- ized by a single pair of principal axes given by the
nates from a map projection whose effects are being eigenvectors of ATA (or left singular vectors of A).
ignored) into a second synthetic set of planar coordi- The direction or axis corresponding to the largest eigen-
nates computed to encode the spatial covariance struc- value is the direction in which the plane is (relatively)
ture: distances between the stations encode observed most stretched. The ratios of distance in the second
spatial covariances so that greater covariances are image to distance in the first for pairs of points xi and xj
represented by smaller distances. In this application, aligned with the principal axes (e.g. Iu5 -uj I/Ix, -xj I)
the biorthogonal grids reflect spatially varying anisotro- are called the principal strains. These are the square
pic spatial covariance structure-what may be called a roots of the eigenvalues of A TA (or the singular values
'moving principal components analysis of the spatial of A).

covariance structure."
Figure 1 depicts the effect of a linear transforma-

While the algorithms and graphics are the same tion on a starting configuration of four points arranged
for each of the applications cited above, there are in a square. The resulting figure is a parallelogram. The
important, albeit subtle differences of interpretation, families of perpendicular lines indicate the directions of
For the analysis of map projections the analytically the principal axes. They correspond between the two
specified mappings apply to all locations in the domain images and are the biorthogonal grids for the linear
image, and thus Tissot's indicatrix can be computed and transformation. The figure refers to the principal strains
interpreted everywhere. In the environmental monitor- as gradients ("grad"). Those for the transformation
ing problem we compute a smooth mapping from data from parallelogram to square are the inverses of those
at a finite set of points considered as a spatial sample of for the transformation from square to parallelogram. In
an underlying process. Thus the biorthogonal grids this case the two principal strains are 0.856 (coded by
computed by interpolation may be interpreted as esti- dotted lines in the left panel of Figure 1) and 0.506
mates of a phenomenon (spatial covariance pictured as (coded by dashed lines).
deformation) which is defined (and theoretically observ-
able) everywhere. That is, pairs of images can conceiv-
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A simple nonlinear mapping of a square into an displaced to pass through "vertical" coordinates ui or vi
arbitrary quadrilateral is depicted in Figure 2 (approxi- respectively, at the points (xiyi). Note that linear func-
mately replicating Figure VI-6 in Bookstein 1978). We tions of x and y have zero bending energy; i.e., they are
will write such a nonlinear mapping f: R 2-- R2 as perfectly smooth.

We review here the algebra of thin-plate splines.
[] =I 1Y)Similar presentations appear in Bookstein (1989, 1991).

In the neighborhood of any point (x,y) we can compute Consider first the problem for just one of the response
a local linear approximation coordinates, v(xy). Let P, = (xi ,y,)r and denote the

distance between points i and j by r5, = I P-PI1.
f(x,y)=A X + ... Define the function U(Ir l)= r2 logr 2. Then the solu-

tion v(xy) minimizing (the v components of) If sub-
where the matrix A1,, is the (affine) derivative matrix ject to the interpolation constraints (1) is
evaluated at the point (x ,y), (xy) W , U(JP, -(Xy)T )+ao+a,x +a y,

A, =[u/ax au/ay!
L av/ax avlay where the coefficient vector defined as

The left singular vectors of A,, indicate the local 6 = (wvl, wn avoav ay) satisfies a linear sys-
ly tem

principal axes of the nonlinear transformation. These
are the differentials referred to in the definition of Y =L 0.
biorthogonal grids given above. In Figure 2 we can Y = (VI V2 , . , ,O0,O)T and the (n+3)x(n+3)
identify these directions along the curves drawn. For matrix L is
example, in the neighborhood of point 4, the first local
principal axis (with a principal strain between 0.5 and K P]
0.75) points in a direction at approximately 300 below L = ,

the horizontal. In the vicinity of point 2, the first princi- where
pal axis (with a strain greater than 0.75) has rotated to
an angle of approximately 450 from the horizontal. Note 0 U(r 12) ... U(r 1 )
that the biorthogonal grids-a sampling of integral U(r 21) 0 -- U(r 2,,)
curves of these local principal directions-depict the K . ... U(r 32) ... ...
spatial variation in the principal strains (derivative) of a ... ... ... ...
nonlinear mapping. U(r.l) U(r. 2) ... 0

3. Algebra of thin-plate splines for plane mappings and
Our problem is to determine a smooth mapping [1 x y

f: R 2 -+R 2 that interpolates a correspondence between p . .x. Y.2,

labelled points (xi,yi) and (ui,vi), respectively, ! X, Yo
i=l,2,...,n, in two images. That is,f must satisfy

For further discussion of the role and interpreta-
(ui,vi) =f (Xiyi) = (u (xi,yi),v(x ,yi)). () tion of the function U, see Bookstein (1991, Ch. 8).

As noted above, biorthogonal grids depict the spatial The value of the (minimal) bending energy is pro-
variation in the derivative of a mapping f. Therefore, portional to a quadratic form in the coefficients
as a measure of smoothness it is natural to consider the W = (w, I, . .. , w,,)T, or in the observations
family of thin-plate splines which minimize variation in V = (v1 ,v 2 , - " , v.)T ,

the derivatives as expresssed in the following quantity. WTK W VT(L'-KL l)V

If= ( 2)2 2(  1)2+( 2u + =VT (LI)V,
ZXT W~~ay- jY LR

t"1 where L, "' refers to the upper left n xn submatrix of
[(1x2+V )2 + 2( +2V )2+d d2v L- . Note that this quadratic form is zero if and only ifWI =W,2 ... =0, which means that the fitted spline is

The terms involving u and v are, separately, equations linear, v(xy)= ao+ax +a,,y.
for the bending energy of an idealized thin metal plate
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For the two-dimensional response problem of value of the affine derivative evaluated at the starting
interest here we define V as an n x2 matrix, point. These values are used to code or label the line

Uj V] segments connecting the sequence of points generated

U2 V2 along the curves.
... ... The user must consider a number of graphical
UX VX design decisions in drawing out a sample of curves for a

and biorthogonal grid. Our implementation in the S system
(Splus, Statistical Sciences 1990) provides the user with

If 0c tr (VT (L_')V). a variety of options. A default, semi-automatic pro-
cedure starts by generating points along the curves inFrom this expression it is easy to see that the quantity both the major (greatest local strain) and minor (least

minimized is invariant under arbitrary wanslation and local strain) principal directions emanating from a
rotation of the coordinates (u,v). In fact, the whole loastinprcpldreinsmntngfmarocedat ioinvaecorint undr t tin fac, rt n woe user-specified starting point on the first image. Then, at
procedure is invariant under translation and rotation of points approximately equally spaced along the curve of

greatest local strain just generated, the program initiates

a series of points along the curves in the direction of
4. Computing and drawing biorthogonal grids least local strain. It similarly initiates series of points

This section explains how we compute and draw defining curves in the direction of greatest local strain
biorthogonal grids as a visualization of a differentiable from approximately equally spaced starting points along
mapping f : R 2--R 2 over a specified region of the the first curve in the minor direction.
plane. For a given mapping f, e.g., a thin-plate spline, We connect the points in curves with the value of
we can compute local linear approximations in terms ofWecncthepisinurswthhevleothe principal strain encoded in the line type, line width,
the affine derivative matrix A,, defined above. From and/or line color. Color seems the most effective visual
this matrix we can compute the differentials at (x) ~cue for recognizing the relative magnitude of the princi-
corresponding to the sets of curves of the biorthogonal pal strains as they vary in space (although we do not
grids as the left singular vectors of Ax,. Write the demonstrate color here).
direction of greatest principal strain asi oUsing Splus' interactive graphics capability the

a I user may initiate biorthogonal grid curves from any
a2" ~V location in the first image. The user may also point at

plotted curve in order to print the value of the strain at
In order to draw out the integral curve of the dif- that point. A system of Splus functions for the calcula-

systemofdiferential maathoin t (tions and graphics discussed here is available from the
system of differential equations authors.

d = g= y' 5. Applications

where t denotes arclength along the curve in the direc- Our first example is drawn from a classical mor-

tion of the local principal axis. Points along the curve phometric study of a congenital craniofacial deformity
are computed by running a (Runge-Kutta) differential known as Apert Syndrome (see Bookstein 1991). Land-

equation solver in "one-step" mode. That is, we evalu- mark coordinates were digitized from lateral cephalo-
ate grams of 14 cases of the syndrome. Pictured in Figure 3

to+tmax are the mean coordinates of eight landmarks for these

tt y dt, 14 cases and a similar mean configuration for a sample
fo of age and sex-matched controls ("normals"). Our

where t is the maximum step size to be taken. In one interest is in describing the difference in these two
vtep mode this ret .- s configurations by viewing the mean Apert configuration

xrto+81 as a deformation of the mean configuration of the con-
y (t~t )trois.J IIn applications it is often useful to visualize plane

The size of the steps &, i.e., the spacing of points gen- mappings using both the image of the mapping of a reg-
erated, depends on the curvature of the grids or the spa- ular grid of points (after D'Arcy Thompson) and
tial rate of change of the affine derivative matrix. Asso- biorthogonal grids. At the bottom of Figure 3 we depict
ciated with each step is the principal strain, the singular the thin-plate spline mapping the normal mean land-
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mark configuration into the Apert mean landmark The biorthogonal grid specifies (our estimates of)
configuration by the mapping of a regular grid and in the geographic directions in which spatial dispersion is
the upper right corner we show the corresponding greatest and weakest. Different line types encode the
biorthogonal grid. We utilize varying line width to range of values of the principal strains. Variation in
encode the principal strains of the mapping. The strains these principal strains reflects nonstationarity in the spa-
vary from 0.33 (in the vicinity of the points PtM and tial covariance structure, and can be understood from
PNS) to 1.20 (between points Sel and SER). Bookstein the perspective of the atmospheric processes underlying
(1989, 1991) shows how the shape change represented the monitored data. The large scale feature of the map-
in Figure 3 can be usefully decomposed into features or ping in Figure 4 is a relative compression along an axis
components of varying geometric scales. running WSW-ENE corresponding to a strong spatial

Our second example concerns an application of covariance in that direction and relatively weak covari-

plane mappings in spatial statistics. A number of moni- ance in the direction at 900.

toring networks have been measuring acid deposition in
rainfall over the past two decades. Problems concern-
ing the estimation of acid deposition at unmonitored Bookstein, F.L. (1978), The Measurement of Biological
locations and the design or evaluation of monitoring Shape and Shape Change. Lecture Notes in
networks all require information about the spatial Biomathematics, v. 24. Berlin: Springer.
covariance structure of the environmental process being Bookstein, F.L. (1989), Principal warps: Thin-plate
monitored. In this application we consider (log) hydro- splines and the decomposition of deformations,
gen ion deposition accumulated for four-weekly inter- I.E.E.E. Trans. Pan. Anal. Mach. Intell., 11,
vals from data measured between 1981 and 1986 at 17 567-585.
monitoring sites from the UAPSP monitoring network.
We denote by Z ( ,x) the observations at location x and Bookstein, F.L. (1991), Morphimetric Tools for Land-
time (month) t. We are interested in modeling the mark Data, Cambridge University Press, in press.
"spatial dispersion" Var(Z(t,x.)-Z(t,xb)) as a func- Guttorp, P. and Sampson, P.D. (1989), Discussion of

tion of arbitrary pairs of geographic locations xa and xb. Haslett & Raftery, Applied Statistics (JRSS C),

The sample data provides estimates of these variances 38, 32-34.

for pairs of monitoring sites, Guttorp, P., Sampson, P.D., and Newman, K. (1991),
di2 = Var (Z (t ,xi ) - Z (t ,x)) .  Nonparametric estimation of spatial covariance

with application to monitoring network evalua-

Sampson and Guttorp (1991) introduced a family tion, in Statistics in Environmental and Earth Sci-

of models of the form ences, eds. P. Guttorp and A. Walden, London:

Var(Z(t,xa)-Z(t,xb)) = g(If (x.)-f (xb)I), Griffin, inpress.
Richardus, P. and Adler, R.K. (1972), Map Projections

where f is a nonlinear mapping of the geographic coor- for Geodesists, Cartographers and Geographers,
dinates of the sampling sites and g is a monotone Amsterdam: North Holland.
"variogram" function relating the di2 to the distances Sampson, P.D. and Guttorp, P. (1991), Nonparametric
among the transformed points If (xi) -f (xj) I. estimation of nonsationary spatial covariance

Figure 4 shows the location of 17 monitoring sta- structure, SIMS Tech. Rpt. No. 148 (rev), Dept.
tions and depicts the thin-plate spline mapping f that of Statistics, Univ. of Washington, (submitted).
represents the nature of the spatial covariance structure. Statistical Sciences, Inc. (1990), S-PLUS User's
Coordinates of sites in the lower right image were com-
puted in two steps as described in Sampson and Guttorp
(1991). First we applied multidimensional scaling to the Thompson, D'A. W. (1961), On Growth and Form,

matrix of spatial dispersions diJ to generate a Abridged edition, ed. J.T. Bonner, Cambridge

configuration in which pairs of sites xi and x, with rela- Univ. Press.

tively high spatial dispersion (low covariance) would be Tissot, M.A. (1981), Memoires sur les Representations
located relatively far apart. Second we computed a des Surfaces, Paris: Gauthier et Cie.
thin-plate smoothing spline to approximate these new Tobler, W.R. (1978), The comparison of plane forms,
coordinates as a smooth deformation of the geographic Geographical Analysis,IO, 154-162.
configuration.
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Figure 1. Biorthogonal grids for a linear mapping
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Figure 3. Thin-plate spline mapping of Normal into Apert means
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Figure 4. Thin-plate spline mapping of UAPSP monitoring stations
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Some sharpening and registration methods applied
to SPECT images of pediatric brain tumors
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Abstract 1. Motivation and context

The field of childhood brain tumors has shown substantial
This report describes initial experience with several image areas of promise in recent years with the development of
sharpening and registration tools and their applications in new treatment protocols that improve outcome, both in terms
a longitudinal study of pediatric brain tumors (astrocytoma, of longevity and survival (e.g. in medulloblastoma, astrocy-
medulloblastoma). Image sharpening is defined as the re- toma). Because of this improvement, there is a correspond-
moval of unnecessary blurring of boundaries and shapes by ing need for more precise methods of assessing tumor growth
some automatic method. We define registration as the super- in order to be able to assess the response to treatment, and to
imposition or optimal matching of repeated pictures taken for be able with confidence to distinguish the presence of tumor
a single patient over time or across different imaging modal- from brain damage due to complications of the treatment.
ities. A long-range goal is to develop, apply and extend Early and accurate discrimination between these two types
these tools to extract the most clinically useful information of post-treatment changes can be vital to the management
from sets of serial single photon emission computed tomog- of the patient.
raphy (SPECT) and magnetic resonance (MR) whole brain There are two newly emerging biomedical imaging
scans taken both pre- and post-surgery for roughly seventy technologies: single photon emission computed tomography
pediatric patients per year over a period of several years. (SPECT) and magnetic resonance (MR) imaging. SPECT
We use two radioisotopically-labelled tracers, Thallium-201 images provide data on internal functional, metabolic events
and a technetium tracer, 99mTcHMPAO. SPECT images are through use of one or more radioisotopically labelled tracers.
more blurred than they need to be. Corrections for uniform MR images, obtained without such tracers, provide data on
photon attenuation (i.e. assuming only one medium such as structural anatomic features.
soft tissue) have been shown to have initial success. Objec- Among emission tomography techniques, as opposed to
tive and highly-automated image registration through esti- transmission tomography methods such as computed tomo-

mation of pixel-by-pixel deformation maps from one image graph (CT), single photon emission computed tomography

to the next have also shown promise. The initial successes gSPECT) die poton emission tomography
of hes tw deelomens i oherconext inicae tat b- (SPECT) differs from positron emission tomography (PET)

of these two developments in other contexts indicate that obi- in at least two important ways. In SPECT, only one pho-
jective and highly automated methods could be developed in is leas and rorded whn aPEadionly deayo-
to yield accurate, repeatable and verifiable methods for the ton is released and recorded when a radioactive decay oc-
extraction of useful SPECT/MR image summary measures curs, whereas in PET two photons are propagated in op-
extrationedica lof ituseu l studies un ary asorte posite directions and help to verify each others' emission
in biomedical longitudinal studies, and in particellar for the points within the brain. SPECT is thus more prone to mea-
study of childhood brain tumors. The combination of these point within A bai SPECT th olone howea-
two technologies could improve both the quality of serial suthatnt is m l ensiv and ecumro m toimags ad o bistatstial nalsesof etratedimaing is that it is much less expensive and less cumbersome toimages and of biostatistical analyses of extracted imaging operate, not needing a cyclotron. SPECT is the imaging

data in general. We give some initial results on the use of odaty of ce ising d t thisad-

a method for sharpening SPECT images through estimation vaty or ahoe ome c iptin o tisee
of attenuation and scattering functions and the use of a de- for example Geman and McClure (1985, 1987), Manbeck
formable template method to register a few SPECT slices (1990) and references therein.for the same patient at different times. (90 n eeecsteen

Use of the radioisotopically labelled tracer Thallium-
201 in SPECT provides a promising biological marker for

* Address for correspondence: Nicholas Lange, Division the extent of biologically active tumor (Kaplan et al., 1987).

of Biology and Medicine, Box G-A424, Brown University, The diagnostic specificity of Thallium-201 has been im-
Providence, RI 02912. proved by performing an additional scan with the technetium
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tracer 99mTcHMPAO to estimate cerebral perfusion. The Figure 1.
demonstration of increased perfusion at the site of Thallium-
201 abnormality favors active tumor. [patient, time]

In this report, we explore both the global sharpening of
SPECT images and an objective pixel-by-pixel registration functional-metabolic anatomic-structural
method for repeated images taken on the same patient.
Image sharpening is defined as the removal of unneccessary
blurring of boundaries and shapes by an automatic objective
method. Image registration is defined as the superimposition
or optimal matching of serial images taken over time or SPECT MR/CT
across different imaging modalities, such as SPECT and sa s

MR, for a single individual, assisted in some cases by other
sources including data from different individuals or, only if normal tissue abnormal tissue
absolutely required, a knowledgeable expert.

SPECT images are much more blurred than they need to
be. Many current "canned" and widely-used reconstruction
algorithms, usually of the filtered back-projection type, do 99mTcIIMPAO Thallium-201
not correct for nonuniform photon attenuation and depth- scan scan

dependent scatter, and do not account for the random nature
of photon emission. Current image registration methods are
often global in nature, highly operator-assisted, rely heavily patient at a particular time to a corresponding t.armal indi-
on subjective judgements and human interactions, and yield vidual's picture.
results that are often non-repeatable and not objectively Stochastic models for repeated image summary mea-
verifiable. sures require objective, well-defined criteria and repeatab!e

Two prospective clinical trials of radio/chemotherapy procedures for their extraction if one is to be able to an-
and surgery for astrocytomas and medulloblastomas, con- alyze time trends and treatment effects beyond otherwise
ducted by the Dana-Farber Cancer Institute, Boston, MA, requisite subjective and somewhat incommensurate clinical
provide a database of test images. Imaging for the clini- judgements. Trends in functional irage summaries, such as
cal trials is performed at the Division of Nuclear Medicine, may be present in repeated tumor/brain ratios and areas over
Children's Hospital, Boston, MA. Initial whole brain scans time (O'Tuama et al., 1991), can be modeled through direct
are obtained during pre-surgical evaluation as part of routine extensions of recent biostatistical methodology (see, for in-
examination. At most seven triplets of SPECT and MR im- stance, Laird, Lange and Stram, 1987; Lange and Ryan,
ages at 1, 3, 6, 9, 12, 18 and 24 months are obtained during 1989; Lange and Laird, 1989; Gelfand and Smith, 1990;
the course of the two year treatment schedule. Four addi- Lange, Carlin and Gelfand, 1991; Diggle, Lange and Beneg,
tional sets of images for each patient are obtained, one for 1991). In addition, the combination of functional-metabolic
each year of follow-up observation. Differing numbers of (SPECT) and structural-neuroanatomic (MR) findings holds
pictures per patient arise because imaging data are missing great promise in providing more knowledge about the clini-
at certain occasions and recorded at unscheduled times, and cal state of the patient than could be provided by either one
also due to patient death and ccnsoring. These somewhat of these technologies alone (Pelizarri, Chen et al. 1989).
irregularly spaced measurements pose no problems whatso-
ever to our study. Our test database of SPECT/MR images 2. Goals and tools
contains such data for 50-75 pediatric patients at present.
Figure 1 gives a diagram of the structure of images taken Our long rge goals are to obtain useful sets of ob-for each patien goat each toobanisfumetef.b
for each patient at each time. jective, verifiable and repeatable image summary meaures,

Two problems hinder extraction of accurate and objec- to model the stochastic processes generating these measures
tive functional image summary measures from serial scans: longitudinally over time, and to use the model results to im-
(1) SPECT images are not as sharp as they could be if cor- prove clinical interpretations of the repeated images. Our
rected for photon attenuation and scatter, and (2) there is immediate goals are to match SPECT slices for each patient
a lack of an objectively derived common frame of refer- over time, to obtain artefact-free SPECT reconstructions, and
ence within which to compare repeated images on the same to try deformable template methods to obtain initial charac-
patient over time, or to compare a picture for a particular terizations of tumor changes over time. Interactions between
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Figure 2. 1974; Geman and Geman, 1984; Vardi, Shepp and Kauf-

man, 1985; Geman and McClure, 1985, 1987). Filtered
back-projection methods can induce artifacts (boundary and

Computer-intensive shape blurring and smearing) when the filter applied to mar-
Bayesian modeling, g:nal projections does not anticipate certain asymmetries in

analysis and synthesis these projections. Corrections also need to be made for

photon attenuation and scatter effects. Weighted distance
methods, such as the "Chang algorithm" (Chang, 1978),
are widely used. Other methods estimate and correct for
SPECT machine-specific parameters (Geman, Manbeck and
McClure, 1991).

@ // As has been described by Geman and McClure (1985,
clinical anid 1987) and by Geman, Manbeck and McClure (1991), photon

neuroanatomic image sharpening and attenuation can be accommodated through specification of a
expertise rgistratio methods matrix A, a discrete attenuated Radon transform, operating

on an unobserved true image's isotope concentration map
(o X to yield an expected observed image E(Y). A Bayesian

image reconstruction model typically assumes that the im-
serial SPEC'I'/MR for 1 age actually observed is E(Y) together with Poisson noise,
pediatric brain tumors i.e., that Pr(YIX) is Poisson with mean AX. The recon-

struction problem is to estimate X from Y while account-
components of our long- and short-term goals are shown in ing for A to find an approximation to the posterior mean
Figure 2. rX XPr(XIY), by the method of iterated conditional ex-

pectations (Owen, 1986) for instance.
Among the tools available for our goals are landmark Two methods for estimating the non-uniform attenua-

based global registration methods such as thin-plate splines tion suggest themselves: to use a CT scan that measures
(Bookstein, 1989), principal axes transformations (Alpert et attenuation directly, and/or estimate attenuation from a MR
al., 1990) and the "head and hat" method (Pelizarri, Chen et scan, or to estimate attenuation directly from the raw SPECT
a. 1989). Possible complements to landmark-based global data. We choose the latter approach, a cleaner albeit scien-
registration tools are methods for obtaining pixel-by-pixel tifically more challenging solution. As described by Geman,
image mappings. These include the use of "atlases" (Mow- Manbeck and McClure (1991), differences between observed
forth and Jin, 1988), "multi-resolution elastic matching" and actual photon counts arise from three main sources: col-
(Basesy and Kovati, 1989), and the related deformable tem- limator effect, scatter fraction and attertuation. Collimator
plate methods (Chow, Grenander, and Keenan, 1988; Amit, etfect arises from "stray" photons being recorded in collima-
Grenander and Piccioni, 1991). tors other than those directly in line with their original trajec-

The "head and hat" registration method, used at the tories. Scatter fraction is the proportion of "stray" photons
Children's Hospital Medical Center, works as follows. Sur- among the total number detected that account for a depth-
face points on slices from SPECT and MR scans for a single dependent blurring of the image. Attenuation is the process
patient are identified and thinned semi-automatically through by which some emitted photons are not detected, due to
manual editing of results obtained from standard outline ex- insufficient energy to complete their paths to collimator(s)
traction software. Once these external points have been iden- through differing media such as bone and soft tissue. We
tified, one has a rough SPECT "hat" which is to be fit to the describe the attenuation correction method in some detail in
MR "head". The fitting problem is solved by Pelizzari and the next section.
Chen, et al. (1989) as a multivariate nonlinear regression,
minimizing the sum of squared residual distances from the 3. SPECT machine-specific parameter
"hat" to the "head" along vectors through the center of the
"head". Custom fitted "hats" are thus pr'xduced, and interior
features interpolated linearly. Correction for attenuation and scatter effects can be accom-

Available tools for SPECT reconstructions are the modated by estimating the discrete attenuated Radon tmas-
widely-used filtered back-projection methods. Also avail- form A. This requires estimation of a line spread function
able are Bayesian reconstruction methods that use Markov g, due to scattered indirect photon counts. This function
random field image models with isotropic priors (Besag, is not observed directly, and is modeled as a weighted dif-
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ference between observed line spread functions 9o for the and
ambient medium (air) and gm for denser media such as soft
tissue (mi = 1) or bone (m = 2). Figure 3 gives an illustra- Wo (D) = e-'D, c known

tive diagram. Weights wo and w, enter in the estimation of w, (D) = 'scatter fraction'
9 as functions of the number of observed photons and the = ' D 2e-yeD - ecD , 71,72 unknown.
unobserved proportion of these photons due to scatter (the
"scatter fraction"). Both of these weights depend on the The constant c depends on the attenuating medium as well
distances of events to the gamma camera. The line spread as on the tracer used, and can be obtained from known,
functions g0 and g, are modeled under suitable parametric available sources.
assumptions (eg. double exponential, Gaussian). The line Thus the line spread functions are assumed to be Gauss-
spread functions do not need to be assumed members of any ian ridges with depth-dependent variances. The estimated
parametric family of curves, however. The standard devia- depth-dependent standard deviations are set equal to their
tions a0 and os are modeled as linear functions of distance. expectations, in standard method of moments fashion, and
These functions are used to obtain interpolated values of assumed to be linear functions of distance, i.e.
line spread functions at all distances. The scatter fraction E (a0) =0 a0 +/O0d
has been shown to be as high as 30-40% of the total at cer- E1+
tain sites, for instance in regions of 8-10cm internal depth E(a 5 ) = 0.,= a3 +/D.
(Penny, et al., 1990; Geman et al., 1991). It is this high A generalization of this approach, if the problem's com-
fraction of scattered photons that seems to account for much A geezto of t o f the prolestm-of te iteral burrng f SPCT mags, athogh uch plexity required, would be to use the method of estimating
of the internal blurring of SPECT images, although much functions (Godambe, 1960) or the related generalized esti-
is still unknown about this property in general biomedical mating equations method (Liang and Zeger, 1986). In our
contexts. approach, the coefficients in (1) are estimated by the method

Figure 3. of ordinary least squares. The task is then to determine
which regions in a particular SPECT image correspond to
the different media. This can be done either by estimating an

S(Y, Gs WO W) additional unknown vector of pixel labels, greatly increasing
m

the dimensionality of the problem, or through labelling eachpixel using a map derived from a concurrent MR scan and

g0 0 a working registration of the two images by matching sus-
pected skull boundaries. A more automatic method for this

g( O) second approach would be to use global ellipses (eg. Alpert
et al., 1990) as approximations to skull boundaries, or to
represent irregular boundaries by a modified Fourier series
(eg. Zahn and Roskies, 1972). In our present case, we la-
beled pixels in different regions by using crude ellipses, the
approximate shape of the hot ring of the scalp.

Estimation for uniform attenuation and scatter requires
performing two phantom experiments, one through the am- 4. Serial SPECT registration by
bient medium alone (air) and one through medium ? = I deformable templates
alone (which we chose as water). Let B denote the number
of detector bins "off" of the center as the random variable We have chosen to focus our efforts at finding common
of interest, D the distance through the attenuating medium, and useful frames of references for serial SPECT scans
and d (= D + constant) the total distance from the from by further development of the pixel-by-pixel method of
the point source to the gamma camera. Geman, Manbeck registration by deformable templates (Amit et al., 1991).
and McClure (1991) model the line spread functions as This is a local method by which one obtains a deformation

map that connects each pixel in one picture into its mate in
another picture through minimization of a global goodness-

gx (bjd, D) =to(D)g0o(bid) + w~ (D)tl, (bfD) of-fit criterion, while maintaining smoothness constraints in
some cases.

with Denoting each pixel location by coordinates x, the

9o (bid) ,-.A' (b. n2 (d)) method of deformable templates assumes that a SPECT im-
S((age It for a particular patient at a particular time t over.g, (bjD) A'. (b, ,.,., < )))
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Table 1. Results of the phantom experiments. Estimates are reported in centimeters.

Thallium-201 99mTcHMPAO

Standard deviation intercept (a) slope (0) intercept (a) slope (0)

air ( o) 1.49 .005 1.46 .033

scatter (o,) 2.53 .037 2.33 .260

scatter fraction
(7 1, 72,c) in cm - 1  (.095, 1.15, .194) (.012, 1.0, .150)

a domain S is a deformation of an earlier image It,, the next, quantification of such suspected changes in tumor size
template, taken for this same patient. One determines the (eg. edge, area and/or volume), as well as quantification
deformation map of It, into It by finding values of coeffi- of suspected changes in tumor shape, would be affected
cients ,-.. ., p for which the integrated squared distance strongly by artifacts induced by the filtered back-projection
between images, reconstructions, and not highly reliable.

J (X)-It,(X+E Gsop(X) dx ,t' <t, (2) 5.1. Sharpening
XES

SPECT machine-specific parameter estimates from the phan-
is a minimum. In (2), the functions p. , p are orthonor- tom experiments are shown in Table 1. Note the higher
mal basis functions such the Fourier basis or the "wavelet" variability and scatter fraction in the weaker Thallium-201
basis (eg. Mallat, 1987). Minimization of (2) is done by gra- scans.
dient descent. As discussed by Amit et al. (1991), the prior Figure 5 shows the result of applying the Bayesian
distribution on the set of possible mappings from It, into image reconstruction model described in §2 with an A
It is taken as multivariate Gaussian and concentrated near

p matrix that accommodates corrections for attenuation and
the identity map, where E p ,p (x) = 0. If desired, one scatter, obtained from the phantom experiment results shown

p=c in Table 1. Reconstruction artifacts appear greatly reduced
may include a regularization term in (2) that penalizes non-
smooth mappings. Note that no landmarks are required by and areas of tumor activity more localized.
this method, making it much less operator-assisted and sub-
jective, and more automated and objectively verifable than
many existing registration methods. It is not yet known to
what extent the neformable template method can be com-plemented by landmark-based methods. Figure 6 shows an application of the deformable templatemethod described in §3 to some filtered back-projection re-
5. Some initial results constructions (not included in Figure 4). It would have been

preferable to apply this method to the sharper reconstruc-

Figure 4 shows transverse Thallium-201 SPECT slices for tions, but this was not possible by the time of this writing.

a single patient at two different times, both post-surgery, The upper lefthand frame of Figure 6 is the "template" I,.
spacd aout wo onth aprt.Recostrctio wa by The lower righthand frame is the observed deformation Itspaced about two months apart. Reconstruction was by

commerically available filtered back-projection with Chang later in time. The upper righthand frame is the pixel-by-attenuation correction. The images are arranged in three pixel difference between the observed images. The lower
attenato coecon. The imas rceaed i authr lefthand frame is the estimated deformation of I, into It.
rows and two columns. The rows proceed from about ear Thmatohergtivsaecrfrechpxldi

leve toard he op f th hed, ad ae a rouhlythe The map to the right gives a vector for each pixel indi-
level toward the top of the head, and are at roughly the cating the direction and distance each has moved from the
same level across columns. The first column is for the first template image to its deformation. Note a general outward
scan, the second column for the subsequent scan. The hot mvmn rmassetdtmrcne.Hwvr rmovement from a suspected tumor center. However, ar-
ring in each is due to the uptake of Thallium-201 in the tifacts in the filtered back-projection reconstructions seem
scalp. The hot spots in areas interior to the ring indicate
active tumor. Although one may be able, by the eye, to deformation map.
infer that the tumor has grown from one occasion to the
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6. Summary Chang, L. T (1978). A method for attenuation correction
in radionuclide computed tomography. IEEE Transac-

We have found in our initial experiments that for our por- tions on Nuclear Science, NS-25, 638-643.
blem the use of several imaging modalities is essential in Chow, Y., Grenander, U. and Keenan, D. M (1988).
order to obtain results and image interpretations that are HANDS: A pattern theoretic study of biological shape.
clinically reliable, We have found in addition that correc- Technical report, Division of Applied Mathematics,
tions for rigid-body motions (translation, rotation, scale) Brown University.
when comparing different scans are also mandatory. When
a goal is to obtain reliable, verifiable and repeatable SPECT Diggle, P. J., Lange, N. and Beneg, F. M. (1991). Analysis

image summary measures, we question the use of filtered of variance for replicated spatial point patterns in clini-

back-projection reconstructions of the low-energy Thallium- cal neuroanatomy. To appear, Journal of the American

201 scans for pediatric brain tumors. Corrections for non- Statistical Association (September).

uniform photon attenuation and scatter are eseential. We Gelfand, A. E. and Smith, A. F. M. (1990). Sampling based
have demonstrated that objective, Bayesian image restora- approaches to calculating marginal densities. Journal
tion methods can yield results that are relatively artefact- of the American Statistical Association, 85, 398-409.
free. More work need to be done with the application of Geman, S. and McClure, D. E. (1987). Statistical methods
the deformable template method in our context, in particular for tomographic image reconstruction. Bulletin of the
with the sharpened iamges. Objective and verifiable pixel- International Statistical Institute, 52, 5-21.
by-pixel characterizations of tumor changes over time do Geman, S. and McClure, D. E. (1985). Bayesian image
appear feasible, however. External, historical atlases may analysis: An application to single photon emission to-
help in normal tissue typing and exclusion tasks. One of mography. In Proceedings of the Statistical Computing
the next steps in our research will be to try out some semi- moA mrin Stais oeatisia 12 pu8.
automatic edge extraction methods on the sharpened SPECT Section, American Statistical Association, 12-18.
images, such as the graduated non-convexity algorithm pro- Geman, S. and Geman, D. (1984). Stochastic relaxation,
posed by Blake and Zisserman (1987), which is programmed Gibbs distributions and the Bayesian restoration of im-
and available. ages. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 6, 721-741.
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Figure 4. Filtered back-projection reconstructions of transverse Thallium-201 SPECT slices for a single pediatric patient. Rows proceed
from about midsection of the brain toward the top of the head. The first column is at the first scan, the second column at the second
scan about two months later. The rings are due to tracer uptake in the scalp. Uptake areas interior to the rings indicate active tumor.
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Figure 5. Several filtered back-projection reconstructions (above), with their Bayesian, Markov random

field reconstructions with corrections for attenuation and scatter from the phantom experiments (below).

Figure 6. Results of an initial pixel-by-pixel registration of a selected regions of filtered back-projection scans
by the deformable template method. Frames to the left: upper lefthand: the "template" I ,; lower righthand frame:

the observed deformation I later in time; upper righthand; the pixel-wise difference between the observed images;

lower lefthand frame: the estimated deformation of I,, into I. The estimated pixel-by-pixel map is shown on the right.

" :-:. 22 . 1 "
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Abstract hand is given in Section 4. Thus our approach to mod-
elling shapes differs from other approaches (eg. Goodall,

We discuss several models for shapes in the plane based 1991, Bookstein, 1986, Kendall, 1984, Kent, 1991, Mar-
on the distributions of landmarks about an underly- dia & Dryden, 1989) in which location, scale and rotation
ing template. The motivation for these models includes effects are incorporated directly into the models.
Markov random fields and thin plate splines. These mod- The observed digital image includes information about
els are used as priors in a Bayesian framework to recon- the given shape, together with observational errors. One
struct a shape from a digital image. An example is given possible model is
based on the human hand.

Yt = V1 + C1 if t E D

1 Introduction
Yt = v2 + C1 if I e D (1.1)

In this paper we shall discuss methods to pick out a
shape from a two-dimensional digital image. The shape where yj E R denotes the 'grey-level' in the jth pixel
is assumed to be a deformation of some underlying shape and t = (t 1, t 2) labels the pixels in an L1 x L2 grid. In
or 'template', and the image is also subject to observa- the simplest version of the model we suppose the cl are
tional noise. We represent points in the plane as complex independent N(O, o,,) random variables. The mean levels
numbers. We shall focus attention on the case where the V1 and P2 indicate the difference between the shape and
shape can be described as a simply connected domain the background. Thus, given V the model for y= {yt}
D C C whose boundary consists of piecewise linear path has pdf
connecting vertices zo, zi, ..., z. E C with zo = z,,. Let
V = {zj }, termed the 'outline' of the shape, denote the P(yIV) o exp- 1
set of vertices. Similarly, let V0 = {fi} say, denote the eE{20 D 1 +qr

outline of the underlying template. tEo tJo (1.2)
The deformation from V to V consists of two types of If we let P(V) denote the prior probability density of

transformations. The first type of transformation con- V under a deformable template model then by Bayes
sists of global linear changes such as (a) location, (b) theorem
scale, (c) rotation and possibly (d) a more general linear
transforma':on of the plane. The second type of trans- P(ylV)P(V) (1.3)
formation consists of local changes to the outline. In
this paper we shall discuss various probability models is proportional to the posterior density of V given the
for the local change to the outline (including the loca- data. We seek an estimate of V to maximise (1.3) This
tion change). Thus we will get a probability distribution estimate is known as the MAP or 'maximum a posteriori'
P(V) on the outline of our shape, centred at the under- estimate.
lying template V0. Some possible models are given in The main focus in this paper is on suitable models for
Sections 2-3. P(V) which we explore in Sections 2-3. To some extent

For other aspects of the deformation, such as scale our paper is a review of models proposed by previous
and rotation changes we shall use ad hoc fitting pro- authors, but we also bring out some unifying themes
cedures. An example involving the reconstruction of a behind the models together with some new results.
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2 Complex normal models on model. Equivalently we require A to be cyclic tridiago-

outlines nal. The conditional distribution of zj given the rest of
the points {zk : k # j} is complex normal with first two

Suppose (Re z1, Im z1,. . ., Re z,, Im zn)' = r say, fol- moments

lows a 2n-dimensional (real) normal distribution with E[zjlrest] = ajzj-l+gjzj+l
mean (Re pl,Im pa,...,Re p,,Im a,,) and 2n x 2n
covariance matrix 0i say. Typically Al will be small var[zilrestj = r? (2.1)
so that the distribution of the observed set of land- (

marks V = {zj} will not be too far from the template say, where cij,I 3j E C, aj/ir = /3j_i/r_,, and
Vo = {pj}. For simplicity we shall suppose that fl pos- aj + 3ij = 1, j=l,...,n. In terms of the elements
sesses complex symmetry. That is if we write Al = (fljk) of A,
in terms of 2 x 2 blocks f1k, j, k = 1,..., n, then

,= 1/ a, = -/?, aj j+1 = -fl/r? (2.2)
S= i cosOjk Here and elsewhere we interpret the subscripts mod n.Remember that the parameters must be chosen so that

for some aik = akj _> 0 and angle Ojk = -Okj E [0, 2r). A is positive semi-definite of rank n-1.
In particular Ojj = 0. We can also represent fl as an The simplest version of this model is obtained when
n x n complex matrix E with o'j = a3 keXp(iOik). Then r? = r 2 say, does not depend on j and aj = Oj = 1/2
r'flr = z* z where r' denotes the transpose of r and for all j.
z* = i' denotes the transpose of the complex conjugate
of z. 2.2 The CAR transformation model on

Complex symmetry is often too restictive an assump-
tion to lead to good models for outline data (see eg. the edges
figures in Goodall,1991; Dryden & Mardia,1991). How- Let ej = zi - zj-l, 71j = pi - Pj-, j=l,...,n, de-
ever, since it may not be essential to specify the prior dis- note the edges between successive vertices in the ran-
tribution P(V) very precisely, the assumptions of com- dom outlines and the template, respectively. Note that
plex symmetry may be adequate. In any case the models E ej = E Z /j = 0. Write
here can be generalised to the non-complex-symmetric
case at the expense of extra notation and additional pa- ei = (1 + tj)%, tj E C. (2.3)
rameters.

The simplest general model for the vertices z = Then tj measures the extent to which ej differs from tern-
(z 1 ,..., z,)' about p = (Mi,...,p,)' is a multivariate plate edge r/j. Chow et al (1988) proposed a conditional
complex normal model cyclic-stationary first-order CAR model for t,...,tn,

1 conditioning on E tj /j = 0.
1(z) oc ezp{--(z-p)*A(z -p)}. In its unconditional form the CAR model for the {tj}

p -can be written in the form

where the inverse covariance matrix A is Hermitian. It
is simplest to suppose that A is positive semi-definite of E[tj rest] = -(b/0)tj- 1 - (b/ 3)j+i'
rank n-i, with Al = 0 so that the distribution of z is
improper. Here 1 = (1,1,..., 1)' and 0 = (0,0,...,0)'. var[tO.rest] = l//3, (2.4)
Thus f(z) = f(z+al) for any a E C. The reason for this where fi > 0 and 6 E C. Thus the (unconditional) pdf of
choice is that we are not usually interested in location t1 ,..., t, is proportional to
differences when judging the similarity of a given outline
z to the template p. exp{- 1[)3 E Itj 2 + 6 E Ijtj+I + 6E tjij+1 }

Without further restriction the matrix A contains too 2
many parameters to represent a useful model. Therefore 1
it is of interest to look at some special cases. =ezp{- 2 [' Zt, 2 + 2Re(6 E i.tj+,)] } . (2.5)

2.1 The vertex CAR model The sums here range over j = 1,..., n and subscripts are
to be interpreted mod n. A sufficient condition to ensure

Following Besag (1974) the simplest model for the ver- that the covariance matrix of the {tj } is positive definite
tices is a first-order conditional autoregressive (CAR) is 161//3 < 1/2. After conditioning, the distribution of
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(t,..., nt,) is no longer a CAR, though it is still complex et al (1991). Defining tl,..., t, as in (2.3), they model
normal. (tl .... ,tn) as a multivariate complex normal distribu-

A multivariate complex normal distribution on tion with circulant Toeplitz covariance matrix B, say,
t, . .. ,t,, induces a multivariate normal distribution on conditional on 'tjej = 0. That is, B = (bjk) has en-
the edges e1,...,e,. Further if we allow the location tries bi, = aj-k, say, where aj-k = dk-j. Here as
of the vertices zl,..., zn, (as measured by the centroid, elsewhere subscripts are to be interpreted mod n. The
say) to have an improper uniform distribution over C eigenvectors of B are
(note the location of the outline is not determined by 1
the edges), then we can transform the above distribu- gk= -[ep(-2rijk/n),j = 1,...,n]'
tion on edges to give ait improper multivariate complex n
normal distribution on the vertices zl,. .. , zn. for j = 1, ... , n with eigenvalues

Write wi = zj -puj. After a little algebra it follows that
the distribution of (zl,..., zn) is an improper second-

order CAR with Ak =J ajep(-2rijk/n),

E[wjlrest] = i?{3(i?1-2Wjl + J j+ll-2W +) j=1

k = 1,...,n. The eigenvalues, assumed to be non-
_b707j _ 1j )- 2 11-2(03j-- Wj-2) negative, are not necessarily in any monotone order.

Let G be the (n x n) unitary matrix with columns gk,
+b77j+l71 + 2 I?1+l-177j +2 -2 (j+ 2 - Wj+l) and set

-lr7j-217j+11- 2(Sr'jfj+1Wj+l + brt+qjWj..-)}, (2.6) s = G't

var[wIjrest] = ? to be the vector of principal components. The constraint
Etj ej = 0 takes an appealing form in terms of principal

where components,

= {#(11- + I.+2 2) j(e 2 Wi/n - e2vi( j - 1)/n) - [1 - e- 2vi/n] tje21ri j / n

S+ +1) 1  (27) = n[1 - e-2ri/n]S = 0,

An important special case occurs when the template that is, s, = 0. Miller el al (1991) suggest estimating
vertices form a regular polygon, i.e. pj = ezp(2ij/n). the parameters in B by using a training sample of m
In this case outlines. Equivalently, after rotating the principal com-

E[wj lrest] - r2 a - 112{(1p - 26a)wj_ . ponents for each outline, one can estimate the eigenvalue
Ak by (2m)-' times the sum of squared absolute values

+P - 2ia)Wj+ + 6baj2 + 6 &Wj+2}, of the kth principal component in the training sample.
(2.8) Further, since each outline in the training sample will

var[wjIrest] = r 2, satisfy the constraint ul = 0, we will always estimate

where A, = 0.
Miller et al (1991) also suggest a modification to

2 la-112(p-Re ba) - ', and a = exp(2ri/n). (2.9) this model in which the real and imaginary parts of
2 (ti, . . .,tn) are modelled independently using separate

circulant Toeplitz matrices (with real entries). However
2.3 A Covariance Model this modification lacks the appealing rotational invari-

The above models are useful when landmarks can be ance of the original model. Note that the CAR in (2.8)

consistently identified on the template and the observed and (2.9) is a special case of this model.

outline. However, in some examples, eg. an outline of
a biological cell, there are no identifiable features and 3 Continuous deformable tern-
the n landmarks might be defined to be equally-spaced plate models - thin
(in terms of arc length) around the outline of the object. plate
In this case it is reasonable to take the template to be splines
a regular n-sided polygon, with pj = exp(2rij/n), and
to model the variety of possible shapes using a circu- Another way to model the transformation between the
lant Toeplitz covariance matrix, as proposed by Miller template and the realised outline is to fit a deformation
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of C, that is a continuous transformation z 1--4 w(z), from Partition
C to C. The most common such model is the thin-plate
spline (Bookstein,1989). The purpose of this section is 1
to explore some of the algebraic aspects of this method. A =( E S= X0  T (3.5)

For this section let zj = (zj + iyj), j = 1,..., n denote
the landmarks in the template (denoted by pj before) YO
and wj = uj + ivj, the transformed landmarks (denoted where the matrix E depends only on the data Z1 , z ,
by zj before). The output of the thin-plate spline al- but the vector 6 (n x 1) also depends on the coordinates
gorithm is a function w C --. C, t(z) = u(z) + iv(z), of the new point zo.
satisfying w(zj) = wj,) = 1,..., n. With a suitable choice of c1, c 2 , c3, c 4 we can ensure

One way to calculate the thin-plate spline is through that E is positive definite. Then using Lagrange multi-
kriging, which we now briefly describe. The functions pliers it is straightforward to show that the choice of Cr
u(z) and v(z) are fitted separately as follows. Consider minimising (3.2) is
the function

,(Z)= Izl2logIzI 2 + c, + C2z 2 + c3y 2 + c4 Xy (3.1)

where z = x+ iy and C1 , c2, c3 , C4 are arbitrary constants. -E-1T'(T -lT')- [1, z0, yol' (3.6)
(We shall see below that the choice of c1 , c2, c3 , c 4 has no so that
effect on the final solution).

Let z0 = zo + iyo be a new point at which we wish u(zo) = u'B6 - ' tO , (3.7)
to define u(zo). (In this section subscripts are not to be y0
interpreted mod n; z0 should not be identified with Zn ). say. Here I = (TE-1T')-TE-1u is the generalised
The kriging approach says to take u(z) = a'u where a least square regression coefficient of uj on (1, zj, yj), j =
(depending on zo) is chosen to minimise 1,.. ., n and t'(1, xo, yo)' is the generalised least squares

#'Aft subject to S,6 = 0 (3.2) predictor at the new point z0 . It can also be checked that
the value of f does not depend on C1 , c2, c3 , c4 above.

where i = (-1,a')' is an (n + 1)-vector, A is an Also, in (3.7),
(n + 1) x (n + 1) matrix with entries B = - _ i-IT(PE-I)-iTE-. (3.8)

ajk = a(z, - Zk) (3.3)
If we let P = T'(TT')- 1 T denote the orthogonal projec-

and S is a 3 x (n + 1) matrix, tion matrix in 3n onto the columns of T' (so PT' = T'),
I 1 .. 1 (3) then it is not difficult to show that

S X0 XB ... X . B = [(I - P)E(I - F)]- (3.9)Yo Y1 ... Yn

The matrix A is conditionally positive definite; that is where [] denotes the Moore-Penrose generalized in-

3'Aft > 0 if 6 0 0 and SO = 0 (Matheron, 1972). Fur- verse. Further B- = (I - P)E(I - P). Note that the
ther> it is easily checke tha f S p = 0 then,#7eigenvectors of B- (corresponding to the non-zero eigen-
therot ispeasilyhee atu f , C2, 03 te f does values) are all orthogonal to the columns of T'. Hence
not depend on the values of c1 , C2, c3, c4 above, the matrix B- (and therefore B) does not depend on

The motivation for the criteria (3.2) comes from the the arirary choi e fo B) de not de o
theoy o firt-oder ntrnsi ranom ield. Tere the arbitrary choice Of C1, C2; C3, C4.

theory of first-order intrinsic random fields. There The quantity u'Bu is identified (see, for example,
exists a real-valued intrinsic random field {X(z) : Wahba, 1990, p33) as being proportional to the bend-

z E C) such that whenever S,6 = 0, the increment Wha 90 3)a en rprinlt h ed
,[z0), - -} su, t~zn)h " when 0, d vaincren fl' ing energy of the transformation z - u(z). It is also
Fur , if # , aX(z')]' ha mean 0 and variance /IA/. easily checked that B = BEB and B = B(I - P). The
Further, if/= (-I, a')', then thin-plate spline for v(z) proceeds similarly.

var{ff[X(zo),... ,X(zn)]'} Hence, given an underlying template of landmarks
-1 .... , z,,, it is natural to model the deformed landmarks

- E{X(zo) - a'[X(z), X(z,,)]'} 2  W,.. ., w, (wj = uj + ivj) using a complex normal dis-

represents the prediction mean squared error of the ran- tribution based on the bending energy,
dom field at the new site zo in terms of a linear combi- 1
nation of its values at the existing sites z,...,Z. P({w)oc exp-- + v'Bv]}
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or, P(w) exp{ wBw (3.10) Further, small rotations of the template are exam-
S(30) ined to improve the fit, using the matching coeffi-

where r 2 is a scale parameter. This density is improper cient
since B has rank n - 3 and further all linear transforma- +
tions of wl,..., wn have the same density. = XtftI/{ -(x1 + ft - ze e)}. (4.2)

It would be interesting to apply this model in the anal-
ysis of images. Other than the scale constant r2 it con- 3. We now make use of the shape model of section 2.2
tains no parameters to choose, once z1 , .. ., zn are given, in an approximate ICM algorithm (see Besag,1986).
One choice of zl,. . ., z, is to take these as vertices of We cycle through the vertices z, one at a time and
a regular polygon. Then B simplifies somewhat since using a grid search consider updates of zi to max-
E-1 is circulant Toeplitz as in the model of section 2.3 imise the posterior density (1.3). These cycles are
above. Further a similar construction can be carried out iterated until convergence. In our example 4 cycles
in dimensions other than 2. usually sufficed, reducing the grid size from 9 x 9 pix-

els down to 3 x 3 pixels as we progressed through

4 Hand Reconstruction the cycles.

Several features in our reconstruction algorithm are
We now consider an example of shape reconstruction for worth emphasising.
the human hand using the model (1.1) for observation (a) The initial reconstruction (Stages 1 and 2) has a
noise and the edge model of section 2.2 for the prior very important effect on the quality of the final recon-
distribution of the shape. The hand in the image is a struction. (b) The number and location of the vertices is
real human hand and the template is formed from the important. At the very least, to represent a hand we re-
average of 8 real hands. The data were provided by Dan quire the tips of the fingers and the lowast points between
Keenan. Our example is motivated by Chow et al (1988). them and points at the wrist. However, our experiments

The shape model of section 2.2 contains two parame- indicate that these alone are not nearly enough, and typ-
ters 6 E C andf/ > 0. In our experiments we have limited ically we take a template with 51 vertices as in Figure
consideration to 6 real. We have reparameterised 6 and l(a). In total there are 256 points on the template, and
/3 in terms of A and a 2 where the intermediate points are updated by interpolation. It

is also important not to have too many vertices. Be-
A = {/3-.(/2 -462)1/2j/26, o2 = (fl2 -46 2)- 1/2, (4.1) cause our updating algorithm changes only one vertex

because they have more intuitive interpretations as the at a time, it can get stuck in an unsuitable local opti-

usual first-order autocorrelation and the marginal vari- mu. Simulated annealing offers another way to cope
with this difficulty, but at increased computational cost.

process from time series. (c) We have also imposed a 'hard-core' restriction to pre-
proc stfr ctie ser cn bvent vertices getting too close together, eg. bunching up
Our reconstruction procedure can be conveniently na h iso h igr.I u xeiet m

splitinto3 stges.near the tips of the fingers. In our experiments a min-
split into 3 stages. imum distance of 3 pixels between vertices was found

1. First we want to find the appropriate location and useful. Bunching is generally a problem only when the

orientation of the hand in the image, using a variant noise is high.

of thresholding. Our approach has been to use the Figure 1 shows the results of our algorithm on a 256 x

alternating mean thresholding and median filter- 256 image. In (b) we have the true image, to which

ing (AMT-MF) approach of Mardia and Hainsworth N(0, ) noise, , 4, has been added, (c). Here v1 =

(1988) to obtain a binary image. Setting j = 1 in- 1, V2 = 0. Naive thresholding at (vi + v2)/2 would

side the largest connected component and it = 0 give an error rate of 40 %. In (d) we have the effect of

elstwhere gives an initial reconstruction. Here t = applying AMT-MF and (e) gives its largest components.

(V1 , t 2) labels the pixels of the image. In (f) we have the final reconstruction after 4 iterations
of Stage 3, with parameters A = 0.5, a = 0.2. The pixel

2. Given a similar binary image { z} for the interior of by pixel error rate is under 2 %.
the template hand, and treating Ias a (2x 1) column Stage 1 does not assume any knowledge of l and V2.
vector 1, construct an affine map Al + b so that the For comparison we tried Stage 3 assuming vi and V2

first two moments of {Al + b : xj = 1) match the known (yielding a matching coefficient of V = 0.83 and
first two moments of {I : it = 1}. Thir,1 moments displayed in Figure l(f) ) and with vi and v2 estimated
are used to resolve any orientation ambiguities. from Stage 1 and used in Stage 3 (yielding V = 0.81 ).
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Thus knowing v, and V2 leads to only a slight improve- Bruce, V. (1988) Recognising Faces. London, Lawrence
ment in the reconstruction. The ratio a.2/U 2 is treated Erlbaum Associates.
as known and has been chosen by trial and error. Figure Chow, Y., Grenander, U. & Keenan, DM. (1988)
2 shows our initial global matching afer Stage 2. HANDS: A pattern theoretic study of biological

shapes. Div. of Applied Maths, Brown Univ.
Craw, I. & Tock,D. (1991) The computer understanding

5 Other Work of faces. Processing images of faces. Ed. V. Bruce &
M. Burton. Ablex.

For a review of other methods of deformable templates, Dryden, I.L. & Mardia, K.V. (1991) General shape dis-
see Lipson to al(1990). Amit et al(1991) describe pixel- tributions in the plane. Adv. Appl. Prob. To appear.
based approach to fitting a deformation of C. A de- Goodall, C. (1991) Procrustes methods in the statistical
scription of the difficulties involved in three-dimensional analysis of shape. J. R. Statist. Soc. B 53 285-339.
problems is given by Grenander and Keenan (1989). Grenander, U. & Keenan, D.M. (1989) Towards auto-
Models for curvilinear shapes such as letters of the al- mated image understanding. Special issue, Ed. K. V.
phabet are discussed by Manbeck el al (1991). They Mardia. J. Appl. Stats. 16 207-221.
use a second-order SAR, but note that the CAR model Kendall, D.G. (1984) Shape-manifolds, procrustean met-
in (2.6) and (2.7), this time with boundary conditions, rics and complex projective spaces. Bull. Lond. Math.
again provides a useful model. Soc. 16 81-121.

Face recognition is an interesting application area for Kent, J.T. (1991) The complex Bingham distribution
shape identification (cf. Bruce,1988, Craw & Tock,1991). and shape analysis. Dept. of Statistics, Leeds Univ.
Here there are nesting constraints. For example, pupils Lipson, P., Yuille, A.L., O'Keeffe, D., Cavanaugh, J.,
are nested within eyes, teeth within lips, eyes and lips Taaffe, J. & Rosenthal, D. (1990) Deformable tem-
within the head, etc. plates for feature extraction from medical images.

To sum up, the area of shape reconstruction poses Computer Vision - EECV 90. Ed. 0. Faugeras,
many interesting statistical problems. Springer-Verlag, Berlin.
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(Y 92-19665u Discussion: 92-19665

N Multivariate Statisncs
Cand Visualization
C D of Labelled Point Data

I Fred L. Booksteino -~ University of Michigan
Ann Arbor, Michigan 48109

In this brief Discussion I would like to weave needed for carrying out some steps in this search in
together the key words and phrases from the title a manner requiring the least attention, the least
of this session: "multivariate statistics," "labelled interaction, or the greatest degree of automation.
point data," and "visualization." Their interplay Let us be a bit more formal. The data under
underlies a useful duality of approaches to many discussion are, in general, vectors at each point of a
problems of data analysis in a domain of growing domain organized on Euclidean principles-
practical importance: statistics of image data. multicolored pixels or voxels or air samples out in

the woods. Think of these as a spectrum of scalars

Data from images on a surface drawn or interpolated "above" each
point of the domain. Such pictures can be very

The problems I have in mind originate in beautiful, but we shall ignore that distraction. We

data that are already visualized. The source of pursue the alternative visualizations to arrive at

information might be a medical image, perhaps, scientific understanding, not necessarily further

indicating a physical property (some sort of pretty pictures. The Cartesian product of picture

interaction with radiation) within each of a grid of plane or grid or space by the length of the vector of

little volumes inside a region of tissue. Or it might observation is occasionally augmented by another
be a geological survey, showing physical or Cartesian factor corresponding to replication (e.g.,

electromagnetic properties near each of a vastly over time); ordinarily, but not always, this factor

sparser grid of points on the surface of the earth can be folded into the length of the vector content.
(or in a solid chunk of its interior); or a weather
map, indicpting physical properties of the air Vertical and horizontal
(composition, temperature, suspensates, velocity)
near a still sparser grid of points in the three- A conventional multivariate analysis will
dimensional atmosphere. In a great variety of usually deal with aspects of this surface in a
scientific contexts, our concern is to investigate manner that ignores the prior geometric ordering.
aspects of this sort of data many sets at a time: a The usual multivariate formalism proffers only one
heap of synoptic weather maps, a span of eons of quadratic form, representing the variance-
continental drift, or a sample of biological or covariance matrix; perhaps there is also a custom-
biomedical histories. That is, we wish a synthetic designed "error covariance matrix" incorporating
image concentrating certain features of particular information about adjacencies. Otherwise the
interest drawn from the context of rather dilute geometric origin of the index set of variables is
information that is each original brain scan, or nowhere in evidence. Let us call that kind of
survey, or weather map. To emphasize this task of statistics "vertical." There is always additional
comparison rather than the pursuit of arbitrary information, then, in the horizontal part of this
detail is to ask a different sort of question than that imagined figure-the information about where the
the original visualization was designed to answer. labelled locations of the ground plane actually lie,
The goal now is to retrieve not what is unique to and how their locations covary with height(s) of the
each instance but what is common to all, what is surface(s) above them. This horizontal part is what
most variable among them, what typically covaries we primates are used to processing. It is borne on
with exogenous causes or effects, etc. Tools are the nonlinear world of the retina, rich in alternate
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visualizations of pattern and color, of depth and of labelled points which, being geographical sites, are
motion, of prey and of predators, of swinging from in fact invariable in position. This relation between
limb to limb or leg to leg. The conventional two distances is visualized as if it were a
multivariate approach ignores the evolutionary deformation of the map, the "rubber sheet" that is
history of the organism that has brought forth our most familiar imagery for changing distance
statisticians. The single visualization of abstract measures. In this way Sampson reduces "vertical"
linear vector spaces hardly deserves the name of covariation to "horizontal" visualization. Tn this
"visualization" at all. Whenever data is originally synthetic horizontal structure, the principal
visual, and especially if it is originally gridded, the components that would be lengthy vectors of
linear machinery must be supplemented, if not coefficients point by point in the "vertical" analysis
wholly supplanted, by a semantics of pushes and become, instead, extended curves at 90 0 -the
pulls, of motion and deformation. biorthogonal grid of the horizontal analysis. That

Matters are easiest if we restrict ourselves, is, we have turned the relation between a vertical
in accord with the title of the present session, to covariance matrix and a horizontal geometric
labelled points in this horizontal dimension, points distance matrix into a single visual entity, a
that have specific names corresponding from horizontal symmetric tensor field, graphed using a
instance to instance of the image. Note that it is pair of directions at every point.
the points of the ground plane (or ground space, in The other two lectures, Lange's and
the 3-d applications) that are labelled, not the Mardia's, may be thought of as treating strategies
points of the imaginary "surfaces" of data floating for understanding the interplay of "vertical" and
above them. These labels can be fixed n-uples, like "horizontal" analyses of the same "three-
map coordinates, or they can move about on a dimensional" topographic data. For instance, a
subordinate map of their own, like the bridge of horizontal analysis may be best if one wants to use
your nose as it locates your eyeglasses on your the geometry of the labelled image rather as one
profile. Labelled points, it turns out, support a uses a covariate in a classic experimental design.
feature space quite a bit more promising than that In this case it is as if the shape of the configuration
which is accessible in the general run of of labelled points-the very basis of the vector
multivariate problems. For instance, sets of space underlying the data-is effectively nuisance
labelled points have their own metrics, usually variation. "Controlling" this variation increases the
hugely transmogrified versions of ordinary precision with which other effects can be addressed.
interpoint distances or Cartesian coordinates, that That is, one analyzes vertically-examining the
complement the usual covariance-based metric of gradients of the picture, for instance, or its
multivariate observations. The labelled points can correlations with physical or biological processes-
move about in their Euclidean domain at the same after "unwarping" horizontally to a less blurry
time that images change above them, leading to feature space in which processes more nearly "stay
decompositions of the variance "at" a point that are put" to have their averaged picture taken
very interesting both scientifically and statistically. (Bookstein, 1991b). In multivariate language, we
One can ask. for instance, whether regions of the are projecting out a complicated nonlinear feature
cardiac wall that show abnormal changes of co-space. The experience of generations of
curvature, as indicated by the relative motion of anatomists has shown that this maneuver improves
the arterial bifurcations nearby, are the same the power of subsequent multivariate tactics, such
sectors as those showing anomalies of texture in an as discrimination or analysis of covariance. When
ultrasound scan. averaging pictures of brain activity over brains of

The three lectures in this session all deal different shape, for instance, the landmarks serve
with the relations between "vertical" and as guides to the correspondence of regions prior to
"horizontal" aspects of this sort of data, relations averaging. It is the landmarks, not the squares of
very conveniently filtered through the low the grid of a PET reconstruction, that represent the
dimensionality and immense graphical power of true coordinate system for valid biometric analyses.
labelled points. In the first lecture, Paul Sampson
and colleagues show a visualization of the relation Horizontal analyses
between the two distances, horizontal and vertical
(geometrical and statistical), for the same set of In other applications, this "horizontal"
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variation is not noise or nuisance, but itself a signal special theory of relativity; but Einstein was not a
in its own right. The labelled points support a very statistician in the sense we are using that word
powerful low-dimensional feature space, in effect a here.) Geometrically, this construction is called a

tangent space to Kendall's shape space (Bookstein, "Galilean metric." Space is measured in
1991; Goodall, 1991) in the vicinity of the mean centimeters, and time in seconds, and there is no

configuration of labelled points. With the aid of a absolute constant of conversion between them-no
convenient basis for the elements of this shape "speed-of-light" -but only diverse objects and their
space, this information may be concentrated into velocities, each of which is an empirical matter. In

linear features of its own. When the variables of the analogous context of images over labelled point
this block are paired with less 'delicately crafted data, there is a collection of distance measures for
descriptors of the original "vertical" scalar or vector landmark configurations and another collection of
content, there results a sort of hierarchical distance measures for multivariate distributions;
multiple-regression approach for prediction of other and the relation of these two sets of measures is
images, such as later images of the same system, purely an empirical matter, as encoded, for
and for the joint evocation of shape and content as instance, in a singular-value decomposition. The
a bispectral signal in a detection or classification peculiar advantage of labelled point data is the
problem, such as locating tumors or quantifying unexpected simplicity of its own statistical
their recession under treatment. For brain shape, structure. Many transformations that appear

for instance, the statistics of this "horizontal" space hopelessly nonlinear in terms of the multivariate
suggest some unwarpings that might be unusually space oriented "vertically" turn out to be linear, or
effective at unblurring the subsequent vertical nearly so, in aspects of the same space viewed and
average (Bookstein, 1991b). measured horizontally. There are, then. many

It turns out that visualization of vectors in more practicable and interesting directions of
the feature space of labelled point shape-that is, projection of these composite spaces than would be
shape changes in sets of landmarks-is at least as available in an ordinary problem having the same
easy as visualization of changes in surfaces above net count of degrees of freedom.
the planes or volumes tagged by those points. The Let us consider, for example, the difference
best visualizations are suggestive of the process between two kinds of analysis of relations among
explanations, the "bulges" and "shears" and pictures: "motion" and "deformation." For the case
"warps," that are automatically familiar to any of "motion," consider a one-dimensional picture,
sentient organism that ever navigated a binocular pixels in a line. Our task is to detect an extended
landscape. The combination of features of labelled point moving uniformly along this grid. Under the

point shape with features of the image "at the (physically reasonable) assumption of linear
average shape"-the careful separation of vertical motion, any such detection is a linear projection-
from horizontal variation in these mixed feature the averaging of values p(x-t)-in a direction of the
spaces, and the careful. specialized visualization of Cartesian product space (image pixels by
the horizontal-is, in my view, the most powerful replications) taking account of the speed v of the
generator available for good analyses of biometrical motion. Hence motion of a point can be detected by
images. a one-dimensional suite (varying ) of linear

operators applied to a higher-dimensional
Mixed analyses representation.

But consider, now, the problem of detecting
The freedom to combine a geometric metric deformation, like the reflection of your face in a

with the customary statistical one is unfamiliar to flawed mirror, or the growth of your child's face
most applied statisticians. An analogy from over time. The corresponding transformations of
physical science may be useful: this is precisely the feature space are not linear in the extent of
same freedom as is granted us by Newtonian deformation. As landmarks move over distances at
mechanics-the existence of absolute space, and greater than subpixel scale, the linearity of
absolute time, and hence an absolute scale of geometry in the underlying ground plane is
relative velocities in meters per second, independent converted into sharp turns in the linear space of
of all the other quantitative laws of physics. (It is vectors over pixels in which the conventional
this decoupling that is contravened by Einstein's multivariate statistics is mounted. The "same"
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tissue signal lies over weighted averages of pixels and the exterior of a labelled disk (the tumor
(pi,pi+ i), then (Pi+ I,Pi+2), etc. Each of these "boundary") separately, followed by vertical
segments makes an angle of 1350 with its comparisons of tumor texture, dissections of the
predecessor and successor, and angles of 900 with motion of arterial bifurcations, and so on.
all the other such segments in the linear space of To this diversity of metrics corresponds an
pixel-by-pixel content. Then as landmarks move equal diversity of notions of orthogonal projection.
over pixels, the resulting series of transformations The number of different ways in which features can
is far from a linear extension: in multivariate be measured or, alternatively, projected out out of
space, it makes a wrenching turn every time a these composite spaces, is thus fairly rich. One's
pixel boundary is crossed. Smoothing algorithms choice depends on the specific sort of pattern being
can lower the variance associated with these turns, sought in the data analysis, which is to say, on the
but they cannot evade the underlying geometric process governing the composite image (weather,
infelicity. Yet the averaging of biological images is Alzheimer's disease, continental drift). We can
made vastly more powerful when these nonlinear seek to describe the variation (in the labelling
transformations are executed first (Bookstein, plane) of the location of a "point" feature (vanishing
1991b). In practice, these techniques combine of a derivative) or instead the location of an "edge"
among themselves for analyses of motion over a (vanishing of a second derivative); or we may
deforming scene, such as when the flexing of a joint attempt instead to minimize the variation of
deforms surrounding tissues, or in the contraction location of these features so as to ease the study of
of a heart that is bouncing on its tether within the something else about the picture (for example, the
chest wall. texture of ventricular borders in Binswanger's

disease). One might extend the correspondence of
The variety of shape metrics labelled points to curves connecting them; there

results a tessellation of the plane into corresponding
The useful metrics for shape itself are regions suited for regional averages, coefficients of

perhaps unfamiliar. They include the Procrustes variation, etc. We can study wave-like phenomena
metric of minimal rms Euclidean distance (Goodall, either as the vertical motion of vectors at fixed
1991), the deficient metric of localized shape points or as the horizontal motion of nodes at
difference restricted to the space of residuals from extremal points, whichever corresponds better to
affine transformations (Bookstein, 1991), the the dynamics of the underlying morphogenetic
hyperbolic log-anisotropy metric for uniform shears process. We can attempt to measure the deviation
(ibid.), and others mixing shape information with of a spatial surface in between landmarks, in order
information about size. The available composites to study its regional fractal dimension or other
for combining information from the labelled points aspects of geometrical texture; or we can attempt
with information from the "surface" of the image to flatten this variation of height onto a map so as
are then far more intricate than those of to study autocorrelation of grey levels or thickness
Hamiltonian mechanics, with its geometrization of of surface layers in the true Gaussian surface
Newton's laws. The composite metrics apposite to metric. Either of these types of registration may
the understanding of sets of images can incorporate be used to generate sample means for purely
correlations of "height" and its spatial derivatives descriptive purposes or, alternatively, may be
with shape and its alternate metrics in endless turned to the investigation of group differences or
combinations (Bookstein, 1991a). Consider, for covariation with other aspects of the picture, with
instance, the problem of detecting growth in a brain causes, or with effects. We can correlate values, or
tumor. This is the correlation of one visual texture gradients, or the Hessian of the scalar load over a
to the interior of a disk under a barrel distortion, region with a Cartesian coordinate or with a tensor
and the correlation of another field of motion to the representing some aspect of the relation of the
exterior of the same disk, all as constrained (with labelling configuration to the mean, such as the
considerable real physical nonlinearity!) by the Jacobian of the implied deformation. And Ro on,
bony margin of the braincase. The resulting through many other possibilities, whether in one
"metric" has no easy illustration other than the dimension or in a higher space.
very picture of the mixed analysis we would
thereby be operationalizing-warping of the interior
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Exploring Posterior Distributions Using Markov Chains
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Abstract samples methods for viewing point clouds, such as ro-
tating plots and Grand Tours, can be used to examine

Several Markov chain-based methods are available for the joint uncertainty about three or more components or
sampling from a posterior distribution. Two important features of 0.
examples are the Gibbs sampler and the Metropolis al- A number of different sampling methods are available.
gorithm. In addition, several strategies are available In rare cases it is possible to sample directly from the
for constructing hybrid algorithms. This paper outlines posterior distribution and thus obtain an i.i.d. sample
some of the strategies that are available, and discusses from 7r. In most problems this is not possible. Either
some theoretical and practical issues in the use of these the sample has to be dependent, or the distribution used
strategies. In addition, some preliminary efforts to use to generate the sample has to be different from 7r. A
Markov chains to control dynamic graphics for exploring method that uses independent samples from a distribu-
higher-dimensional posterior distributions are outlined. tion similar to 7r is importance sampling. The sample is

then weighted to make up for the difference between r

1 Introduction and the distribution used to generate the sample. Over
the past decade, most work on sampling methods for

Suppose we are given a posterior distribution 7r on a exploring posterior distributions has centered on impor-
quantity 0 with values in a space E. Usually E will be tance sampling (Geweke, 1989; Stewart, 1979; van Dijk
a subset of IRk and ir will have a density with respect to et al., 1978; Zellner and Rossi, 1984; among others). An
a measure p, alternative approach that avoids the need for weights is

ir(dz) = 7r(x)p(dx). to use a dependent sample, such as the sample path of
a Markov chain.

For simplicity, 7r will be used to denote both the distribu-
tion and the density. We may be interested in computing
a particular numerical characteristic of 7r, or more gener-
ally in developing an understanding of what information 2 Markov Chain Methods
7r contains about 0.

Several methods for computing characteristics of pos- Markov chain methods generate a sample path from
terior distributions are now available. These include a Markov chain that has r as its stationary distribu-
asymptotic approximations, numerical integration, and tion. Recent work of Gelfand and Smith (1990) on
sampling or Monte Carlo methods. Sampling meth- the Gibbs sampling algorithm has renewed interest in
ods for examining posterior distributions provide ways Markov chain methods for exploring posterior distribu-
of generating samples with the property that the em- tions. Gelfand and Smith extend the Gibbs sampling
pirical distribution of the sample, or an appropriately algorithm of Geman and Geman (1984), originally de-
weighted empirical distribution, approximate the poste- veloped for Bayesian image reconstruction, to continu-
rior distribution. Using such samples, it is easy to esti- ous distributions and show how the algorithm can be
mate characteristics such as the mean or standard devi- used in a wide variety of problems.
ation of a function of 0. Marginal distributions can be Markov chain methods have a long history in Mathe-
estimated using smoothing or, in some cases, variance matical physics dating back to the algorithm of Metropo-
reduction methods. In additin, for equally weighted lis el al. (1953). The Metropolis algorithm is in fact a

*Research supported in part by grant DMS-9005858 from the general class of algorithms that includes versions of the
National Science Foundation discrete Gibbs sampler as special cases.
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2.1 The Metropolis Algorithm 2.1.1 Random Walk Chains

Metropolis ef al. (1953) originally proposed the al- For E = IRk and f a density on E, set Y = x + Z, with
gorithm now known as the Metropolis algorithm as a Z drawn independently from f. Then
method of sampling from the equilibrium distribution
of an interacting particle system. The algorithm, which q(x, y) = f(y - x).

is described in llammersley and Handscomb (1964, Sec- Thus the kernel Q driving the Metrolopis chain is a ran-
tion 9.3) and Ripley (1987, Section 4.7), was extended by dom walk. Natural choices of f are normal, uniform, and
H&,bings (1970) and explored further by Peskun (1973). 1 distributions. Split-t distributions (Geweke, 1989) may

To define Hastings version of the algorithm, let Q be also be useful. The scale matrix for f can be taken as aa Markov transition kernel with as eueu.Tesaemti o a etkna
constant c times the inverse information at the posterior

Q(x, dy) = q(x, y)p(dy). mode. Good choices for the step size constant c are still
an open problem, but c = 1 and c = 1/2 seem to work

Let E+ = : ir(x) > 01, and assume Q(x, E+) = 1 for reasonably well in a number of examples.
x V E + . Then define If f is symmetric about the origin, i.e. if f(z)

f(-z), then q is symmetric and the simpler form of the
, m r(y)q(y, x) acceptance probability a(x, y) can be used.a(X, y) = min f r(x)q(x, y)' I

for 7r(x)q(x,y) > 0. Otherwise, a(x,y) = 1. If the 2.1.2 Independence Chains

Markov chain is currently at X, = x, then the algo- Suppose f is a density on E, and we generate candidates
rithm generates a candidate Y = y for the next state Y independently from the single density f. Then
from Q(x, .). With probability a(x, y) this candidate is
accepted and the chain moves to X,+, = y. Other- q(x,y) = f(y).
wise, the candidate is rejected and the chain remains at,+ = x. The chain of candidates driving this Metropolis chain is

Since an i.i.d. sequence from the density f. The acceptance

probability for an independence chain can be written as

7r(x)q(x, y)c,(x, y) = 7r(y)q(y, x)a(y, x),(y m (w) 1

a Metropolis chain with initial distribution ir is re- 0wx 1
versible. Therefore 7r is an invariant distribution for the
chain. Some additional conditions on r and Q are needed fo that w b) The fncionie weig
to insure that ir is also a limiting distribution; these con- fntn thatwld enused in te samplin
ditions are discussed in Section 3 below. Since the accep- when the sample is generated from the density f.tanc prbablit onl deend on7r trouh te rtio There are a number of similarities between an indepen-
tance probability only depends on r through the ati o dence chain and the corresponding importance sampling
7r(y)/ir(z), the density 7r only needs to be specified up prcs.Wieainpndcehinosntrqueto a constant of proportionality, process. While an independence chain does not require

If q(x, y) oq(y, ), i.e. q is symmetric, then the ac- explicit use of the weights, it will rarely accept candi-
Ifpan pro(x, y)x),ie.qi sym trifi then thdates with low weights. On the other hand, a candidate

ceptance probability a(, y) simplifies to with high weight will almost always he accepted. Fur-

'y thermore, when the chain reaches a point x with high

a(X, y) = min f" 7r() ,
1  weight w(x), it will usually remain there for several it-

erations, thus building up weight on x within the sam-

This is the original form of the algorithm proposed by ple path by repetition. Another similarity to importance
Metropolis et al. (1953). Other forms of the rejection sampling is that the sample sequence is closer to an i.i.d.
probability are possible, but the form given here can sequence from 7r the closer the weight function w is to a
be shown to be optimal within a wide class of possible constant.
alternative forms (Peskun, 1973). Because of these similarities to importance sampling,

The Metropolis algorithm is actually a class of algo- it is reasonable to conjecture that guidelines developed
rithms. Each different choice of the kernel Q for gen- for choosing importance sampling densities also apply
erating candidate steps produces a different version of to choosing densities for driving independence chains.
the algorithm. Several classes of kernels appear to be In particular, it is advisable to choose a density with
particularly useful for examining posterior distributions, thicker tails than 7r and thus a bounded weight function
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w. Families like the split-t that produce good impor- steps from an independence chain in a mixture or a cycle
tance sampling densities are likely to be good choices for to "restart" the Gibbs sampler and thus reduce correla-
independence chains. tions while preserving the equilibrium distribution. As

another example, suppose 0 can be split into two compo-

2.1.3 Rejection Sampling Chains nents (01,02), and direct sampling from 0 192 is possible
but direct sampling from 02101 is not possible. Such a

An interesting special case of an independence chain oc- situation is considered by Zeger and Karim (1991). Then
curs when the density f is sampled using rejection sam- "Gibbs steps" for 01 102 can be combined with Metropolis
pling. In attempting to use rejection sampling to sample steps for 02101 in a mixture or a cycle.
directly from 7r, we use a density h and a constant c such
that, hopefully, 7r(x) < ch(x). If we repeat the process of
sampling Z from h and then U uniformly from [0, ch(Z)], 3 Some Theoretical Results
until U < ir(Z), then the final value of Z has density

Whatever approach is used to produce a Markov chain
f(x) c 7r(x) A ch(x). with invariant distribution ir, before the chain can be

used with confidence to generate samples for examining
If we do indeed have ir(x) !_ ch(x), then f is proportional 7r certain theoretical questions need to be addressed. An-
to 7r and we obtain an i.i.d. sample from 7r. But it is swers to some of these questions can be obtained using
very difficult to insure that c is large enough for ch to some recent developments in general state space Markov
dominate 7r without choosing c excessively large, leading chain theory as described, for example, in Nummelin
to an inefficient algorithm with many rejections. And (1984). This section outlines this approach. A more
even then without extensive analysis of the tails of h complete discussion is given in Tierney (1991).
and 7r we cannot be certain that ch does dominate 7r.

Fortunately, using this rejection scheme to drive an in-
dependence Metropolis chain provides a simple remedy.
If wo do have 7r(x) _< ch(x) for all x, then the weight The first question to be addressed is whether the invari-
function w is a constant, no candidates are rejected, and ant distribution 7r is also the equilibrium distribution for
the rejection process produces an i.i.d. sequence from 7r the chain, i.e. whether the distribution of the chain af-
that is simply passed through the Metropolis algorithm ter n iterations converges to 7r. In discrete state space
unchanged. But if ch does not dominate 7r for some x, Markov chain theory, two conditions are needed: irre-
then, when the chain reaches such an x, the Metropo- ducibility and aperiodicity. The same is true in general
lis algorithm will occasionally reject candidate steps in state space theory. Periodicity for general state spaces
order to build up mass on this x to make up for the can be defined in much the same way as for discrete
deficiency in the envelope ch. This introduces some de- spaces. The concept of irreducibility is a little more com-
pendence, but insures that the equilibrium distribution plicated, since individual states are usually not hit with
of the sample path is 7r even if the envelope is deficient, positive probability. It is therefore necessary to speak of

irreducibility with respect to a measure. In the present

2.2 Combining Strategies context, a natural choice for this measure is r itself. We
will therefore say that a Markov chain is -,-irreducible

The Gibbs sampler and the Metropolis algorithms de- if for every set A with ir(A) > 0 the probability of the
scribed above provide a number of Markov chain strate- chain ever entering A is positive for every starting point
gies. In addition to choosing any one of these strategies x of the chain.
and using it in its pure form, it is possible to form hybrid Irreducibility and aperiodicity need to be verified for
strategies. each Markov chain. Some useful sufficient conditions are

Suppose P 1, . . ., P, are Markov kernels with invari- available for certain Metropolis chains. For example, a
ant distribution 7r. Two simple ways of combining these random walk chain is 7r-irreducible and aperiodic if the
kernels is as a mixture or a cycle. In a mixture, proba- increment density is positive on a neighborhood of the
bilities a a,... , are specified, and at each step one of origin and the density 7r is positive on all of IRk. An
the kernels is selected according to these probabilities. independence chain is r-irreducible and aperiodic if the
In a cycle, each kernel is used in turn, and when the last candidate generation density f is positive whenever the
one is used the cycle is restarted. density ir is positive.

Both strategies can be used in several ways. For ex- If a chain with invariant distribution if-irreducible and
ample, a Gibbs sampler can be combined with occasional aperiodic, then it can be shown that the chain must be
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tive recurrent and that for 7r-almost all x, then any mixture using P with positive probability is
uniformly ergodic. For cycles a blightly more compli-

II P"(x, )- 7r(.) 1- 0 cated condition appears to be needed: if P is used in
a cycle and there exists a probability v and a constant

re denotes the total variation distance and at 3 > 0 such that v(.4) < P(x, A) for all A and x, then the
ne distribution after n steps of the chain started at cycle is uniformly ergodic. This condition is satisfied if P

is an independence kernel with a bounded weight func-
the chain is Harris recurrent, then this convergence tion. Combining such a kernel in a mixture or a cycle

ars for all x. The definition of Harris recurrence is with any other kernel, such as a Gibbs kernel, therefore
iewhat technical, but a simple sufficient condition is insures that the hybrid chain is uniformly ergodic. This
ilable that is satisfied by all 7r-irreducible Metropolis provides theoretical support for using occasional inde-
ins and essentially all r-irreducible Gibbs samplers. pendence "restart" steps together with a Gibbs sampler

L 7r-irreducible aperiodic Markov chain with invari- to improve the properties of the sampler.
distribution 7r is called ergodic if it is aperiodic and

itive Harris recurrent.

3.3 Limiting Behavior of Averages
I Rates of Convergence In Markov chain methods, sample path averages are used

ce we know that the distribution of a chain converges to estimate expectations under the distribution 7r. A law

r, the next question is to determine the rate of conver- of large numbers and a central limit theorem insure that

ice. The theory presented in Nummelin (1984) pro- these estimates converge at reasonable rates. The law

,es several classifications for rates of convergence of of large numbers follows from the ergodic theorem and

odic chains: needs no conditions other than existence of the expecta-
tion under 7r:

'gree 2: If a chain is ergodic of degree 2, then

n 1 P( x , )- 11'-- 0 Law of Large Numbers. If P is ergodic with invari-
ant distribution 7r, and 7rlfI < oc, then for any initial

for ,r-almost all x. distribution

'ometric: An ergodic chain is geometrically ergodic - 1
if 11 P'(x, 7) - r(.) (< M(x)r' for some r < I and = n f(Xi) I 7rf = (x),(dx)
some function M with f Mdr < oo.

iiform: An ergodic chain is called uniformly ergodic almost surely.

if 1f Pn(x, .)-ir(.) j(< Mr" for some r < l and some
constant M. A central limit theorem does appear to require some

conditions on the rate of convergence of the chain:
Uniform ergodicity is the strongest of these forms of
ivergence and it is the easiest form to work with. A Central Limit Theorem. If P is ergodic of degree
:essary and sufficient condition for a chain with kernel 2 with 7rP = 7r, and f is bounded, then for any initial

o be uniformly ergodic is that there exist a probabil- distribution the distribution of
v, a constant / > 0 and an integer n > 1 such that

4) < P'(x, A) for all A and x. Using this condition, it v/-(f,, - 7rf)

)ossible to derive a variety of sufficient conditions for
[form ergodicity. For example, if u(E) < oo and the converges weakly to a normal distribution with mean zero
isities q and ir are bounded and bounded away from and variance a2(f).
o, then the corresponding Metropolis kernel is uni-

mly ergodic. As another example, an independence Weaker but more complicated sufficient conditions are
'tropolis kernel is uniformly ergodic if the weight func- available. Expressions for the asymptotic variance a2(f)
n w(x) is bounded. are available for finite E (Peskun, 1973; Kemeny and

[his condition can also be used to derive conditions Snell, 1976). Other expressions involving certain hitting
uniform ergodicity of hybrid kernels in terms of con- times are available for general state spaces (Nummelin,

ions on the component kernels. For mixtures the con- 1984). These expressions do not appear to be useful for
ion is particularli -:mple: if P is uniformly ergodic, computing the asymptotic variance.



Exploring Posterior Distributions 567

4 Using a Markov Chain correlation are usually much less serious than biases in
estimates of means.

Once a Markov chain strategy with satisfactory theoret-
ical properties has been selected, it can be used to es- 4.1.2 Determining the Run Length
timate numerical characteristics or to provide graphical
views of features of the posterior distribution. Another consideration is to determine the total sample

size or run length required for accurate estimates. For
an i.i.d. sample of size n, the standard deviation of the

4.1 Numerical Uses sample mean of a function f(O) is e/V , where a is the

Using Markov chains for calculating numerical character- posterior standard deviation of f(O). If a preliminary

istics of a posterior distribution is in principle straight estimate of a is available, perhaps from an asymptotic

forward: expectations with respect to r can be approx- analysis, then this can be used to estimate the sample

imated by sample path averages. There are, however, size that would be required in i.i.d. sampling. In de-

a number of issues that need to be considered before pendent sampling, observations are generally positively

running a chain, correlated and a larger simple size will be required. If the
series is modeled as a first order autoregressive process,

4.1.1 Choosing a Sampling Plan then the standard deviation of the sample mean is

The first issue concerns the choice of a sampling plan. a ,1 + p

There are two extreme approaches. Several authors have /nV 1 - p

proposed that Markov chains should be used to generate where again a' is the posterior standard deviation of f(O)
n independent realizations from the posterior by using and p is the autocorrelation of the series f(Xn). A rough
n separate runs, each of length m, and retaining the fi- estimate of p can thus be used to adjust the sample size
nal states from each chain. The run length rn is to be for dependence in the series.
chosen large enough to insure that the chain has reached Instead of determining a fixed sample size in advance,
equilibrium. An alternate approach is to use a single it is also possible to use sequential or batch sequential
long run, or perhaps a small number of long runs. Ex- rules for determining when to stop sampling. Since prior
perience and theoretical assessments in the simulation information on the values of thc posterior mean and
literature appear to favor the use of long runs (Bratley standard deviation is often available form initial anal-
et al., 1987, Section 3.1.1; Kelton and Law, 1984). The yses, Bayesian sequential methods are a natural choice.
major drawback of using short runs is that it is virtually Batching can be used to insure that an assumption of
impossible to tell when a run is long enough based on normality for batched means is reasonable.
such runs. Even using long runs, determining how much One sequential approach that should be avoided is to
of the initial series is affected by the starting state is very plot successive sample means and stop sampling when
difficult, but some literature on the subject is available the means appear to have converged. Since sample
(Ripley, 1987, Section 6.1). A second drawback of short means ch nge by increments on the order of O(n - 1) but
runs is that it makes inefficient use of the data: only n errors are of order 0(n-1/2), this approach will produce
out of a total of nm data points are used. With a single sample sizes that are too small. The presence of positive
run of length rim it is possible to use all the data, after correlations in Markov chain series makes these series
possibly discarding a small initial I ~appear to have converged even earlier, even though the

A complication that does arise from the dependcnce correlations imply that errors are larger and thus larger
in using a single series is that variances of estimates are sample sizes are required than with i.i.d. sampling.
harder to assess. Again the simulation literature offers
several alternatives, such as the use of batch means and
time series analysis (Bratley et al., 1987, Chapter 3; Rip-
ley, 1987, Chapter 6). For some purposes it may never- Some consideration of numerical stability is needed in
theless be useful to have an approximate independent using any sampling based method. Expressions used to
sample from the posterior. Using long runs this can evaluate log posterior densities obtained by translating
be achieved by retaining every r-th point of a sample mathematical formulas into a computer language are of-
path. The number r of points to skip in order to pro- ten reasonably stable near the posterior mode but not
duce approximate independence can usually be chosen far away from the posterior mode. This can lead to over-
much smaller than the number m of teps needed to flows or, on IEEE hardware, results that are NAN's or
reach approximate equilibrium, since small amounts of INF's. One way to avoid these problems is to carefully
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y the formulas for evaluating the log posterior den- chain method is to use the sample path with importance
and modify them to be numerically stable even for weights to calculate estimates of normal approximations
me parameter values. The effort required to do this and to correct for the errors in these estimates.

be considerable. An expedient alternative that is of-
ffective is to truncate the parameter space to a rea- 4.1.5 Monitoring Sampler Performance
ble range that contains essentially all the posterior
)ability and for which the posterior density formula In using Markuv chain methods, it is important to mon-

imerically stable. This truncation also often insures itor the performance of the samplers to insure that they

a Markov chain used to sample from 7r is uniformly are not exhibiting any unusual behavior. Gelfand and

,dic and thus improves the behavior of the Markov Smith (1990) propose the use of quantile plots to moni-

n estimates. tor performance. Monitoring sample paths of estimates

he need to allow truncation is an important consider- is als(, useful for this purpose, as is monitoring autocor-

n in developing software for implementing sampling relations of the parameters. Adaptive time series models

d methods. Subroutines must allow for user sup- may also be useful for determining whether a series ex-

d range test functions or allow the results returned hibits any unusual features.

Lhe log posterior subroutine to indicate a parameter For Metropolis chains it is also important to keep track

t is outside of the range. of the the number of candidates that are rejected. For

L numerical issue that is unique to Markov chain an independence chain, the proportion of rejections can

;hods is the possibility that rounding may introduce be related to the total variation distance between the

orbing states. If this happens, results obtained from a posterior density 7r and the candidate generation density

rkov chain method may be meaningless. Again trun- f.
ion away from areas of the state space where such By monitoring the performance of a sampler, in par-
nding may occur can be helpful. ticular in the early stages, it is possible to experiment

with different setting for sampler parameters to obtain

.4 Variance Reduction samplers that are efficient for a particular problem. More
work is needed to find good strategies for making such

with any simulation method, variance reduction tech- parameter adjustments.
ues can often significantly reduce the sample sizes re-
red for accurate estimates. Standard variance reduc-
i methods such as importance sampling, antithetic 4.2 Graphical Uses
iates, conditioning, and control variates (Bratley et Numerical summaries, such as posterior means, standard

1987, Chapter 2; Ripley, 1987, Chapter 5) can be deviations, marginal densities, and correlations, provide
d with any Markov chain method. insight into the uncertainty about one or perhaps two
mportance sampling can be used as a variance reduc- features of 0 at a time. For understanding uncertainty
i method by using a Markov chain with equilibrium in higher dimensions graphical methods may be more
'ribution f instead of ir and then weighting sample useful than numerical summaries.
Ilts with appropriate importance weights. Condition-
is often useful in Gibbs samplers, since the assump- 4.2.1 Plotting Samples

is required for the Gibbs sampler imply that condi-
ial means or densities of one parameter given the rest For three-dimensional quantities, one useful graphical
usually available. Gelfand and Smith (1990) refer to method available on microcomputers and workstations
use of conditioning as Rao-Blackwellization. with bitmapped displays is a rotatable three-dimensional
ntithetic variation can be introduced into a Markov scatterplot. By selecting every r-th entry in a Markov

in method by using a Metropolis step in which a can- chain sample path we can obtain an approximate ;.i.d.
ate step is obtained by reflecting the current state of sample from the posterior distribution and display this
chain through a point. If the posterior density is ap- sample in a rotatable scatterplot. Three-dimensional

ximately symmetric about this point, then the sam- structures will readily become apparent as the point
will be also, and the resulting negative correlations cloud of the sample is rotated.

I reduce variances of estimates of linear functions of Rotatable scatterplots are only useful for examining
This technique can also be used to take advantage three dimensions at a time. A method that may be use-
Lpproximate axial symmetries in a posterior distribu- ful for higher dimensions is the Grand Tour. Again an
1. approximate i.i.d. sample can be selected and displayed
)ne way to introduce control variates into a Markov in a Grand Tour. Implementations of the Grand Tour
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Figure 1: Posterior mean of a response function. Figure 2: A second response function supported by the
posterior distribution.

are only now becoming widely available, so extensive ex-
perience with this method is not yet available. Early 0 for a particular example. This mean exhibits a number
results suggest that this method is reasonably effective of features, such as a pronounced global minimum and
for detecting structures in four to six dimensions, a secondary local minimum. Are these features really

present in 0 or are they merely artifacts of the poste-

4.2.2 Controlling Animations rior mean? One way to answer this question is to look
at other functions 0 that are supported by the posteriorIf 9 is more than five- or six-dimensional, then it may be distribution. This can be done by running an animation

difficult enough to understand 0 itself, much less uncer- that shows graphs of different values of 9.

tainty about 0. If a graphical view of 0 is available that

is meaningful for particular values of 0, then one way of To provide a good understanding of the posterior dis-

developing an understanding of the uncertainty about 0 tribution, an animation needs to visit all areas supported

is to look at an animated version of the graph in which by the posterior. In addition, to allow the user to keep

0 is moved through a variety of values that are plausible track of the changes in 0 as it moves through the poste-

under the posterior distribution, rior distribution, the animation has to move smoothly
These objectives can be achieved using a random walk-As an example, suppose we have a smooth responseg

function 0 of a real variable x in some interval I that is driven Metropolis chain with the posterior distribution

measured with error. Thus we obtain measurements of as its equilibrium distribution. Using the posterior as

the form the equilibrium insures that the chain does eventually
approach all possible values of 0 bi t spends most of its

Y = 9(x) + . time near values that are better supported by the pos-

Our prior opinion on the function 9 suggests that this terior distribution. The correlation in the random walk

function is smooth, but does not suggest any particular insures that the chain moves in small steps, thus provid-

parametric structure. ing the visual continuity that is necessary for an effective

Several approaches are available for specifying such a animation. Thus the correlations in the Metropolis chain

prior distribution. Most involve choosing a prior on co- that are a nuisance for numerical computations are in

efficients in some representation, such as a power series fact an advantage for this graphical application. Conti-

or spline. The coefficients of these representations are nuity can be further enhanced by interpolating between

not likely to be particularly meaningful. But a plot of steps of the random walk.

the response function 0 over the interval I is readily un- Figure 2 shows another view of the animation. View-
derstood. Figure 1 shows a plot of the posterior mean of ing the animation for this particular example for a few
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minutes quickly reveals that the global minimum is quite Kemeny, J. G. and J. L. Snell (1976). Finite Markov
well defined but the shape of the left half of the curve is Chains. New York, NY: Springer.
very uncertain.

A useful enhancement for this animation is the bar Metropolis, N, A.W. Rosenbluth, M.N. Rosenbuth,
shown at the left of the two plots. The solid part of the A.H. Teller, and E. Teller (1953). Equations of
bar represents the probability content in the posterior state calculations by fast computing machines. J.
at or below the level of the current 0, computed using a Chemical Physics 21 1087-1091.
X2 approximation. This gives a quick indication of how Nummelin, E. (1984). General Irreducible Markov
plausible the current view is. Chains and Non-Negative Operators. Cambridge:

Many variations on this animation are possible. For Cambridge University Press.
example, using the posterior distribution as the equilib-
rium of the driving Markov chain is a reasonable starting Peskun, P. H. (1973). Optimum Monte-Carlo sampling
point but is not essential. At times it may be useful to using Markov chains. Biometrika 60 607-612.
force the chain to concentrate its motion closer to the
mode, or to move farther away from the mode and pos- Ripley, B. D. (1987). Stochastic Simulation. New York,

sibly find interesting features that are farther away. This NY: Wiley.

can be accomplished by using a Markov chain with an Stewart, L. T. (1979). Multiparameter univariate
equilibrium density that is a power of the posterior den- Bayesian inference. J. Amer. Statist. Assoc. 74
sity - by "cooling" or "heating" the posterior distribu- 684-693.
tion in the terminology of simulated annealing.

Much additional work is needed to explore ways of Tierney, L. (1991). Markov chains for exploring poste-
merging numerical methods such as the ones described in rior distributions. Technical Report 560, School
this paper with new computing hardware that is now be- of Statistics, University of Minnesota.
coming more widely available. The animation describedhere is a first step in that direction. van Dijk, H. K., i]. P. tlop, and A. S. Louter (1978).

An algorithm for the computation of posterior
moments and densities using simple importance
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Abstract normal distribution, but is not identical with it at any

stage.

The construction and implementation of a Gibbs In this paper we contribute to the resolution of these

sampler for efficient simulation from the truncated problems. The ability to generate variates from a truncated
multivariate normal and Student-t distributions is described. univariate normal distribution is a central building block in

It is shown how the accuracy and convergence of integrals the solution of the more general problem. Section 2
based on the Gibbs sample may be constructed. describes an algorithm for the generation of variates from a

KEYWORDS: Bayesian inference; Gibbs sampler; truncated univariate normal distribution that is substantially
Monte Carlo S multiple integration; truncated normal more efficient and flexible than the method that has been

favored in the pasL Drawing from the truncated multivariate

Introduction normal distribution with the Gibbs sampler is fully
developed in Section 3, including the evaluation of the
accuracy of the numerical approximation and construction of

The generation of random samples from a truncated diagnostics for convergence. These methods are extended to
multivariate normal distribution, that is, a multivariate the multivariate Student-t distribution in Section 4.
normal distribution subject to multiple linear inequality Throughout the paper some standard but not universal
restrictions, is a recurring problem in the evaluation of notation is employed. The univariate normal probability
integrals by Monte Carlo methods in econometrics and
statistics. Sampling from a truncated multivariate Student-t density function is *(), the corresponding cumulative
distribution is a closely related problem. The problem is distribution function is (D(), and the inverse cumulative
central to Bayesian inference, where a leading example is the distribution function is 4>-I('). The uniform distribution
normal linear regression model subject to linear inequality on the interval [a, b] is denoted U[a, b). The univariate
restrictions on the coefficients (Geweke, 1986). But it also truncated normal distribution TN(a, b) is the univariate
arises in classical inference, when integrals enter the normal restricted to (a, b): its density is
likelihood function; McFadden (1989) has proposed the use [-l(b) - cf-l(a)]-4() on (a, b) and 0 elsewhere; a =
of Monte Carlo integration in one such instance, and b = +- are permitted special cases.

Recently several promising solutions of this problem
have been investigated. A survey of methods along with 2 The mixed rejection algorithm
several contributions is provided in Hajivassiliou and for truncated univariate
McFadden (1990). One of these methods, the Gibbs
sampler, is especially well suited to the problem. It uses a normal sampling
simple algorithm that generates samples with great
computational efficiency, but at the cost of introducing two All of the methods described in this paper assume the
complications. First, the drawings are not independent, ability to draw i.i.d. samples from a truncated univariate
which complicates the evaluation of the accuracy of the normal distribution. It is well recognized that rejection
approximation using standard methods like those proposed sampling from a univariate normal distribution is
in Geweke (1989). Second, the distribution from which the impractical. Inverse c.d.f. sampling (Devroye. 1986) is a
drawings are made converges to the truncated multivariate feasible alternative. If x - TN(a, b), then x = 40'(u), u

- U[0(a), 0(b)]. This method requires the evaluation of one
integral for each draw, and if the values of a and b change
with the draws, then three evaluations are required. The

• Research assistance from Zhenyu Wang and financial computation of V 'l(w) requires more time as w -4 0 or
support from National Science Foundation Grant SES- w - I, and the double precision implementation in the
8908365 are gratefully acknowledged. The software for the IMSL/STAT library is unable to compute w = 0-1 (p) if
examples may be requested by electronic mail, and will be Iw! > 8. Here, we shall suggest a different algorithm, whose
returned by that medium.
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execution times are substantially smaller than inverse c.d.f. (b) If 0(a) > tl or 0(b) > t1: uniform rejection
sampling, and can draw x - TN(a, b) for any a < b so sampling.
long as lal < 35 and Ib1 < 35, when programmed in double (3) On (a, b) if a > 0:
precision (64-bit) floating point arithmetic. () If (a b) -5 a > 0:

The algorithm produces i.i.d. samples from TN(a, b), (a) If na)/(b) - t2 (= 2.18): uniform rejection
including the cases a = --c and b = +oo. It employs four sampling,
different kinds of rejection sampling, depending on the (b) If 0(a)/0(b) > tl and a < t3 (= .725): half-

values of a and b. In normal rejection sampling, x is normal rejection sampling;
drawn from N(0, 1) and accepted if x E [a, b). In half- (c) If 0(a)/1(b) > tl and a - t3: exponential
normal rejection sampling, x is drawn from N(0, 1) and rejection sampling.
xi is accepted if x r [a, b] (where a > 0). In uniform The omitted cases (--, b), and (a, b) with b < 0, are
rejection sampling, x is drawn from U[a, b], u is drawn symmetric to the cases (1) and (3), respectively, and are
independently from U(0,1), and x is accepted if u < treated in the same way. Software for the mixed rejection
4(x)/O(x*), x* = argmax[a,b][4Kx)]. algorithm was tested by comparing the distributions of

Exponential rejection sampling is key to the algorithm, sampled variates produced, with those produced by inverse
and requires description in some detail. The motivating c.d.f. sampling. Each was programmed in double precision
example is TN(a, cc), where a > 0, and possibly 0(a) is Fortran-77 using the IMSL/STAT library, on a Sun
close to 1. As a -- c,, the TN(a, -c) distribution comes Sparcstation 4/40 (IPC). Computation times for 10,000
to resemble the exponential distribution as detailed in sampled variates are shown in Table 1. Times for the
Geweke (1986, Appendix A). Suppose z is drawn from an inverse c.d.f. algorithm range from 2.24 to 4.51 seconds,
exponential distribution on [a, -c) with kernel exp(-Xz) those for the mixed rejection algorithm from 0.67 to 1.28
for z > a. Consider fixing X so as to minimize the seconds. On a case-by-case basis the mixed rejection
probability of rejection. The acceptance probability must be algorithm is from 2.47 to 6.24 times faster than the inverse
proportional to exp(-Iz2)/exp(-X.z), for z E [a, ,o). c.d.f. algorithm.

Computing the constants of proportionality, we find
acceptance probabilities 3 The Gibbs algorithm for

+ a2)) exp(-Xz) if X:5 a, truncated multivariate normal
exp[4-2z2 )] if if a. samplingexp[.2(z . M.2 )] if k > a.

The first expression is maximized at X = a for all z. The central problem addressed in this paper is the

Integrating the second expression with respect to the construction of samples from an n-variate normal

exponential density Xexp[-)X(z-a)] on [a, cc), we find that distribution subject to linear inequality restrictions,

the acceptance probability is X exp(Xa - .X2)(21)1/2[1- x - N(.t, 1), a < Dx < b (3.1)
O(a)]. This is maximized when X = fa + (a2 + 4)1/21. As The matrix D is n x n of rank n, individual

elements of a may be -,w, and individual elements of b
a - c, V/a -4 1, and the acceptance probability converges may be + -c. This accommodates fewer than n linearly
to unity. Experimentation within the context of the independent restrictions. It does not allow more than n
algorithm presently described has shown that the increase in linearly independent restrictions, and the method set forth
computing time from using the suboptimal but simpler here cannot be extended to these cases, at least in a tidy way.
choice X = a, is less than the time required to compute In the applications described in the introduction the truncated

1[a + (a2 + 4)1/2 ]  Hence we use X = a in this multivariate normal distribution arises in the form (3.1).
2  The problem is equivalent to the construction of samples

algorithm. from the n-variate normal distribution subject to linear
The algorithm employs four constants (ti, i = 1,.. 4) restrictions,

whose values have been set through experimentation with
computation time. The selected value is indicated when the z ~ N(0, T), a < z < 15, (3.2)
constant is introduced. The sampling procedure depends on where
the relative configuration of a and b, as follows. Except T = DXD', ct = a - Di, b3 = b-D
in case (1), a and b are finite. and we then take x = v + D-lz.

(1) On (a, -c): normal rejection sampling if a!5 t4 (= .45); Several approaches to the solution are possible; see
exponential rejection sampling if a > t4. Hajivassiliou and McFadden (1990, Appendix B) for a brief

(2) On (a, b) if 0 r [a, b]: survey of these methods, and Hajivassiliou, McFadden, and

(a) If 0(a) _< t, (= .150) or 0(b) < tl: normal Ruud (1990) for an application of importance sampling to

rejection sampling; the special case of orthant restrictions. Naive rejection
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Table 1
Comparison of Computation Times

Mixed Rejection and Inverse c.d.f. Algorithms
TNta, b] Distribution*

a: -8.0 -5.0 -3.0 -2.0 -1.0 -0.5 0.0 0.5 1.0 2.0 3.0 5.0
b:

-5.0 1.02
4.52

-3.0 1.04 1.04
4.45 4.45

-2.0 1.07 1.10 1.08
4.44 4.43 4.49

-1.0 1.28 1.26 1.22 1.21
3.65 3.67 3.66 3.62

-0.5 1.19 1.19 1.25 1.26 .93
3.57 3.69 3.60 3.55 2.90

0.0 1.16 1.16 1.15 1.19 .75 .71
2.91 2.91 2.91 2.89 2.25 2.33

0.5 .89 .90 .90 .91 .78 .73 .67
3.55 3.54 3.58 3.61 2.92 2.92 2.24

1.0 .76 .76 .78 .79 .82 .79 .73 .89
3.54 3.52 3.53 3.51 2.89 2.90 2.24 2.90

2.0 .68 .69 .70 .70 .97 1.02 1.23 1.21 1.18
4.15 4.16 4.16 4.14 3.56 3.52 2.90 3.56 3.63

3.0 .71 .69 .69 .69 .90 1.01 1.19 1.18 1.18 1.05
4.24 4.18 4.19 4.18 3.57 3.65 2.94 3.75 3.71 4.51

5.0 .69 .68 .69 .69 .89 .98 1.21 1.15 1.23 1.05 1.02
4.22 4.15 4.17 4.15 3.52 3.54 2.92 3.58 3.64 4.43 4.45

8.0 .67 .68 .69 .69 .89 1.01 1.17 1.15 1.24 1.04 1.01 .97
4.18 4.15 4.17 4.13 3.53 3.54 1.91 3.56 3.63 4.42 4.45 4.47

a: -8.0 -5.0 -3.0 -2.0 -1.0 -0.5 0.0 0.5 1.0 2.0 3.0 5.0
* Times are given in seconds, for drawing samples of size 10,000. Computations were performed on a Sun 4/40 (IPC)
workstation. Software was written in double precision Fortran-77, and used the IMSL/STAT Edition 10 routines DRNNOF
for univariate normal generation, DNORDF for evaluation of the univariate normal c.d.f., and DNORIN for evaluation of the
univariate normal inverse c.d.f.

sampling from N(p, 2) can be employed directly in (3.1), The algorithm employed is the Gibbs sampler, whose
but is impractical in general since the ratio of rejected to systematic application to problems of this form dates from
accepted variates is astronomical for many commonly Geman and Geman (1984); see also Gelfand and Smith
arising problems. More sophisticated procedures must cope (1990). The general problem is to sample from a
with the fact that the marginal distributions of the elements multivariate density f(x) for an n-dimensional random vector
of z, and of x, are not univariate truncated normal. The x, when no practical algorithm is available for doing so
method set forth here exploits the fact that the distribution directly. But suppose that the conditional distributions,
of each element of z, conditional on all of the other xi lxI ..., xi- 1, xi+l ...1, xn -

elements of z, is truncated normal. This method has also i i
been described by Hajivassiliou and McFadden (1990), but as fi(xl xi-l, Xi+l xn) n)
outlined in the introduction we pursue several extensions are known, and are of a form that synthetic i.i.d. random
here. variables can be generated readily and efficiently from each of
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the fi('). Let x0 ' = (x0  X0) be an arbitrary point in ci  -(Tii)-I Ti,< i, h2  (Tii)- ,

the support of f(x). Generate successive synthetic random where Tii is the element in row i and column i of T- 1, and
variables, T i,"i is row i of T-1  with Tii  deleted. These

I I{x, 0 x 0 1, x ~ computations need only be performed once, before samplingI I- i,  n0) begins. An initial value z( 0 ) may be selected by setting z
.. ....... n = 0 and then successively applying (3.3) for i = 1. n.

(i = 1, ..... n) (3.3) At the end of each pass we compute x(J) = gt + D-t z(J).
These n steps constitute the first pass of the Gibbs Samples from the truncated multivariate normal

sampler. The second and successive passes are performed distribution are typically used to estimate the expected value
similarly. At the i'th step of the j'th pass, of a function g(') of the random vector x,

xi 1x4., xi1 xjN, ., xj 0 x(~f~xxl x1 .. x1-, Xi+I ... n }~ =JXg(x)f(x)dx.

j-11 x j-1~fi(x. x- 1, Xi+l Xn An assessment of the reliability of this estimate must take

and the composition of the vector becomes into account the facts that in general { x(J) is a serially
.(M. =xx 1 .I...correlated process, whose unconditional distribution
S (x x1, xi+1 , xn) converges to f(') rather than being identical with f(-).

at the end of this step. At the end of the j'th pass the These problems are taken up for the general case in Geweke
composition of the vector is (1991), where standard spectral analytic techniques are used

to produce diagnostics for the convergence of the sampled

xJ)" = (x. xj)'. distributions to f(') and to provide a numerical standarderror for the reliability of the estimated expected value.
Gelfand and Smith (1990) have outlined weak Using this approach, five statistics from the sample

conditions under which x() converges in distribution and (x()pI provide information about the expected value of
has limiting distribution give by the density f(x), and the =
rate of convergence is geometric in the Ll norm. These the function in question.
conditions pertain to the truncated multivariate normal p
density in (3.2). The conditional densities fi(') for this (1) The simple arithmetic mean jp = p- 1. g(x(J)) is
problem are truncated univariate normal, and the algorithm j= 1

described in the previous section may be used to generate the the most efficient estimate of j from a Gibbs sample of
required successive synthetic random variables. Suppose size p passes, assuming that departures from
that in the non-truncated distribution N(0, T), convergence in the sample are negligible. The function

g(x) is computed at the end of each pass, following the

E[zi I zI . zi-1, Zi+1. Zn] = XcijZj. transformation from z to x.

j~i (2) The sampling variance of k p is Sg(O)/p, where

Then in the truncated normal distribution of (3.2). the Sg(w) denotes the spectral density of the Gibbs-

distribution of z( conditional on zI. [. , ..... sampled g(x) process at frequency o. The numerical
zn} has the construction, standard error (NSE) of gp. is [p-lSg(0)]l/2, where

Sg(w) is a consistent (in p) estimator of Sg(Co).

zi = Ycijzj + hici, (3) The variance of g(-) is estimated in the same way as
jei the mean of g(.). The ratio of this variance to Sg(O)

indicates the ratio of the number of i.i.d. draws that
i - TN[(ti - Xcijzj)/hi, (Pi cijzj)]hi]. would have been required, were such an algorithm

j i j;i available, to the number of passes required with the

Denote the vectors of coefficients in the conditional means, Gibbs sampler, to produce an estimate of j of
equivalent reliability. Following Geweke (1989), this

ci = (Cil. ci-1, ci,i+l. Cin)' (i 1. n). ratio is called the relative numerical efficiency (RNE) of

From the conventional theory for the conditional the Gibbs sampling procedure.
multivariate normal distribution (Rao, 1965, p. 441) and (4) A convergence diagnostic (CD) is computed based on
expressions for the inverse of a partitioned symmetric matrix subsamples of the sampled g(x); see Geweke (1991,
(Rao, 1965. p. 29), Section 3.2) for details. Under a stationary distribution

for 1x(J)i 1P this statistic has a standard normal

distribution.
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(5) The spectral density provides further details on the absolute value. In the third case z2 is truncated at about
characteristics of the process {g(x(J))}P If the .15 standard deviations above and below (Panel C). andJ= * performance is satisfactory for all values of p. The same isspectral density is nearly flat, or is lower near (o = 0 true in the fourth case, in which the bivariate normal
than at other frequencies, then the Gibbs sampling distribution is truncated to an extreme tail in both
process is efficient relative to i.i.d. sampling. But if dimensions (Panel D), and in the fifth case, in which the the
the spectral density is much higher near o = 0 than truncation produces a distribution closer to uniform than to
elsewhere, the process is inefficient. Thus, there is a bivariate normal (Panel E). Severe truncation diminishes
correspondence between the shape of the spectral density the potential for strong serial correlation in the x(J), and
and the RNE of the Gibbs sampler. thereby increases the efficiency of the Gibbs sampler.
The Gibbs algorithm was programmed in double The second example is constructed to resemble the

precision Fortran-77 using the IMSL/STAT library, on a truncated multivariate normal distribution that might be
Sun Sparcstation 4/40 (IPC). The routine was tested by encountered in Bayesian inference with a multivariate probit
comparing the distribution of truncated normal samples with model with panel data and serial correlation in equation
those generated by a naive accept/reject procedure. To disturbances for the same sampling unit and different years.
provide some indication of the efficiency of the procedure, Assuming three choices, five years, and a first-order
we present two examples here. autoregressive process for the disturbance leads to a variance

The first example is a truncated bivariate normal, with matrix . = R ® 13, rij = pli-jl in a 15-variate normal with
parameters chosen so that convergence ought to be truncation restrictions that require one of x3j+1, x3j+2, and
especially slow. Both variables have mean zero. The x3j+ 3 to be greater than the other two, for j = 1, 5.variance of x1 is 10, while the variance of x2 is 0.1, and x~+ ob rae hnteohrto o . .Results are presented in Table 3 for four different values of
the restrictions are of the form al x1 + x2 bl, a2 !5 p, ranging from p = .00 to p = .95. The number of passes
x I - x2 < b2. Consequently the transformed variables z I and preliminary passes are the same as those in the previous
and z2 have correlation .98. As elaborated in Geweke example, and computation times range from 2.5 seconds for
(1991), this implies that the process z(J), and hence x(J), p = 400 to about 60 seconds for p = 10,000. As p
will exhibit strong positive serial correlation: e.g., if increases, serial correlation in z(j) and hence x(j)
ai = -o and bi = +0, then each element of z(J) will increases, diminishing the efficiency and reliability of the
follow a first order autoregressive process with parameter Gibbs sampling algorithm. The convergence diagnostic
.96. Results are presented in Table 2, which shows the five proves to be a reliable indicator of the reliability of the
statistics for five different configurations of truncation estimates kp. For p = .00, 400 passes are reliable, despite
points (ai, bi), and for three choices of the number of some modest serial correlation; for p = .50, 2000 passes are
passes, p = 400, 2000, or 10,000. In each case p required, and for p = .80, 10,000 passes are required. For p
preliminary passes were performed before the functions of = .95, even 10,000 passes do not produce reliable results.
interest gi(x) ( i = 1 ... 4) were computed and averaged
over the next p passes. Computation times varied about 4 The Gibbs algorithm for
20% depending on the (ai, bi) configurations, averaging truncated multivariate
about .35 seconds for p = 400 and 7.1 seconds for p =
10.000. Student-t sampling

The results, presented in Table 2, confirm that
convergence is slow for the untruncated normal distribution, A closely related problem arising in Bayesian inference
panel A. (This is presented as a limiting case; obviously is the generation of samples from the multivariate Student-t
Gibbs sampling is not the method of choice for this distribution subject to linear restrictions,
problem.) Even when p = 10,000, results are unreliable, x -T(g, 1; in), a ! Dx ! b.
as indicated by the convergence diagnostics. The problem
arises from the strong serial correlation in the processes We continue to make the same assumptions about a, b. and
I g(x(J))), which is not fully evident in the estimated D. The genesis of the multivariate Student-t as the ratio of
spectral densities for the smaller values of p; a multidimensional normal to an independent [X2(m)/m] 1/2

correspondingly, computed RNE falls as p increases, leads immediately to a Gibbs sampling algorithm for (w,
These results persist in the second case, in which z2 is zI.... zn) followed by the construction x = p + Dlzw1 .
truncated at about 1.5 standard deviations above and below At the start of pass j, w(J-l) and z( -1) are available
(Panel B), but are not so strong. In both cases the from the previous pass. In the first step draw w(J) ~
convergence diagnostic is an imperfect indicator of unreliable iX2(m)/m]" 2 subject to the restrictions
estimates of j, for there are several cases in which ip is tiw(J) < zO"1) < I3iw(J) (i= 1.n),
more than three times NSE from 0 (the known true value of i n a.

sin all cases except D) and yet CD is less than 1.5 in dwing a ccept/reject proedure. In steps 2oniti n+l,in al csesexcpt ) ad ye CDis esstha 1. in draw z from a multivariate normal distribution conditional
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on w(J), the pertinent z's. and the restrictions aiw(j) S Hajivassiliou. V.A., D.L. McFadden, and P.A. Ruud,

zoi) < Piw(J)" 1990: "Simulation of Multivariate Normal Orthan
1 "Probabilities: Methods and Programs," M.I.T. mimeo.

i-i n McFadden, D., 1989: "A Method of Simulated
= ci4() + + h Moments for Estimation of Discrete Response Modelsi-( n Without Numerical Integration," Econometrica 57.

Ei - TN[(aiwj) - IcijzO) - Ycijz-l))/hi, Rao, C.R., 1965: Linear Statistical Inference and Its
j'l - j=i+l Applications. New York: Wiley.

i-I n
(Oiw o) - ycijzp) - YcijzO-l)/hi)].

j=l j=i+I

At the end of the pass, x(J) = g + D-z(J)w(J).
This algorithm was programmed in double precision

Fortran-77 using the IMSL/STAT library. The routine was
tested by comparing the distribution of truncated Student-t
samples with those generated by a naive accept/reject
procedure. No appreciable increases in computation time
over corresponding problems with the truncated multivariate
normal distribution were n-oted. In particular, the
accept/reject procedure for wO) appears quite efficient, even
for m = 2. No considerations with respect to the efficiency
of the Gibbs sampling algorithm, beyond those for the
multivariate normal, have been noted.
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Table 2
Properties of the Gibbs Sampler for a Truncated Bivariate Normal Distribution

Ai = lt2 = 0, 011 = 0.1, C22 = 10, 012 = 0

A: -00 < xlI + x2 < -, "_00 < Xl_- x2 <

I- gl(x) = x I- 1  - g2(x) = x2 -1 -- g3(x) = x1 + x2 - I- g4(x) = XI - x2 -I

p 400 2,000 10,000 400 2,000 10,000 400 2,000 10,000 400 2,000 10,000
Mean -.0093 -.0030 -.0048 .6207 .5295 .4648 .6113 .5265 .4600 -.6301 -.5325 -.4695
NSE .0172 .0068 .0027 .4515 .2461 .1516 .4522 .2463 .1518 .4514 .2462 .1515
RNE .932 1.077 1.312 .170 .085 .042 .171 .085 .043 .170 .086 .043
CD -12.539 .669 -2.319 -12.550 .669 -2.319 -12.539 .715 -2.342 12.453 -.620 2.293
Sg(O) .1164 .0926 .0733 80.31 120.37 229.24 80.57 120.48 229.74 80.28 120.44 228.90
Sg(l/ 2) .0941 .1104 .0999 .3610 .3651 .3002 .4556 .4491 .3911 .4548 .5018 .4092

B: -00 < x1 +x2 < -, -5 < x1-x2 < 5

I- gl(x) = X- I--g2(x) = x2 -1I -g3(x) = xl + x2 -1 I--g4(x) = xl - x2 -1
p 400 2,000 10,000 400 2,000 10,000 400 2,000 10,000 400 2,000 10,000
Mean .0071 .0094 -.0016 .9331 .5474 .03667 .9402 .5568 .0351 -.9261 -.5380 -.0383
NSE .0139 .0065 .0028 .2921 .1737 .1079 .2947 .1749 .1087 .2901 .1728 .1072
RNE 1.105 1.197 1.242 .177 .091 .051 .180 .093 .052 .179 .092 .052
CD -.808 .927 -2.288 -.111 2.605 -.959 -.177 2.653 -1.041 .044 -2.544 .875
Sg(O) .0761 .0083 .0079 33.607 59.950 116.023 34.220 60.743 117.705 33.148 59.321 114.499
Sg(/ 2) .0886 .1097 .1019 .3438 .3619 .2894 .4561 .5057 .4164 .4087 .4376 .3663

C: -- < x1 +x 2 < o, -. 5 < xI -x 2 < .5

- gl(x) = X I -- g2(x) = x2 -1 -- g3(x) = xl + x2 -I I--g4(x) = xl - x2 -1
p 400 2,000 10,000 400 2,000 10,000 400 2,000 10,000 400 2,000 10,000
Mean .0282 -.0018 -.0057 .0445 -.0080 -.0135 .0727 -.0098 -.0192 -.0162 .0061 .0078
NSE .0150 .0065 .0032 .0272 .0113 .0056 .0405 .0169 .0085 .0170 .0073 .0035
RNE 1.060 1.125 .953 .638 .667 .573 .726 .782 .665 .796 .771 .688
CD -.934 .251 -.963 -.793 .667 .573 -.902 .782 .665 .265 .341 -.352
Sg(O) .0889 .0833 .1050 .2913 .2530 .3144 .6461 .5677 .7182 .1143 .1049 .1205
Sg(n/2) .1012 .1007 .0994 .2126 .1487 .1763 .5304 .4176 .4702 .0097 .0081 .0081

D: 10 < x1 + x2 < , 10 < xI -x2 <oo

I-gl(x) = Xl I I- g2(x) = x2 -1 --g3(x) = xl + x2 -1 -- g4(x) = xl - x2 -1

p 400 2,000 10,000 400 2,000 10,000 400 2,000 10,000 400 2,000 10,000
Mean 10.020 10.019 10.020 .0003 .0002 .0001 10.020 10.020 10.020 10.020 10.019 10.020
NSE .0007 .0003 .0001 .0006 .0003 .0001 .0010 .0004 .0002 .0010 .0005 .0002
RNE .839 .802 .910 1.089 1.091 1.053 .888 1.039 .941 1.008 .815 1.015
CD 2.246 .781 -.255 .184 -.045 -.001 1.656 .550 -.191 1.855 .577 -.181
Sg(O) .0002 .0002 .0002 .0002 .0002 .0002 .0004 .0004 .0004 .0004 .0004 .0004

Sg(n/2) .0002 .0002 .0002 .0002 .0002 .0002 .0004 .0004 .0004 .0004 .0004 .0003

E: -.5 < X1 +X2 < .5, -.5 < X1-X2 < .5
-- gl(x) = x -  I I- g2(x) = X2 -1 -g3(x) = XI + X2 -I I--g4(x) = Xl - X2 -1

p 400 2,000 10,000 400 2,000 10,000 400 2,000 10,000 400 2,000 10,000
Mean -.0041 .0001 -.0011 .0091 .0072 .0032 .0050 .0073 .0020 -.0132 -.0072 -.0043
NSE .0073 .0035 .0018 .0114 .0052 .0026 .0142 .0066 .0032 .0127 .0059 .0031
RNE 1.392 1.338 1.013 .956 .843 .683 .132 .901 .762 1.221 1.117 1.363
CD -.971 -.754 .249 .745 .898 -1.526 .132 .276 -1.172 -1.264 -1.229 1.363
Sg(0) .0209 .0240 .0310 .0509 .0538 .0676 .0804 .0875 .1025 .0631 .0680 .0947

Sg(n/2) .0351 .0319 .0291 .0511 .0381 .0477 .0893 .0730 .0809 .0831 .0672 .0725
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Table 3
Properties of the Gibbs Sampler, Truncated 15-Variate Normal Distribution

p=0, 1=R013, rij =pij I

x1 x 2 ,x I -x3; x 5 >x 4 x5 >6; 7 > x 8 , 7 > x 9 ; X12-X Xl2>'"1; x14- x13, x 15

A: p = .00
5 5 5

1-g W(x) - "x 3i-2 I-g2(x)= Yx3i 1 - 1 g3(x) = x3i -- I
i=1 i=1 i=1

p 400 2,000 10,000 400 2,000 10,000 400 2,000 10,000
Mean .4336 .3444 .4263 .2821 .4637 .4011 -.8200 -.8176 -.8478
NSE .0786 .0397 .0181 .0984 .0383 .0176 .0917 .0379 .0186
RNE 1.343 1.033 .954 .845 1.072 1.015 .986 1.169 .964
CD .750 -.500 -.081 -.135 -1.086 -.310 1.786 .074 -.622
Sg(0) 2.4354 3.1338 3.2663 3.8149 2.9267 3.0835 3.3118 2.8582 3.4432
Sg(i/2) 3.6108 2.9291 3.2524 3.2953 3.0835 3.2071 3.2886 3.9327 3.2096

B: p = .50

5 5
--- g(x)= Xx3i-2 9-----g2(x)= Yx 3 i l L--g 3 (x)= Xx3i -1

i=1 i=l i=1
p 400 2,000 10,000 400 2,000 10,000 400 2,000 10,000

Mean .4790 .5861 .5312 .4222 .7204 .6776 -1.6333 -1.0562 -1.1207
NSE .1711 .0847 .0386 .1777 .0806 .0382 .1833 .0827 .0415
RNE .382 .354 .341 .397 .373 .340 .432 .402 .307
CD -2.871 .541 1.403 -4.179 1.769 1.359 -2.694 .126 .842
Sg(O) 11.536 14.273 14.861 12.441 12.922 14.554 13.244 13.582 17.165
Sg(/ 2 ) 3.235 3.079 3.176 3.446 3.469 3.132 3.990 3.748 3.554

C: p = .80

5 5 5
I - g(x)= Ix 3 i-2-1 I-g2(x)= Yx3il-l - l 1-g3(x)= Yx3i -I

i=1 i=1 i=1
p 400 2,000 10,000 400 2,000 10,000 400 2,000 10,000

Mean .7862 .2454 .4784 1.0146 .4719 .7426 -.6402 -1.1973 -.9049
NSE .2363 .1661 .0830 .2376 .1694 .8232 .2248 .1778 .0858
RNE .228 .126 .095 .231 .123 .094 .245 .120 .094
CD -1.709 -2.347 .564 -1.613 -3.090 .101 -2.316 -4.281 .638
Sg(O) 22.007 54.795 68.716 22.238 57.024 67.556 19.913 62.802 73.314
Sg(i/2)l,652 1.495 1.425 1.448 1.409 1.351 1.781 1.693 1.699

D: p = .95

5 5 5
1---gl(x)= Yx3i- 2 -1 1 g2(x)= Yx3i-I - ----- g3(x)= x3i -1

i=1 i=1 i=1
p 400 2,000 10,000 400 2,000 10,000 400 2,000 10,000

Mean -1.0142 1.0650 -. 1249 -.8501 1.2505 .0587 -1.7441 .2082 -.9101
NSE .2928 .2660 .1298 .2884 .2665 .1295 .2913 .2661 .1311
RNE .176 .081 .042 .175 .081 .041 .177 .082 .042
CD 4.001 2.166 2.280 3.957 1.988 2.229 3.231 1.603 2.036
Sg(0) 33.78 140.06 167.97 32.78 141.11 167.26 33.44 140.71 171.34
Sg(n/2) .42 .42 .38 .33 .35 .34 .43 .41 .42



92-19668
AD-P007 216 sii11i1n1 579

111111111 1111 11111 lI l
Using Projection Pursuit in Multispectral Image Analysis

G P Nason and Robin Sibson,
School of Mathematical Sciences,

University of Bath, Bath, UK.

ABSTRACT Channel Frequency (,u i)

1 0.42 - 0.45

Principal components analysis is already used in multi- 2 0.45 - 0.52
spectral image analysis to reduce the number of spectral 3 0.52 - 0.60

dimensions. We propose to use projection pursuit to find 4 0.605 - 0.625
interesting combinations of spectral variates that pro- 5 0.63 - 0.69
duce images that enhance contrast differences between 6 0.695 - 0.75

differing land-use types. We develop a 3-diliensional 7 0.76 - 0.90

moment index based on Jones and Sibson's index for 8 0.91- 1.05

projection into 2-dimensions. 9 1.55 - 1.75
10 2.08 - 2.35
11 8.50- 13.00
12 8.50 - 13.00

1 Introduction.

Table 1: Spectral channels sensed by NERC Daedalus
Remote sensing is an indispensable tool in many scien- thematic mapper.
tific disciplines. It is one of the major tools in moni-
toring our own environment in a cost-effective way. We
will be investigating methods of treating multispectral
images, which reduce the number of spectral dimensions, 2.1 Viewing the image.
without losing significant information. This information
extraction process has been performed in many ways in
the past. We develop the necessary techniques to per- One thing we would want to do with this image is look
form projection pursuit, which is to be used in a sinular at it. We could view 12 separate monoimages, but it is
r6le to principal components analysis. useful to somehow combine the images to form a colour

image. Colour is effective for highlighting differences in
land use and type, and directs the eye to various fea-

2 The Practical Problem. tures.

We would generally view the image on a CRT nion-
The NERC Computer Services kindly supplied us with itor, and would maybe later obtain a hardcopy. Most
nmch thematic mapper data. These data sets consist of colour monitors use the red-green-blue (ROB) system of

images collected by a Daedalus thematic mapper, flown

in an aeroplane above the area to be remote sensed. The specifying colours (to span the 3D colour space that hu-

senses 12 different spectral channels. mans perceive[l]), although this is not the only system
mapper passively sthat we could use. One way to obtain a quick view of

A monoimage of the area is recorded at each spectral the image is to choose three mapper bands and assign
frequency. The image that we decided to use was one them to one of the RGB colours.
of the Chew Valley Lake, Somerset, UK. We decided to
use this image since it has a good mix of land and water The difficult question is: what mapper frequencies do
features. Each monoimage consists of 1254x715 pixels, we use, and which colours do we assign them to? Note
which take discrete values in the range of 0 to 255. We also, that there are P3 = K ways of choosing such
generally operate upon sections of the whole image. assignments (e.g. P 31

2 = 1320). To view all of them,

Table 1 details the frequencies that the scanner de- and select good images, is at best non-objective,and at
tects. worst, horrendously time-consunming.
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2.2 Multivariate methods. Number Eigenvalue % Variance Expl.
1 6.88 76

We wish to move onto more incisive techniques of vari- 2 1.50 17

able reduction. For these techniques, we wish to consider 3 0.387 4.3

the image as a multivariate data set. To do this we re- 4 0.130 1.4

gard spectral channels as variates, and pixels as cases. 5 0.0569 0.63

We will let K represent the number of variates, and N 6 0.0563 0.3
6 0.0323 0.36

the number of cases (e.g. K = 12,N = 896610). 7 0.0138 0.15

8 0.00612 0.068
2.3 Why dimension reduction? 9 0.00149 0.017

To end this section we mention two other reasons why Table 2: Eigenvalues from typical principal components
dimension reduction is a useful processing step.

It is very common to run an automatic classifier over analysis.
an image. Due to the curse of dimensionality (see [4])
these algorithms can become confused, and work much In layman's terms, the first principal component appears
better in lower dimensions. to be a roughly equal combination of all the original

Secondly, the amount of remotely sensed data col- spectral variates. This component has a intuitive in-
lected is increasing at an alarming rate, and so knowing terpretation as a brightness variate and so we assign it
what to keep is important. to the B of the hue-saturation-brightness (HSB) colour

model.
2.4 Data quality. The remaining principal components are usually con-

trasts of certain channels. On an rendered image this
From monoimages we have found spectral channels I and asth of rovi c Ontas enhcemets

7 to be very noisy. Also, channel 12 records at the same

frequency as channel 11, except at a different gain level.
For these reasons we have discarded channels 1,7 and 12 4 Analysis by Projection Pursuit.

from the analysis giving an effective set of nine variates. 4.1 What is projection pursuit?

3 Analysis by Principal Components Analysis. Exploratory projection pursuit can be used for the same
purposes as principal components analysis. We wish to

Principal components analysis is an established multi- use the cluster-detecting ability of projection pursuit,
variate technique already used for dimension reduction just as we would with ordinary multivariate data.
in image analysis (where it is also known as decorrela- We do not wish to describe exploratory projection
tion. Full and detailed treatments of principal compo- pursuit in great detail. Interested readers should con-
nents analysis can be found in most applied multivariate suit [5] or [21 for more information.
texts (e.g. [6]).

We compute principal components front the correla- 4.2 Projection pursuit into 3 dimensions.
tion matrix of the image. The correlation matrix usually
tells us that channels of sinlar frequency are highly cor- Many projection indices have been proposed in the

related. literature[5] [2][31 None have yet been explicitly devel-

Since humans perceive a 3D colour space, we will usu- oped for projection into 3 dimensions, although for some

ally choose the 3 principal components associated with it is a relatively trivial matter to do so. We also prefer

the 3 largest eigenvalues. an index that is rotationally invariant with respect to
the chosen basis in the projection space.

3.1 Results of principal components analysis. However, the overriding consideration for us is coim-
putational efficiency. All indices in the literature (that

In Table 2 we display a typical set of eigenvalues. From we know of) have a computational effort of order N or
this one can see that the first 3 principal components larger. One index that almost overcomes this barrier is
account for over 90% of the variation inherent in the the moment index described in [5]. Once a set of sum-
data (so maybe 3 dimensions are adequate). The first mary statistics is computed for a data set the subsequent
principal component in our example is typically not very computation of an optimal projection solution does not
far fron depend on N. Since a common method of searching for

-(K-, K- ,. .. , K- )T optimal projections depends on many random starting
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positions, this independence of N is very useful, since Otherwise, projection pursuit finds interesting con-
for these image problems N is usually very large. trasts of the original variates, which are usually different

from those found using principal components. Some-

4.3 Review of the moment index, times, one finds that ground structure is highlighted
more effectively with a projection pursuit contrast than

The moment index[5] is derived from the order-i neg- a principal components one.
ative Shannon entropy index. We have extended the
moment index to a 3D space and obtain

5 Conclusions.

+ 3k2 1, + 3k 2 + 3k , + 6ki 1
2  3 2  ± 2  We take the view that projection pursuit should act in

'0 + 021 ( ( )3]  a complementary r6le to principal components analysis.1 9 ,

+ I [kb2) + 4kj11 ° + 4k2)1 + 6k 2, + 12k21  It has the potential to find interesting clusters and act
as a valuable dimension-reducer.

± 6k 2 + 4k 3 ± 12k 21 + 12k 1 2 + 4k103  After practical experience with colour images and2 k2 2 2 2

+ k04o + 4k03 1 + 6k02 2 + 4k01 3 + kO 4]. their manipulation, we realise how dangerous it is to
compare the performance of various methods when the

as our 3D index, where k... are trivariate k-statistics. output is a colour image. Sometimes changing the colour
This projection index is rotationally invariant with assignments in an image can be more revealing titan

respect to choice of basis in the projection space, and changing a linear combination of channels.
the derivatives with respect to the projection space can However, for automatic classifiers and storage we must
be calculated. be able to reduce dimension effectively, without losing

too much, and projection pursuit will be useful here.
4.4 Sphered images. We nmust investigate the use of other colour models.

Sphering' [7] is a transformation that transforms the We have used RGB and HSB models here, there may be

original data set into one that has zero mean and identity others which might fit in more naturally.
variance. We could also try other projection indices, or search

It is very interesting to observe the results of the for projection spaces one-dimension at a time.

sphering process applied to the image data. What al-
most seems like a ghost picture of the "original" results. 6 Acknowledgements.
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1 Introduction image, is made based upon those pixels in the observed
image that are within a window around (i, j). Except for

We consider the following problem: a black and white the noise level , all statistics required to make a decision
image is observed in digitized form. Unfortunately the about this pixel, can be gathered, in an empirical Bayes
'real' image is not observed: at some stage the image has fashion, from the image.
been distorted with noise. Our objective is to remove as This article is a summary of chapter 1 of Kooperberg
much of the noise as possible, to get approximately the (1991).
original image back.

In a more mathematical setting, let x be an m by n
array, with entries 0 and 1; x is considered to be a real- 2 A Bayes W indow Estimator for
ization of a random variable X. We do not observe the Binary Images
image x. Instead -,r uuerve y, a noisy version of x that
is a realization of the random variable Y, where the dis- Some definitions and notation:
tribution of Y depends on x. We want to estimate z on Let S be a finite subset of Z2 and let BS be the collection
the basis of y. of functions on the elements of S that are 0-1 valued.

The problem that we are discussing is a special case Let A,,, be the set {(i,j) : 1 < i < m, 1 <j < n). If
of the more general image reconstruction problem, y is a S = A ,. we can think of Bs as the collection of n x m
set of records generated by degradation of the true image arrays with entries 0 and 1. We will write B nm instead of
x. The noisy image y and the original image z may or B A

.,. If there is no confusion we will omit the n and m
may not be closely related. Two of the most influential and we will write B instead of B" m . An element x E B
papers discussing these problems are Besag (1986) and can be written as x = (xij, 1 < i < m, 1 < j < n).
Geman and Geman (1984). Since then a large body of
literature about image reconstruction has developed. See Let (0, 0) E S. If(i, j) and S are such that 1 < (i+k) <

Besag (1989) and Geman (1991) for a review of this area. n and 1 < (j + 1) < n for all (k,1) E S, we can define
a window -operaior W,,. Informally, Wia,, z E B is that

A common assumption is to put a Markov Random awno-prtrWi nomly ix sta
Dpart of x that falls within S, when S is positioned such

Field as a prior on the images. Using a Markov Random that the origin of S is positioned at (i, j).
Field as prior on the images leads to a global optimization Defin indo ioeton a, , B ) a

problems to reconstruct the original image. There are Define a window-operato- Wii : B n n -+ B s as:

several algorithms to deal with this optimization problem, (Wijx),, = xi+,j+l, (k, 1) E S.
for example, Gibbs sampling, simulated annealing and
ICM. We also need to define the center-less window-operator

We will not assume a Markov Random Field in this E, : B"" --, B s\{(')} as:
paper. Instead it is assumed that the probabilities of (Eq)k =xz+,j+, (k,I)ES,(k,!) #(0,0).
observing a certain pattern in the image are the same
everywhere in the image. We will study the independent Thus a window-operator cuts a piece of shape S from
Bernoulli noise case. For the algorithm which we will x E B"', centered at (i, j); a center-less window-operator
discuss the decision about the (i,j) pixel in the original cuts out the same piece, except for the center pixel (i,j).

*Research supported in part by NASA NCA2-488 and NSF Now let x E B be the image that we want to recon-
DMS-84-51753. I like to thank my Ph.D. adviser, David Donoho, struct. x is a realization of the random variable X. In-
for many helpful discussions and suggestions. stead of x we observe a realization of Y, y. The Y1j's are
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conditionally independent given that X = x: 3 An Empirical Bayes Window
Estimator for Binary ImagesP(Y.i =z,,jiX = zii) = 1- c

P(Yij = 1 - xij I Xii = xij) = e, To use the window estimator (1) information about the
distribution of WijY (or W,3 X; to compute the probabil-

with 0 < e < 0.5. ities in (b) above) and e is needed. Although information

Let x E B, let T: B --. B be an estimator of x based about the distribution of W,,Y will be seldom available,

upon y. Define we will assume that e is (approximately) known.
To get information about the distribution of WiqY we

can now take an empirical Bayes approach, and use the
R(2, T) = E Xii - T(Y)q, I/(nm) data to estimate this distribution. If we assume that the

distribution of W,,Y (and thus tht distribution of WqJX)
does not depend on i and j (homogeneity) counting for

= _.. P(X,, T(Y)j)/(nrn) how many pixels (k,l) Wijy = Wkly gives the empirical
estimator

to be the ezpected misclassification errorof T as estimator /3(Y1i = yI I E 3 Y = Eiy)
of X. = I(Wijy=Wk1y)

We call Ts a window-estimator if Ts : B -- B, and if = 1k1 I (Eiiy = EkIy) (2)

Ts(Y)ij is independent of {Yki, (k - i,l - j) 0 S} given
WiJ Y. where I(.) is the usual indicator function.

Fix a window S C Z2 . The following theorem holds: There is a problem with this estimator though. Clearly
Theorem: (i) The window-estimator Ts, S firzed, which we would like to have a large window to incorporate as
minimizes the expected misclassification error R(X, Ts) much information as possible in the decision. However
has the form: a large window might lead to very small counts in (2).

Even for a relatively small 5 x 5 window we would be
Yij if P (Yij = yij I Eq Y = E y) counting the empirical distribution on 224 = 16,777,216

Ts(y)ij = > 2e(l - c), (1) points. Even to get an average of just 1 observation in{ - yij otherwise; each cell we need a picture of 4096 by 4096 points!
One possible modification is to use a large window

(ii) The expected misclassification error achieved by this whenever this is possible, but to use a smaller window
estimator is: if the estimator in (2) would be based on very small

counts. For example, we could first use a window of size

R(X,Ts) = I - 1 E '2e(l - c)I
(1- 2 13: , and make a 60% confidence interval for

where U = P (Z, = 1 - yi, I EiiY = Eijy). P(};J = I E12 Y = E,,y) based upon I(W,,y =

See Kooperberg (1991) for the proof. Wky) and Ek, I(Eijy = Ekly). If this interval does not

What does this mean? It says that one gets the Bayes cover 2e(1 - e) we make a decision, while if it does cover
window estimator by the following procedure: 2e(1 - e) we make the decision based upon a window of

a) Cover the pixel (i, j) that you want to reconstruct. size 9: *0.
b) Compute the probability that this pixel in the observed •

image is white (or black). (P(Yij = 11 EiY = Eiy). Another modification is to assume left-right, top-
c) If this probability makes you pretty sure (either bottom and/or diagonal symmetry of the prior distribu-

P(YiJ = 1 EiY = Eijy) > 1- 2c(1- e)or tion of WY. Each symmetry reduces the number of
P(Yi = 0 E,,Y = Eqy) > 1 - 2c(1 - e)), then different patterns by a factor of 2.
this is the Bayes estimate of the pixel in the original These two modifications are used in our examples.
image xij. Other possible modifications that we do not use include:

d) If there is still doubt, remove the cover, and the color (i) assume black-white symmetry of the prior distribu-
that you observed (yji) will be the estimate for the tion on WjjY; or (ii) a procedure in which we do not
original color (ij). only count those patterns that are exactly the same, but
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also those that are almost the same, i.e. differ only in 5 Discussion
one or two points. Those that are different would than,
conceivably, make a smaller contribution than those that We have introduced a reconstruction rule for binary im-
are exactly the same. The reason that we do not use the ages. The rule only uses the information within a finite
later idea is that we do not know of an algorithm to im- window centered on the point to be reconstructed. The
plement this rule that would use less than O((nm)2 ) time, rule is, among all the rules based on that window, the one
while without this idea, we can implement the algorithm that minimizes the expected number of incorrectly recon-
in O(nm log(nm)) time. structed pixels. Surprisingly, the rule can be expressed in

the statistics of the observed image only. Therefore, to
use the rule, we do not need to know the prior distribution
of the images.

4 Examples If we assume stationarity we can apply the rule in an
empirical Bayes fashion. All the necessary parameters
can be estimated from the observed image. No training

We used the empirical Bayes window reconstruction rule, images are required.
as described in the previous section on a number of initial
examples. Upon examination of the results, we concluded Our examples suggest that the method works well for

that the estimator was working reasonably well, but that binary images with a small amount of noise if some post-

it left too many small spots and was a bit to rough to processing is applied. In these cases it removes almost

please our eye. This is actually not surprising: our es- all the noise. In binary images with higher noise levels or
timator did not make any assumptions about smooth- more details the method still works quite well. The results

ness, while in practice images do tend to be (somewhat) are comparable to those achieved by some other methods
smooth. We decided to carry out some post-processing in the literature. We should point out though that, al-
to further smooth the picture. We settled on the fol- though some generalizations are possible, our method is
lowing operation: change all black(white) pixels, that to- not yet applicable to such a wide range of different prob-
gether with at most 12 other black(white) pixels, are not lems as several of the other methods are applicable to.

connected to any other black(white) pixels and are com- Further work is needed to explore the possibilities to ex-
pletely surrounded by white(black) pixels. tend the window based method to other problems.

We applied the algorithm to several other examples.
Among them the same examples as were used in Greig, References
Porteous and Seheult (1989). We added 25% Bernoulli
noise to their figure 1. Our reconstruction had 4.8% in- Besag, J. (1986). On the Statistical Analysis of Dirty
correct estimated pixels after post-processing (9.8% be- Pesag, s. 1986). o the Statistical SofityPictures. Journal of the Royal Statistical Society B
fore post-processing). The methods discussed in Greig 48 259-302.
et.al. (1989) (annealing, ICM and exact MAP) had be-
tween 5.2% and 5.4% incorrect estimated errors. Besag, J. (1989). Towards Bayesian Image Analysis.

For the figure that was first used as Figure 4 in Besag Journal of Applied Statistics 16 395-407.
(1986). This was an 88timeslO0 hand-constructed scene, Geman, D. (1991). Random Fields and Inverse Problems
designed specifically to contain some awkward features. in Imaging. Lecture Notes in Mathematics Springer,
We applied our algorithm with 30% additive Bernoulli Berlin.
noise. There were 6.5% incorrect classified pixels af-
ter post-processing. For the other methods Greig et.al. Geman, D. and Geman, S. (1984). Stochastic Re-
(1989) obtained between 5.4% and 7.0% incorrect clas- laxation, Gibbs Distributions, and the Bayesian
sified pixels using several different other reconstruction Restoration of Images. IEEE Transactions on Pat-
methods, tern Analysis and Machine Intelligence 6 721-741.

On the next page we show two larger examples. Typ- Greig, D.M., Porteous, B.T. and Seheult, A.H. (1989).
ically, for images with the amount of detail as these fig- Exact Maximum a Posteriori Estimation for Binary
ures have, 10% incorrect pixels in Y, the noisy image, Images. Journal of the Royal Statistical Socicty B 51
are reduced by our reconstruction method to about 1% 271-279.
incorrect pixels in X, the reconstructed image. 20% er-
rors in Y is reduced to about 2-3% in k; 30% errors in Kooperberg, C. (1991). Smoothing Images. Curres and
Y is reduced to about 4-8% in I; and 40% errors in Y is Densities Ph.D. thesis, University of California at
reduced to about 15-30% in . Berkeley.
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,,

Figure 1 (left): circles, top to bottom:
- original (600 x 600 pixels);
- with 30% errors;

* - reconstruction, with 2.5% errors.

Figure 2 (right): kitty, top to bottom:
- original (630 x 390 pixels);

- " - with 20% errors;
- reconstruction, with 2% errors.
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Abstract sic assumption is that all components of a
vector of spectral values refer to the same
ground location. This is reflected in spec-

In this paper, we use simulations and some ifications for various airborne and satellite
theory to show that many of the standard multispectral scanners, which typically re-
techniques used to estimate band-to-band quire that the bands be registered to within
misregistrations in multivariate imagery are 0.1 or 0.2 pixels.
biased. These biases, although typically
small, become important because they are Most of the methods used to estimate band-
much larger than the standard errors of the to-band misregistrations are either cross-
estimators obtained for most image pairs, covariance-based or Fourier-based. In this
which often consist of sample sizes of the paper, we show that, when these methods
order of 105 or 106. We develop an em- are applied to remotely sensed imagery, both
pirical method for effectively correcting the usually give biased estimates of the misreg-
biases in some of the methods. Typically, istrations, the former because of inadequate
this enables us to estimate misregistrations interpolation procedures and the latter be-
to within about 1/100th of a pixel. cause they do not account for the presence of

abasing in the data. We describe a Fourier-
based method which accounts for abasing

1 Introduction and which, for a variety of 512 x 512 image
pairs, gives misregistration estimates with
standard errors in both horizontal and ver-

In recent years, quite a few papers have been tical directions of less than 1/100th pixel!
published in the remote sensing and image Because of space limitations, only an out-
processing literatures on methods for esti- line of the work is given here. More exten-
mating band-to-band misregistrations in mul- sive descriptions can be found in Berman et
tivariate imagery. Accurate band-to-band al (1990, 1992).
registration is important for the multivari-
ate analysis of such imagery, because a ba- Much of the theory rests on essentially one-
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dimensional ideas. Consequently, we deal of y,(t) in the vicinity of its maximum to
first, in Section 2, with one dimensional im- estimate it. The appropriate interpolator is
ages, that is time series data. This is ex- highly data-dependent. Using simulations,
tended in Section 3 to two dimensional im- we have found that this often leads to esti-
ages. mates with a bias of about 0.1 of a pixel; see

Berman et al(1992, Section 3).

2 One-Dimensional Images More sophisticated estimation procedures can
or Time Series be based on the Fourier transform. Let

Fj(w,) = (21rN)-2 =Yj(t)ei " -, (2.3)

Suppose we observe two time series -{Y,(t)}N (we = 2ruiN,u = 1,...,[N/2J) denote the

j = 1,2 satisfying the relationships discrete Fourier transform of series j, and let

Y(t) = aj + fIjS(t + Lj) + E(t), (2.1) 6(w,,) denote the phase difference between
the two series at frequency w, (note that

t=l,...,Nj=1,2, where S(t) (the "signal") 6(-w) = -d(w)). If either (a) D = K12,
and the ci(t) (the "noise") are assumed to be where K is an integer, or (b) there is no
weakly stationary processes that are mutu- abasing of the data, then it can be shown
ally uncorrelated with E(cj(t)) = 0. The pa- that, in large samples d(wu) - D+2rm(w,),
rameter of interest is D = L2 - L 1. Because where m(w,) is that integer ensuring that
pixel values obtained from sensors such as i(w,) E (-r, 7r]. Note that, if IDI < 1,
cameras are usually integrals of brightness which usually is the case with remotely sensed
values over a region corresponding approxi- data, m(w,) = 0. Hamon and Hannan (1974,
mately to the pixel, we can further assume Section 2) assert that (provided that there is
that approximately no abasing) the asymptotically optimal es-

S(t) = j X(u)du, (2.2) timator of D maximizes

where X(u) is itself a continuous weakly sta- E 0<u<N/2W(wu) cos(O(w) - Dwu), (2.4)

tionary process.

where
A naive estimator of D, used widely in re-
mote sensing, is obtained by finding the max- W(w,) = a2(wu)/(1 - a 2 (wu)) (2.5)
imum of the cross-covariance function of the
two time series. If y3(t) = cov(S(u),S(u + and a 2(wu) is the coherence between the two
t)), we see from (2.1) that cov(Yi(u), Y2(u + series. Since the coherence is usually un-

t)) = 01 2-f.(t + D), which (assuming a known, it needs to be estimated from the
unique maximum) is maximised when t = data; see Hamon and Hannan (1974) for de-
-D. However, because the data are not con- tails. Hannan and Thomson (1988) consider
tinuously observed, we can estimate 78(t) di- the behaviour of (2.4) and other asymptoti-
rectly only for integer t. Hence, if D is non- cally equivalent estimators under low signal-
integer, we need to interpolate our estimates to-noise scenarios. It is also worth noting (as
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Hannan (1975) and Chan et al (1978) have) the [N/21 = 50 positive frequencies given af-
that, when IDI < 1 and the noise is small, ter (2.3). Biases are clearly present at high
maximising (2.4) is approximately equiva- frequencies and at very low frequencies. The
lent to minimising latter are due to the fact that the data are

not periodic at the boundaries, and can be
Fo<u<N/2W(w,){0(w,) - Dw.,}2. (2.6) largely corrected by "tapering" (Bloomfield,

1976, Section 5.2); see Berman et al (1992,
Section 3) for details.

Of course, the advantage of (2.6) is that it

has an explicit solution. The high frequencies are due to aliasing in

the data. It can be shown that, under mildUnfortunately, the presence of edges in im- regularity conditions, 0(w) will converge, as

ages (e.g. rivers, roads, fractures, cell or N -- oo, to i(w), the phase of the function

property boundaries) means that frequen-

cies higher than half the sampling rate are E(w) - (2r)-l=.oy,(l + D)e- iw (2.7)
often present, in which case the data are
aliased. This manifests itself in biases in
0(w,) for various w.. If there is no alias-
ing and 1DI < 1, then in large samples, e iDwro 2 7 itD

A(w) =_(w)/w= (the phase delay) - D. =-_0o ef.(w + 2r) (2.8)

As an experiment, we generated 512 pairs where
of time series from real data satisfying (2.1)
and a discrete approximation to (2.2). For f(w) = (2r)-' - 7.(t)e" (2.9)
each pair, N = 101 and D = 0.2. Further -o

details can be found in Berman et al (1992,
Section 3). Fig. 1 shows the means (plus denotes the spectrum of the signal. Depend-
and minus one standard deviation) of the ing on the nature of 7 8 (t) and f.(w), it will
phase delays for the 512 data sets at sometimes be convenient to use (2.7) to com-

pute 0(w) and sometimes (2.8). The "un-
biasedness" of the cases (a) D = K/2 and

- Iii (b) no aliasing of the data (i.e. f,(w) =
lU0, IwI > r,) follow easily from (2.8). We

have computed (2.7) or (2.8) for a range of111 values of D E (-1,1) and for a variety of
till X± autocorrelation functions. Typically, they

........ asymptote to D as w -). 0 and converge to
".. . 0 as w --# 7. A theoretical explanation for

• - I this phenomenon is given in a Proposition in
e os ,. ,s a u u Berman et al (1992, Section 4). As an ex-

F.".4N 0ample, Fig. 2 shows the phase delay when

Fig.I D = 0.2,,cov(X(u),X(u + t)) = p', and p
= .99 (solid line), .5 (dots) and .1 (dashes).
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Note how in Fig. 2 (and in Fig. 1 if we taper means of finding the cutoff frequency. Fur-
appropriately) the estimates of the phase de- ther, since we are interested in estimating
lay are, for practical purposes, unbiased be- D, precise estimation of A and B is not im-
low a cutoff frequency (which will be appli- portant.
cation dependent). When IDI < 1, a practi-
cal estimate of it can be obtained by taking a When ID! > 1, we have found it best to es-
weighted mean of the phase delay estimates timate the integer part of D first, using a
at frequencies less than the cutoff frequency method such as the minimisation of (2.4),
(assuming we can obtain a good estimate of then shift one time series the relevant num-
it), where the weights are inversely propor- ber of integer units with respect to the other,
tional to the error variances of the remove the non-overlapping parts of the re-
corresponding phase delay estimates. suiting data sets, and finally estimate the

fractional part using (2.10) in conjunction

.. with weighted least squares estimation.

1- 3 Two-Dimensional Images

S. Much of the one-dimensional theory above
is readily extendible to two dimensions, and
hence applicable to the misregistration prob-

0 .. . .1A . lem. Let D. and Dy denote the shifts in the
--W -"z and y directions respectively. Equations
Fig.2 (2.1) and (2.2) extend in an obvious way.

Again, with the aid of simulated data, we
have sometimes been able to demonstrate
biases in cross-covariance-based methods of
about 0.1 of a pixel. The Fourier theory also

However, we have found that, when IDI < extends easily. For M x N images, the two

1, a very good empirical approximation to dimensional Fourier transform of image j is

many phase delay curves is given by the for- F,(w EM ,N ,m u la F j(W ,, X v ) 8= E , t= I (s , t0ei( s t '

(3.1)

A(w) = D - A(eBw' - 1). (2.10) (w. = 2iru/M,X,, = 2irv/N,u = M2,..,
M/2 - 1,v = -N/2,...,N/2 - 1). When

Typically B > 0. We estimate the param- aliasing is absent, the phase difference in
eters by non-linear weighted least squares, large samples satisfies
where the weights are again inversely pro-
portional to the error variances; see Berman
et al (1992, Section 5) for further details.
We can interpret this as an approximate
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dependent of Xv, and is also the phase de-
lay of a ONE-DIMENSIONAL time series,

i(w, Xv) -. wuDx + xvDy + 2rwm(wu, Xv), which we have found is well modelled by
(3.2) (2.10). Our solution therefore is to compute

where m(wu,Xv) is that integer chosen to
ensure that i(wu,X,) E (-r,or]. If IDol +
IDyI < 1,m(wu, Xv) = 0. For the time be- 2
ing, we shall assume this to be so. When W = -72Az(Wu, Xv)/Evv 2 , (3.5)
aliasing is present, there are two options. In
the first option, we can find a rectangular where r, = Var {Ax(wu, v)}. Then
region around the origin for which (3.2) is Var(A&(w)) = {EvrS 2 - 1 . Typically, T,

a good approximation. This involves find- needs to be estimated via the residuals from
ing cutoff frequencies in both the x and y some local smoothing procedure. Finally,
directions. Let we fit a model of the form (2.10) applied to
A=(w , Xv) ={(wu, +X)+O(wu, X)}/2wu, A,(wu) by non-linear weighted least squares,

(3.3) where the weights are proportional to the

u = 1,...,M/2 - 1,v = 1,...,N/2 - 1. inverse of Var(A&,(w,)). If the various as-

For those frequencies for which (3.2) is a sumptions underlying our model are correct,
the residual variance from this fit should be

good approximation, it is easily seen that, in t 1. W e ho ts hov e
large samples, &.,(wu, X,,) ," D_. A suitably about 1. We should stress however that
larged mes, of~ the & .(wu, As suitaly the assumption of separability of the au-
weighted mean of the .,X)'s gives an tocovariance function is not critical to the
appropriate estimator of of An anou success of this method. It can be inter-
procedure holds for estimation of D.U e preted as an indirect method of finding two-
mild assumptions, the two estimators are dmninlctf rqece.We DI
approximately uncorrelated. See Berman et dimensional cutoff frequencies. When ID.l+

al (1990, Section 3) for further details. IDyI >- 1, we can estimate D. and Dy to the
nearest integer, using a two-dimensional ver-

more appealing option, which we sion of the Hamon-Hannan procedure or byn second,utine ippe ling irst, finding where the cross-covariance is max-
now use routinely, is the following. First,
we assume separability of the autocovari- imised, shifting the images the appropriateance function of the signal, i.e. cov(S(i, t), number of pixels, trimming them and using
anc f unio of the signalu~, e v(S(, t) the above procedure to estimate the frac-
S(s + u, I + v)) = 7y(u)'y (v), where S(s, I) tional parts.

denotes the signal at (s, t). It follows easily

that the limiting phase difference, (w,, Xv), We have applied this method to a simulated
will satisfy O(wuX) = Oe(wu)+eO(Xv), and image pair, each of size 200 x 200, in which
hence that, in large samples, there is no noise and for which D_ = 0.2

and D, = 0.4. Details of the construction

.(wu, Xv) - ) (3.4) of these images can be found in Berman et
al (1990, Section 3). Our estimates (and
their standard errors) are D = .198 (.005),

Note that the right-hand side of (3.4) is in- D = .398 (.007). We have also applied the
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method to a number of real remotely sensed Hamon, B.V. and Hannan, E.J. (1974) Spec-
image pairs, and in most cases obtained corn- tral estimation of time delay for dispersive
parable results. One example can be found and non-dispersive systems. Appl. Statist.
in Berman et al (1990); others will be pub- 23, 134-142.
lished elsewhere. In some cases, however,
the method breaks down. This occurs when Hannan, E.J. (1975) Measuring the velocity
the two images are not highly correlated (in of a signal. In Perspectives in Probability
our experience, when the maximum cross- and Statistics (ed. J.M. Gani). Sheffield:
correlation between the two images is less Applied Probabilty Trust.
than about 0.7). For remotely sensed im-
agery, this is typically because the wave- Hannan, E.J. and Thomson, P.J. (1988) Time
lengths at which the two images are recorded delay estimation. J. Time Series Analysis, 9,
are sufficiently far apart that the signals are 21-33.
no longer linearly related and so the two-
dimensional version of (2.1) no longer holds.
Consequently, care in the use of the method
described here is required.
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AUTOMATIC MAGNETIC RESONANCE IMAGING
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Abstract: Magnetic resonance imaging (MRI) is cur- assume a = 1 for the purpose of this paper (consistent
rently the most sensitive modality for detecting and dif- with cited authors), however, this parameter deserves
ferentiating pathophysiologic events. Transverse relax- future investigation. It then follows, that the marginal
ation times (T2) provide quantitative information useful distribution of Y(t) is Poisson with mean function
for evaluating a number of diseases (Dumitresco et al,
(1986)). In MRI the observed T2 signal is modeled by
m(t) = A(X=l 6je - a j't ) where the reciprocal of at is E A
the corresponding expected relaxation time. We con- (j=/

sider maximum likelihood estimation of the parameters
A, bj, aj, j = 1,... ,k under the assumption that the 3. ESTIMATION OF T2 RELAXTION TIMES.
number of excited protons measured follows a Poisson
distribution. A computationally simple method for se- Given independent observations of Y(t) at times

lecting k, the number of exponential components in the tl ... , t,, we focus on estimation of the parameters A, 6i,
model, is proposed. aj for j = 1...,k, with a, > ... > ak and 6 j = L.

The expected T2 relaxation times are given by 1/ai,
1. INTRODUCTION. j = 1,..., k and are the primary parameters of interest.

The maximum likelihood estimates can be obtained by
Estimation of the individual parameters in the sum iteratively reweighted least squares with weight function

of exponential components is a long standing statistical 1/m(t) (see Frome, Kutner and Beauchamp (1973), del
problem (Niedzwiecki and Simonoff, (1990)) for which a Pino (1989), Green (1984)).
solution is of fundamental interest in the field of MRI. Sandor et al (1988) derive the m.l.e. for a slightly
The multicomponent exponential model associated with different model of the decay curve of the transverse relax-
the T2 curve is derived in Section 2. Section 3 pro- ation. They assume the observations are from a Poisson
vides an overview of the fundamental estimation prob- random variable with mean function given by f, m(t)dt
lems encountered with this model. Clearly, estimation where I - (t 1 l,tj+1 ) denotes the time interval. Their
of the model parameters is facilitated by knowledge of formulation assumes the observations represent an ac-
the correct model. In Section 4 standard model selection cumulated response. Unfortunately the investigation of
procedures are examined and a new method for model this model was limited to equally spaced time intervals
selection is proposed. Finally, in Section 5 the methods and cannot be distinguished from a model based on time
developed are applied to MRI data from an in vivo study specific signal intensity. For the unequally spaced data
of female breast tissue. in our example the accumulated model provides a very

poor fit.
2. THE MODEL. Although theoretically the above estimates are ob-

tainable; realistically, solving the maximum likelihood
It is reasonable to assume the initial number of mag- equations is very difficult. The problems with fitting the

netized hydrogen molecules, X(0), in the multi-compart- sum of exponential components are well documented in
ment system follows a Poisson distribution with param- Bates and Watts (1988) and Seber and Wild (1989). One
eter A. Further, we assume that the relaxation time of a major problem is that of parameter redundancy; in other
molecule follows an exponential distribution with param- words, models of different order produce similar results.
eter ad for j = 1 .l. , . Let X(t) denote the number of Based on Reich's (1979) measure for parameter redun-
excited molecules at time t of compartment j. Then the dancy one cannot reliably estimate the parameters of a
conditional joint distribution of X 1 (t),..., Xk(t) given biexponential model if the ratio of the decay rates is less
X(O) is multinomial with parameters A,p1(t),... ,pk(t), than .2. His measure, however, was developed for an ad-where pi (t) = j exp{ -ai t} and kIb,=1InM ,

w"_pta 6, = 1. In MRI, ditive error model with equally spaced observations. In

the random variable of interest is Y(t) = a F=j Xj (k), MRI one expects the mean times of the long and short
the scaled signal, where a is a real-valued constant. We components to differ by less than a factor of five, so
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Reich's measure would imply that estimation of these AIC selection criterion is that both the monoexponen-
means is futile. Sandor et al (1988) show that for the tial and biexponential models must be fitted to the data.
Poisson model one can reliably estimate both the short Frequently when the incorrect model is fitted, achieving
and long expected times when the ratio of the two is as convergence of the optimization routines is difficult, thus
low as 1.1. these methods are undesirable. In the next section we

propose a method of model selection which does not re-
4. HOW MANY COMPARTMENTS? quire fitting the models.

Our objective in this paper is to introduce a nonin- 4.2 Suggested Approach for Model Selection.
teractive method for identifying the number of compart-
ments which should be included in the model (again we Consider the biexponential model observed at times
examine either one or two compartment models). To this ranging from 20 to 300 units. The signal attributed to
end, we have considered two approaches: use of standard the "short" component will decay more rapidly than the
model selection procedures for additive error models and signal of the "long" component; therefore, the long com-
development of a graphical method for model selection. ponent should dominate the signal at the larger times.

This is the fundamental argument given for obtaining
4.1 Standard Approaches for Model Selection. estimates of the expected T2 times by the method of

peeling (see Bates and Watts (1988)). If the true mean
Assume Y(t) is modeled by y(ti) = m(ti)+ ci where function m(t) contains more than one exponential term

ci for i = 1,..., n are independent Normal random vari- but a monoexponential model is fitted to the function,
ables with zero mean and variance a,?. Hurvich and Tsai the monoexponential decay rate is a monotonic decreas-
(1989) propose a corrected form of Akaike's Information ing function of time. More specifically, setting
Criterion (AIC) (Akaike, 1973) for purposes of model e - 00' = 6e- a ll + (1 - 6)e -

02

selection in both linear and nonlinear regression when
dealing with small sample sizes. For nonlinear regres- and solving for 30 we obtain

sion with nonconstant variance their criterion is 160(t) =0 = ln(be-al + (1 - b)e - 021)

t
AIC, = nln&2 + n1 + m/n Figure l is a plot ofIo0(t) for expected T2 times of

- (m + 2)/n' 30 and 125 with three different mixtures (20% long and
80% short; 50% long and 50% short; 80% long and 20%

where &2 is the maximum likelihood estimate of 0,2 and short); Figure 2 presents flo(t) with expected T2 times
m is the number of parameters in the model. The model of 30 and 65 for the same mixtures. For MRI data we
selected is the model which minimizes AIC,. For 16 ob- would be interested in the flo(t) curve up to time 300.
servations (which is the number of observations in our Clearly, when the short component contributes at least
examples) d12/2 2 > 1.40 to select a two-compartment 50% of the signal this curve is distinguishable from the
model based on this criterion. For the uncorrected AIC constant curve exhibited by a one compartment model.
a two-compartment model is indicated if d12/2 2 > 1.28. As expected, when the long component dominates the
The results of simulations based on both model selection signal it would be difficult to make a distinction between
procedures are given in Table 1. a one and two compartment model. If we observe these

patterns in sample data, then we should be able to dis-
Table 1. Model Selection for Additive Error Model tinguish between one and two compartment models.

Furthermore, the authors wish to note that even
%Correct when the signal is dominated by the long component in

a two compartment model and there exists reasonable
M(t) AIC AIC, separation of the two expected relaxation times, care

300(.5e-100 + .5e-/ 13 0) 95 95 should be taken in using methodologies which attribute
300(.5e- 5 / 2' + .5e- t/1S°  92 88 the tail data to the long component. As shown in Fig-
500(.8e - / 0 + .2e - t/130) 100 100 ure 1, the curve with an 80% decay rate of .008 appears
450e - t/3 0 80 88 flat by time 250, but the value of 3o(t) at this point is

The above percentages are out of 25 replications. .00889 (f1o(400) = .00856). This 11% increase could un-
derstandably cause bias in estimates based on the mono-

In addition to the dependence on an additive er- exponential model at the larger times and this is a model
ror model, a major drawback to the AIC or corrected which is dominated by the long component.



Automatic MRJ 595

o._ __,-As a computationally simple estimate of 3o(t) we
_ 0 -A propose using the slope from a simple linear model fit-
so , o. n ted to consecutive observations zt., z.,+ where zi =

• 6 S0t lny(ti) for i = 1,...,n. In other words, as an estimate
of fl.(t) at V I Xj) i tj we suggest

.... ~ ~ ~ ~ ~ ~ ~~(ql " .... ~t)=z,~, i =1.,n-
o.0104 .. . . . . . . . . ~ ( . _.......... q~ z i . . . . .. . .. . ... t i

0 46 400 G.o 3o 30 0o 360 4= 480 M00 where i = -. .j=i

The choice of q will depend on the variation ex-
I D1. 1 tme) with do30 rat of .08 a . pected in the data. For problems with large variation we

_ _ _ _ _ _ _ - do not want an estimate of f1(t) to be based on just two
or three observations; however, if q is chosen too large

ao Shcwt acacwpnz then we are unable to identify the change in the decay
20 st~' t rate (e.g. consider the extreme case when q = n - 1).

In Figure 3, the above estimates of /30 (t) for simu-
lated Poisson data from a two compartment model with

0.,m mean m(t) = 500(.8e - t / ° + .2e - l / 130 ) and a one com-
partment model with mean m(t) = 10Oe - t/ 40 are plot-
ted over t?. For these examples the slope is computed

........... .. ...... .. from 6 consecutive points (i.e. q = 5). Clearly, the
0 so 100 ISo oo asso 4M 4o goo two compartment model is distinguished from the one

qcompartment model. Future investigation into the use
I . Detn) with 4easy rat .06 and .o of tests of randomness to distinguish one and two com-

'o. partment models is warranted.
MAn added advantage of our procedure is that the

last estimate of f3o(t) can be used as an initial estimate
MOM of the long expected T2 time for input into the optimiza-

.tion routine used to solve for the maximum likelihood

.017 .estimates. The final slope estimate corresponds to the
estimate of the long component obtained by the method

0.Cn4- of peeling when the same number of observations are
0-("Iused. As previously stated, this initial guess will be an

underestimate of the long expected time since the short
40 so so 100 130 140 1.0 ISo am0 component still contributes substantially to the decay

Mean TErne rate at time 200 (see Figures 1 and 2). In our example,

r lue a. C- ,iated et^.o. the estimate of fo(t) at tfl = 187.5 is .008666 which
____- would provide an initial guess of 115.39 for the long ex-

pected time of 130.
3140

5. EXAMPLE.
T2 PWL^X^1C#4 OM"PO iEr8a

,. ." The above methods were applied to MRI data from
3130 an in vivo study of the female breast. Our suggested

method of order selection indicates that the signal from
so

the ductal regions of the breast is best modeled by the
40 monoexponential decay curve, whereas the data from the
o0 lipid region suggests a two compartment model. Figure

a 40 to Who ai0e) 4 presents data observed at two sites in the lipid region
of one patient and the estimated biexponential decay

Flos- 4. D3 ui- awiU - at ofpid z-al- curves.
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Introduction 1. To what extent does the imprecise classification of
individuals affect the calculated relative risk (or

Computation of relative risk of mortality or Apparent Relative Risk)?
morbidity associated with exposure to some causative 2. Is it possible to determine from the Apparent
agent proceeds under the implied assumption that the Relative Risk what the True Relative Risk might
exposure is measured with precision. In reality, be under reasonable estimates of the amounts of
accurate exposure information may or may not be misclassification?
obtainable. For instance, many surveys that Copeland et al [19771 and Goldberg 119751 present
determine the smoking status of individuals in a numerical examples of the effects of misclassification.
population appear to do so with acceptable accuracy. Barron [1977] ives a formula for the true relative
However, occupational exposure to many toxic risk in terms of conditional prcbabilities which are
substances may be much more difficult to ascertain related to the prevalence, sensitivit and specificity
with similar accuracy. It is simply not practical to for the population at risk and the decedents. Flegil
measure the actual exposure directly on a broad scale et al [1986] gives a formula for the true relative risk
or on a continuous basis. Consequently, some form in terms of the apparent relative risk and the
of indirect or surrogate measurement must be prevalence, sensitivity, and specificity.
employed. Approaches to the analysis of misclassification bias

A number of techniques have been developed to generally parameterize the problem in terms of the
assign exposure levels when physical exposure exposure prevalence and the sensitivity and sp cificity
measurements are absent fCheckoway, 1986 i Dement of the exposure classification. The bias resulting
et al, 19831. For the most part these techniques rely when a confounding variable is present is discussed in
on estimated exposure levels related to job categories, Greenland [19801 and in Greenland and Robbins
to location of workers, and/or to extrapolation from [19851 primarily through numerical examples. A good
present day measurements of exposure to previous overview of the effects of misclassification is given in
practices of manufacture. Despite the great amount Kelsey et al 119861.
of effort devoted to divising and improving these The problem with the traditional parameterization
techniques, the problem remains that inevitably a is that the sensitivity, specificity, and proportion
proportion of individuals classified as exposed by the exposed are all unknown and unobservable.
surrogate actually have little or no real exposure and Estimating the sensitivity and specificity essentially
at the same time a proportion of those classifed as involves expressing a judgement about the proportioh
not exposed nevertheless have substantial exposure of an unknown subpopulation (those truly exposed or
[Gerin et al, 1983, 1985; Siemiatycki et al, 1981; Hoar not exposed) which fias been correctly 'classified by
et al, 1980; Dosemeci et al, 1990; Esmen, 1979; the surrogate exposure variable. Instead we adopt an
Greenberg et al 1981, 19831 approach .xsimilar to that of Green 119831 nd

Only a few studies attempt to estimate the parameterize our analysis in terms of the proportion
proportion of individuals misclassified. Williams et al classified as belonging to the higher likelihood of
11984] observe that assignment by job title of exposure group (an observable quantity) and the
Undertaker" to a category of "Exposed to proportions of the higher and lower likelihood of

Formaldehyde" would result in approximately 25% exposure groups which really have hi h or low
misclassification. Schulz et al 119831 report that 30% exposure respectively (the predictive values of the
of individuals who were classified according to positive and negative classification). While the
seriousness of complications had been misclassified, predictive values are conceptually similar to sensitivity
Millar [19861 reports approximately 12% and specificity, as Green 9831 has pointed out, it
misclassification of individuals who were classified by may be more feasible for an investigator to determine
self-reported heights and weights. Millar's observation or at least estimate bounds for these unknown
seems especially relevant because certainly it is likely quantities.
that individuals would know their heights and weights In the remainder of the report we derive an
with greater accuracy than their possible exposure to expression for the true relative risk in terms of the
toxic products. apparent relative risk the propfortion in the high

Even where physical exposure data exist exposure group, and the positive and ncgative
classification may be inaccurate because such data are predictive values.
associated with a location, not an individual and
workers typically move about their work area [Berode Analysis
et al, 198.a, 1980b; Boillat et al, 1986; Cope et al,
1979 Sterling, 1964]. We start with the familiar method of computing

The existence of these misclassifications and the relative risk. Let b be the background probability o
fact that commonly used methods of risk analysis occurence of the disease or cause of death of interest
essentially treat the data as if there were no and let t be the true relative risk of exposed to
misclassification raises two questions: unexposed. Let p be the proportion of the

population at risk who are exposed. Then h(l-p)
and btp are the numbers of cases among the
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unexposed and exposed respectively. (The absolute c s (f - u) + p + u -f- 1
size of the population at risk, N, always cancels out a = t
when the relative risk is computed. Therefore we c 0f-u)+ p + u f
omit it for simplicity although the tables are labeled
and formulas presented as if-the factor N appeared in
each cell.) These data are normally arranged in a and solving for t yields
two by two table as shown in Figure 1 and the
relative risk is given by the cross product ratio, which c (f- u) + p + u-f- 
is e ual to t. t= a = Sa

Next we consider the case in which the exposure c s (f- u) + p + u -f-
variable is imprecisely classified. Let b and t be
defined as before, and let p be the proportion of the
population at risk in the higher likelihood of exposure Similarly, standardizing to the high exposure
group and I and h be the (unknown) proportions of population group yields
correct classification in the lower and higher groups
respectively. Now b(1-.p)(+(1-1)t) and bp(_-h+tt) are c f - f + p
the numbers of cases in the lower and higher groups = a = Sha
respectively. We arrange the data in a two by two c f s - f + p
table as shown in Figure 2. Taking the cross productratio we obtain the apparent relative risk Finally, standardizing to the total population yields

(1 - h) + h t

1+ (1-1) t t= a = Spa
csu-u+ l

Solving for I (the actual risk of exposure), we obtain

a I - (1 - h) In summary, the true relative risk of exposure I, is
t= = M(a,h,) equal to the apparent relative risk, a times a factor

h - a (1 - 1) which depends on c, s, f, u, and p.. If there is no
synergistic effect, i.e., s =1, then as is well known the

where we define M(ah,/) as the misclassification apparent relative risk is identical to the true relative
function which gives the true relative risk that is risk for all values of all the other parameters. We
required to be consistent with given values of a, h, call this factor the synergism factor and denote it by
and 1. Under" the assumption that the higher group Sx where x indicates the referent population.
really is more likely to be exposed than the lower Finally, we consider the combined effect of
group, 0 < (1-1) < h < 1. Consequently, 0 < (1- misclassification and confounding. The distribution of
h)< I < 1. Therefore, the numerator has a root at the population at risk is the same as in the previous
(1-h)/I between 0 and 1, while the denominator has case (see Figure 4), except that Not Exposed and
a root at h/(1-l) which is greater than 1. Thus the Exposed should now read Lower and Higher and p
rah of t increases steadily from the point ((1- now denotes the proportion in the higher likelihood

h)/,0), passes through the point (1,1): and approaches of exposure group. The number of cases arising in
a vertical asymptote at hk(1-1). Figure 3 shows a each subgroup is shown in Figure 6.
graph of M(a,.6 .8) i.e. for the situation in which Standardizing to the entire population and solving
40% of the high likelihood of exposure group and for t yields t = Sp M(a,h,l). Similarly, standardizing
20% of the low likelihood of exposure group have p
been misclassified. to the group with probable low exposure yields

Next suppose that exposure classification is precise t = S1 M(a,h,i). and standardizing to the group with
but there is a dichotomous confounding factor. Let c probable high exposure yields t = Sh M(aOh).
be the relative risk of the confounder and s the
relative synergistic (or antagonistic) effect between the In a practical situation an estimate of a may be
true exposure and the con-founder. In other words, obtained in the usual way and a test for heterogeneity
persons exposed to the confounder but not the agent can be used to determine whether or not the
have c times the risk of persons exposed to neither assumption that s=1 is justified. If there is no
while persons exposed to both the confounder and synergism, then the range of possible values of t can
the agent have cs times the risk of persons exposed be computed by assigning values or plausible ranges
to the agent alone, of values to It and 1. If there is synergism, then it is

Let p be the proportion of the population at risk not appropriate to attempt to summarize the effect of
who are exposed to the agent, u, the proportion the agent in terms of a single relative risk. Instead a
exposed to the confounder, and f be the proportion stratified analysis should be performed.
exposed to both the agent and the confounder. Then
the proportion exposed to the agent alone is p-f, the Discussion
confounder alone is u-f, and to neither is 1-p-u+f.
These data can be arranged in a table as shown in Let us turn to an example. A study compares two
Figure 4. The number of cases arising in each groups of individuals, one of them classified as high
subgroup is shown in Figure 5. We can compute exposed and the other classified as low exposed -I
several forms of risk ratio standardized across levels and L respectively). Assume that an apparent relative
of the confounder. Let a denote the computed SRR. risk of 1.g is computed for the H group as compared
Standard;zing to the low exposure population group to the L group.
gives Fiure 7 shows level curves of the functiongives M(l.8,h,l).
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It is not unreasonable to assume that in a typical Dosemeci M, Stewart PA, Blair A (1990): Three
occupational health study at least 10% and possibly as proposals for retrospective, semiquantitative exposure
many as 40% of individuals are incorrectly classified assessments and their comparison with the other
[Williams et al, 1984; Fergusson et al, 1989; Schulz et assessment methods. Appl Occup Environ Hygal , 1983; Millar, 196]. Corresponding values of the 5(1):52-59.
true relative risk can be read off for different Esmen N (1979)" Retrospective industrial hygiene
assumptions about misclassification. For instance, surveys. Am Ind Hyg Assoc J 40:58.
under the assumption of 10% misclassification in each Fergusson DM, Horwood LJ (1989): A latent class
category, an apparent relative risk of 1.8 would model of smoking experimentation. J Child Psychol
correspond to a true relative risk of approximately Psych Allied Dis 30:761-773.
2.1. If it is assumed that as many as 30% of Flegal KM, Brownie C Haas JD (1986): The effects
individuals were misclassified in each group, a true ot exposure misclassification on estimates of relative
relative risk of 6.0 would be needed to result in an risk. Am J Epidem 123(4):736-751.
apparent relative risk of 1.8. Gerin M, et at (1983): Translating job histories into

The region in the lower left portion of Figure 7 histories of occupational exposure for epidemiologic
may be considered the region of incompetence. It purpose. in: Acheson ED. (ed) Job-Exposure
corresponds to situations in which the L group would Matrices. Proceedings of a conference held in April
be a better indicator of high exposure than the H 1982 at the University of Southampton, Hobbs, The
group: in other words inept choice of surrogate Printers of Southampton, Southampton. U.K., pp.
exposure variable. Suci instances are unlikely to 78-82.
occur so this region may be ignored. Gerin M, Siemiatycki J, Kemper H, Begin D (1985):

It is important to note that for certain Obtaining occupational exposure -histories in
combinations of misclassifications, an apparent relative epidemiologic case-control studies. J Occup Med
risk of 1.8 (or any other value) could not be 27:420-426.
observed. For instance, if both the H and L groups Goldberg J (1975): The effects of misclassification on
have 50% misclassification, the apparent relative risk the bias in the difference between two proportions
will be I regardless of the true risk. Therefore a low and the relative odds in the fourfold table. JASA
apparent relative risk may not be a reflection of 70(351):561-567.
absence of hazard but may simply be due to Green MS (1983): Use of predictive value to adjust
imprecise exposure classification, relative risk estimates biased by misclassification of

For practical purposes, the approach suggested outcome status. Am J Epidem 117(1):98-105.
here may be used to set reasonable bounds between Greenberg RA, Tamburro CH (1981): Exposure
which the true relative risk may be assumed to lie indices for epidemiological surveillance of
given that an investigation has obtained a particular carcinogenic agents in an industrial chemical
apparent relative risk. The amount of environment. J Occup Med 23:353.
misclassification assumed to be operating may be set Greenberg RA, Tamburro CH (1983): Rank ordered
either by what appears to be reasonable (i.e., between exposure for industrial surveillance, in: Acheson
10% and 30%) or by relevant existing or obtainable ED. (ed) Job-Exposure Matrices. Proceedings of a
information. conference held in April 1982 at the University of

Southampton, Hobbs, "he Printers of Southampton.
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Persons Case Persons Case
At Risk At Risk

Not Exposed (Il-p) b (I-p) Lower 1- p b (I-p) (I+(- t)

Exposed p b tp Higher p bp(I- h +ht1)

Figure 1. 2 X 2 Table for Precise Classification with no Figure 2. 2 X 2 Table for Imprecise Classification with no
Confounder Confounder

Population At Risk
Confounder Confounder

Absent Present

Not Exposed I)-p - + fu-

Exposed p-f f

Figure 4. Joint Distribution of Exposure and Confounding
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Introduction lists.7  Using these data it is possible to compute
estimates of- national prevalence rates for certain

Morton1.2 reported significant excess cancer chronic conditions. However, only in 1982 and 1983
mortality rates among housewives compared to women did the NHIS probe for the existence of any
employed outside the home. Subsequently, Sterling malignant neoplasm. Thus it is possible to obtain
and Weinkam- reported that age-specific morbidity national prevafence estimates for any form of cancer
ratios for all chronic conditions were signiicantly based only on the 1982 and 1983 data (although for
larger for housewives than for employed- women, selected sites it is possible to use data for 182 to
These findings raise the question of whether the 1987).
incidence as well as prevalence of chronic diseases, National estimates of the total number of persons
and in particular cancer, is larger in general among and of prevalence rates for various causes were
housewives than among women employed in other computed for each race-age-employment group, for
occupations. Such a difference would have important each year and for all years combined. SPRs
consequences not only for housewives' chronic disease (Standardized Prevalence Ratios) were computed in a
and cancer morbidity but also for their cancer manner identical to the computation of tie familiar
mortality ip,sofar as morbidity is related to mortality. Standardized Mortality Ratio using the employed
Verbru.ge4 . has shown that while morbidity rates population as the referent. Variances were computed
from clionic disease are higher for women than men, using the appropriate generalized variance function
mortality rates from chronic diseases are higher for recommended by NCHS9 and confidence intervals
men than women. Among women, however, it seems computed under the assumptioA of a log normal
likely that groups that tend to have higher morbidity distribution for the SPR estimate.
rates for cronic diseases also may be expected to All analyses were done on weighted data. The
have higher mortality rates from the same diseases. National Center for Heafth Statistics weighting factors
The availability of large archives of population compensate for sampling variation within different
morbidity data such as those collected by the U.S. sampling areas and adjust the data to the race-age-sex
National Health Interview Survey (NHIS) makes it distribution of the non-institutionalized U.S. population
possible to compare morbidity of homemakers to that as debermined by the U.S. Current Population
of women employed outside the home. Using public Survey.
use tapes of the NHIS, we compared morbidity of
homemakers with those of employed women for two Results
blocks of time: 1970-1975 and f982-1987.

Homemakers show an increased prevalence over
Method employed women of each chronic condition

investigated, with the lone exception of breast cancer.
The NHIS collects information on a nationwide Table 1 gives estimates of SPRs and correpsonding

sample of households as part of the ongoing activity 95% confidence intervals for chronic conditions for
of the National Center for Health Statistics. Each 1970 to 1975 and 1982 to 1987. Prevalence ratios
week a sample of households is selected from the larger than 1.0 indicate increased condition prevalence
civilian, non-institutionalized, U.S. population using a for homemakers compared with employed women.
stratified probability sampling technique in such a way Hypertension, ischemic heart disease, stroke and
that each weekly sample is representative of the combined bronchitis, emphysema and asthma (for
target population and the weekly samples are additive 1982 to 1987 but not for 1970 to 1975) all exhibit
over time. statistically increased prevalence ratios. Each cancer

Public use tapes of the NHIS for 1970 to 1975 site considered (except for breast cancer) and all
and 1982 to 1987 were used. Individuals were cancers combined showed an increased prevalence
classified according to race (white, nonwhite), age (by ratio among homemakers. However, that increase fell
5-year age groups for ages 20 to 64) and occupation short of the customary level of rejecting the null
employed outside the home and homemaker). condition with <5 possibly due to the relative
omemakers are those who indicated that their usual scarcity of data for these conditions. Because cancer

activity was "keeping house"). SPRs for all sites but one are elevated and because
For purposes of making prevalence estimates of the SPRs for 1970-1975 and 1982-1987 are very much

chronic conditions, a list of diseases was read to each alike the cancer risks may be considered as
NHIS sample member. The respondent reported his signi icantly elevated as well. Our data then support
or her experiences with each disease on the list. the conclusion that women working at home have a
During 1970 to 1977 one list per year was asked of significantly higher prevalence rate of all chronic
all sample members. Prevalence estimates for a conditions when compared with women working
particular condition may be obtained only in the year outside the home.
in which the condition was probed. For each year The excess prevalence of chronic conditions among
1982 to 1987 each annual sample was divided into homemakers relative to employed women may be due
one-sixth subsamples. All members of a particular to the occupational exposures of homemaking or to a
subsample were asked to respond to one of the six number of confounding factors. Some women may
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have to select homemaking because they suffer from extremely toxic agents in parts of the dwelling that
a chronic disease that prevents them from seeking have usually the poorest air circulation. Another
and holding down full time employment, possibly very serious exposure may be to toxic

The selection bias for adopting housework as an material brought home on hair, skin and clothing by
occupation because of already existing disease may be industrial workers who are members of the household.
controlled for to some extent by adjusting each Such exposures have been shown to lead to specific
chronic disease for the difference between risks of illnesses that are distinctly related to occupational
homemakers and employed women risk for all chronic exposures. Cases in point are mesothelioma or
diseases. Such an adjustment may be simply done by beryllioses among family members of individuals
dividing the risk ratios for Cancer, Heart and Other employed in occupations where they may bring home
Chronic Diseases of Table 1 by the SPR for all asbestos or beryllium. These observations raise the
chronic conditions. The result of that adjustment can possibility that other diseases of members of a
be seen in Table 2. After this adjustment, the SPRs household may not be recognized as being of
are still elevated for all conditions except for breast occupational origin. Finally we include basements
cancer and hypertension for the period 1970-1975 and because, where there is a background basements are
for breast cancer but not hypertension for the period the major avenue for radon gas penetration.
1982-1987. Again we note that the SPRs were Homemakers can accumulate high levels of exposure
elevated for 6 out of 9 conditions in 1970-1975 and 9 because of the length of exposure.
out of 11 conditions in 1982-1987. The probability of The basis for our results is the statistical analysis
that many increased SPRs arising from the population of the National Household Interview Survey, and not
with similar prevalence of disease ten years apart by of medically established cases. However, coupled with
chance alone is vanishingly small. the observation that homemakers may be exposed

Differences in prevalence rates are unlikely to be substantially to carcinogens at home, very often in
due to smoking. While our analysis combines NHIS unventilated spaces and subjected therefore to
data for the years 1970 to 1975 and 1982 to 1987 repeated relatively large doses, the conclusion that
smoking information was obtained only for 1970 and homemakers are at an increased risk from Cancer
1987. 1-owever, for both years similar percentages of compared with women in other employment seems
homemakers and otherwise employed women smoked plausible. (A more definitive answer will come from
(see Table 3). Weinkam and Sterling have shown a a case-control study underway and from a more
similar lack of difference in smo ing prevalence detailed analysi of household use of toxic material.)
between homemakers and otherwise employed women
for the 1979-1980 NHIS. 1  Acknowledgements
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TABLE 1

Standardized Prevalence Ratios and 95% Confidence Intervals For a Number of
Chronic Conditions of Homemakers Standardized to Women Employed Outside the Home

1970 - 1975 1982 - 1987

(LC, UC) (LC, UC)

Any Cause 1.07 (1.01, 1.13) 1.17 (1.11, 1.23)
Any Chronic Condition 1.11 (1.05, 1.18) 1.21 (1.15, 1.28)
Hypertension 1.31 (1.17, 1.47) 1.44 (1.27, 1.64)
Ischemic Heart Disease 1.63 (1.17, 2.29) 1.63 (1.18, 2.24)
Stroke 3.29 (1.50, 7.21) 3.25 (1.84, 5.73)
Bronchitis/
Emphysema/Asthma 1.10 (0.97, 1.25) 1.23 (1.07, 1.42)
Any Cancer 1.58 (0.88, 2.86) 1.46 (0.76, 2.82)
Breast Cancer 0.99 (0.33, 2.57) 0.95 (0.53, 1.73)
Lung Cancer N/A 3.41 (0.43, 26.91)
Genital Urinary Cancer 2.24 (0.16, 31.53) 1.84 (0.59, 5.67)
Leukemia 1.46 (0.04, 52.74) 1.92 (0.12, 31.3 )
Cancer of
Digestive Organs 3.16 (0.41, 25.59) 2.60 (0.70, 9.62)
Respiratory Cancer N/A 4.27 (0.57, 32.10)

TABLE 2

Standardized Prevalence Ratios and 95% Confidence Intervals For a Number of
Chronic Conditions of Homemakers Standardized to Women Employed Outside the Home

Adjusted for Differences in Standardized Prevalence Ratios For Any Chronic Condition

1970- 1975 1982 - 1987

(LC, UC) (LC, UC)

Any Chronic Condition 1.00 1.00
Hypertension 0.95 (0.84, 1.09) 1.19 (1.038, 1.37)
Ischemic Heart Disease 1.19 (0.85, 1.68) 1.34 (0.97, 1.86)
Stroke 2.40 (1.09, 5.28) 2.68 (1.52, 4.75)
Bronchitis/
Emphysema/Asthma 1.00 (0.86, 1.14) 1.02 (0.88, 1.19)
Any Cancer 1.16 (0.65, 2.10) 1.04 (0.71, 1.50)
Breast Cancer 0.89 (0.34, 2.32) 0.79 (0.43, 1.43)
Lung Cancer N/A 2.82 (0.36, 22.27)
Genital Urinary Cancer 1.52 (0.18, 13.70) 1.52 (0.93, 4.69)
Leukemia 1.07 (0.03, 38.50) 1.59 (0.10, 25.91)
Cancer of
Digestive Organs 2.14 (0.27, 16.62) 2.15 (0.58, 7.96)
Respiratory Cancer N/A 3.53 (0.47, 26.56)

TABLE 3

Percent of Current, Former, Ever and Never Smokers Among White
Homemakers and Otherwise Employed Women for 1970 ana 1987

1970 Current Former Ever Never
Homemakers 29.3 12.6 41.9 58.1
Otherwise Employed 35.0 11.9 46.9 53.1

1987
Homemakers 31.7 15.8 47.5 49.9

Otherwise Employed 32.3 15.8 48.1 49.7
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TABLE 4

Homemaker's Potential Exposure to Toxic Substances from Use of
Household Consumer Products, Appliances and Other Activities

Item Use Possible Components May Include:

Household cleaners:

Window Ammonium hydroxide

Spot/Textile Tetrachloroethylene Trichloroethylene, Methyl
alcohol,Petroleum derived solvents, Methanol,
Benzene

Soaps/Detergents Polyether sulfates, Alcohols, Sulfonates, Alkyl
sodium isothianates

Oven Sodium hydroxide, Potassium hydroxide

Drain/Toilet bowl Sodium hydroxide, Lye

General cleaning Ammonium hydroxide, Chlorine, Lye, Sodium
hypochlorite, Sodium peroxide

Home Repair/Maintenance

Paints/Varnish Toluene Xylene, Methylene Chloride,Heavy metal
pigments, Methanol, Ethylene glycol, Benzene

Pesticides Organophos hates, Carbamates Pyrethroids,
Botanicals (plant derivatives), biological, Growth
regulators

Lawn & Yard Care Items Various pesticides, herbicides, gasoline, oil, paints,
fertilizers

Appliances

Humidifiers Off-gassing from water components,chlorinated
contaminants, Biological organisms

Gas Range & Heater NO2, CO, Formaldehyde

Kerosene Heaters NO2, CO, S02, General petroleum hydrocarbons

Electrical Equipment Ozone

Spray Aerosol Propane, Butane, Nitrous Oxide, Methylene
propellents, Chloride, Isobutane, Fluorocarbon 11
and 12

Disinfectants Sodium hypochlorite, Quarternary ammonium,
Phenols, Pine oils

Furniture/Carpets Offgassing Formaldehyde, General organics, Residues

Basement Radon daughters (depending on background and
ventilation)

Smoking Environmental Tobacco Smoke

Washing Clothing Toxic material brought home on clothing by
employed member of household (such as
asbestos, beryllium etc.)

Hobbies Depends on the hobby

Beauty/Grooming Aids Alcohol, sodium hydroxide, Thioglycollates, Talc,
Benzethonium
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Abstract spatial mesh interval. More importantly they provide
Sampling techniques and exact solutions of Riemann valuable information on wave interaction.
Problems are used in a random choice method. This Godunov [11 initiated utilizing the solutions of the
procedure is used to obtain the numerical solutions of a Riemann problems as building blocks for the
system of conservation laws which describes the dynamics construction of numerical solution of the nonlinear
of flow for small amplitude two-dimensional shockwaves, hyperbolic partial differential equations. Godunov
An intrinsic coordinate system is used to formulate the replaced the initial data by a piecewise constant states
model. with jump discontinuities at the middle of spatial mesh

interval. Then the exact solution of this Riemann
1 Introduction problem at the first time step is calculated. To proceed
Accuracy of numerical solutions and efficiency of to the next time step replace this exact solution by a new
numerical schemes are major concerns in obtaining piecewise constant state approximation and solve the
numerical solutions. Moreover, the numerical solution corresponding Riemann problem and maintain integral
at the jump discontinuities called shocks should remain properties of the conserve variable.
sharp, stable and transports the discontinuities at the Another utilization of Riemann problems in obtaining
correct physical speed. Random variables have been used the solution of conservation laws was initiated by Glimm
to control numerical dissipation or to control numerical [21 who followed Godunov as far as obtaining the exact

viscosity. Basically, random variables appear either as a solution of Riemann problem and then the value of the
component added to the deterministic equation to study new approximated solution at the new time step is taken
the effect of numerical viscosity or they are used to to be the exact solution evaluated at a random point on

sample the solution at a randomly chosen point to obtain that mesh interval. This solution is conservative on the

a numerical solution which preserves some mathematical average, however, has the advantage that near jump the

properties of the solution function. The purpose of this solution is incremented either by the amount of jump or

paper is to present a random choice method for not at all. This forces that an initially sharp

computing the numerical solution of two-dimensional discontinuities remains sharp. Chorin [31 developed

small amplitude shockwaves. The numerical random Glimm's random choice method into a numerical

sampling procedure is a shock capturing and a marching technique. The random choice method by its way of
time method for solving system of conservation laws. construction propagates shocks without introducing any

The random sampling procedure consists of dissipation and the method is unconditionally stable.

approximating the numerical solution by a piecewise However, because of approximating solution at a

constant state at each time step and proceeding to the randomly chosen point a small amount of statistical noise

next time step by solving the corresponding problems enters into the solution which is acceptable within the
formed by the constant on the neighboring spatial accuracy imposed by discretization of model problem.

intervals. It is well-known that the exact solution of non-
linear system of partial differential equations arising in
fluid flow problems even with smooth initial data 2 Two-Dimensional Flow Problem
develops shocks (jump discontinuities) in a finite time The equations describing the two-dimensional flow of
interval. Thus it is not unnatural to approximate their shockwaves with a source term in fluid dynamics for
initial data with constant states. compressible fluid may be written in the form
The sampling procedure is based on approximating the (1) ut + f (U) + g ( U) Y = h (u, x, y, 0
numerical solution of the given problem with a sequence
of elementary problems, known as the Riemann where f and g are physical fluxes, h is a source term and
problems. These Riemann problems can be thought of the unknown quantity, u is a function of x, y, t. Denoting
as information source about the solution within each the front coordinate by a and letting the coordinate B be
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the arc length measured from a reference point along the given by (2)-(3). One of the advantages of formulation
front, then the successive front positions are given by the of a model problem using geometric shock dynamics is its
family of curves, a = constant and the ray positions by simplicity. To develop a random choice method first we
the family of curves, 8 = constant. By using this intrinsic must define a random variable defined over closed
coordinate system a B (see Whitham [8]) where a and B interval [- , ]. It is absolutely necessary that the
are functions of x, y, t, equation (1) can be written as successive values of the random variable tend to

approximate equi-partitioning the closed interval I -V2, ]
(2) w, + F (w) G (w, a, (see Glimm 121). To generate such random variable let

subject to the initial condition given by us consider a sequence of pseudorandom integers
generated by

(7) A (mod k]
Equations relating x and y to a and 8 are given by N +[ (modk)

x. = (1 + 1/am) cos (0) xp = -A sin (0) where k is an odd positive integer and No is an arbitrary
integer less than k. Let us define an equidistributed

.= (1 +11 0) sin (0) =ACOS (0) sequence random variables, o on the interval [- , V]

given by
Here B is the angle that each front makes with the N _ 1
positive x-axis, A is the cross-sectional ray-tube area, and (8) a= - 2
m is the acoustic Mach number. For small amplitude
two-dimensional shockwaves we have We introduce front-ray grid defined by mesh

(A -e lengths As and AP. The solution of (2)-(3) is to be

w= AO F(w) = (m0-02)/2 calculated both at grid points, i.e., at

mVA) o 0 P(n, j) = (nAa , jAP)

and at the center of rectangle grid point, i.e., at

4) 0 P(n+1/,j+1/2) = ((n+'/2) As , (j+ 1/2) AP)
(4) G(w) where n and j are integers. We denote the approximate

4 CZ value ofw at the grid pointby w = (nA6, jA3) .
where C is the local sound speed, 4 is the nonlinearity Following the outline given above, let us consider the
constant which depends on the media and Z is the area
under the initial pulse. For a detail discussion of these orresponding local Riemann problem to (2) when front
equations see Zakeri [4]-[51. To solve (2)-(3) we use isat nAt along with the piecewise constant initial data
operator splitting method to remove the inhomogeneous given by
term G(w, a, B). That is, first we solve the
corresponding one-dimensional homogenous problem, (9) R,, + F(R) [ = 0

(5) W. + F(W) 0 = 0

by sampling procedure and then we use its solution to R (na, ) Iw+g ; P <,TAP

determine the value of the inhomogeneous term, G(w, a,
B). Finally, we solve the corresponding ordinary l. ; P r

differential equations (ODEs) given by where

(6) w. = G(w, a, P). Jfj-1/(-l)"

To solve (6) we use a common ODE solver such as
Runge-Kutta or a multi-level method. e = 2(1 S0'2 (O. 1 )1)

i.e. e = 0 or 1 whenever On+ 1 is negative or non-
3 Numerical Scheme negative respectively. The Riemann problem here is
We develop a numerical scheme to compute the
successive shock fronts using geometrical shock dynamics sampled at (j+ /)A and at (j- /2)A .



Random Choice Method 607

When an+1 is non-negative the initial data for Riemann
problem formed by using information at grid points R1 = limR(a, P) R2 = limR(a, P)
P(nj) and P(nj+l) and if an+1 is negative then the F'1" F-F"
initial data is constructed by using information at grid The jump conditions for system of equations (4) are
points P(n,j) and P(n,j-l). At point P(n+ , j+2) we given by
define

i+V2=((j+(Yn)AP, (n+/2)&a) da A 2

On each mesh interval we get a local Riemann problem.
In order to assure that the waves produced by this (12) = - (O 1-)

sequence of local Riemann problems do not interact we da 2 (A202 - A, 0)
must have

(10) AD C(1 +'/AM4) < 1. nd=Am2
(a The entropy condition is given by

This important requirement is known as Courant- F(R 2 ) -F(R) F(R 2 ) -F(R,)
Friedrichs-Lewy (CFL) condition. If inequality (10)
holds then we can combine the solutions of the Riemann R2 - R - R1
problems (9) into a single exact solution, for any R between R2 and R1. The entropy satisfaction

is a major concern for numerical approximation of
4 Solution of Riemann Problem solutions of nonlinear fluid flow problems. This simply
The main part of a random choice algorithm is obtaining means that the computed solution converges toward the
the solutions of a sequence of local Riemann problems correct physical solution as the mesh sizes of intervals
efficiently. The solution of a Riemann problem consists along a and B approach to zeros. The above inequality
of three elementary waves, a backward shock wave or can be written as
rarefaction on left, a slip line, and a forward shock or a
rarefaction on right. A slip line is a discontinuous E(R) = F(R 2 ) + 4 (R-R 2 )
solution separating two constant states such that the da
angle of flows remain the same on both sides of the satisfying the following inequality
discontinuity line while Mach number is arbitrary. Slip
lines are one family solution between the backward and (E(R) - F(R) ) (R1 - R 2 ) k 0

forward waves, i.e., between rarefactions and shocks. To where E(R) defines the chord connecting left and right
solve the Riemann problem (9) we follow Lax [6]. Let us limiting points across the shock. The entropy related to
consider the following initial data for system of equations the first component of F is given by
in (9)

02-0 02 -01=w 1  ; D A 2 _ A2 1A

(11) R(nAa, <) = A2-A A 2 -A,
; I >J&P for any A between A, and A2, and 0 between 01 and 02.

where subscripts 1 and 2 refer to values of w just behind Similar inequalities hold for other components of F.
of and just ahead of the discontinuity respectively. If
these two values are equal then the solution of (9) is a 4.1 Rarefaction Waves
constant state and its value is equal to the value of initial Rarefaction waves are two families of solutions curves,
data. However, if these two values are different then the forward and backward waves. In this section we compute
initial jump discontinuity will propagates in the form of the simple rarefaction waves of system of equations (9)
a center expansion wave and/or a shock (i.e., jump which can be reformulated in the form
discontinuity satisfies the entropy condition.) or a contact
discontinuity. In order that solution converges to a Us + H(U) Up = 0
unique weak solution of (9), it must satisfies the where H(U) = H(A, 0, m) is 3 by 3 matrix given by
Rankine-Hugoniot jump condition and the Oleinik
entropy condition. At the shock, let us define the values
of R(aB) just behind of and just ahead of the shock by
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choice method developed here with those solutions
0 -1 0 Obtained using the method of characteristics. Consider

0rA the initial conditionA1 00
SH= A(O, ) =1! re(o,) p)1 oo

MM 0 ~M 0 MO .0
2- eo(0, r!213 -1 < i1

The eigenvalues, I and thier corresponding eigenvectors, to otherwise
e of the matrix H are together with equations (2) and (4). The results obtained

( 1 with both methods were very close to each other. The

0 ; e = -1 numerical calculations show that the convergence of the
2A I. 2+2 Al.)solution toward the exact solution is independent of

-2A A/ choice of the odd number k in (7) as long as k is
For the system of equations in (9) the simple rarefaction bounded. In addition, the method is numerically stable.
waves are the continuous solutions of (9) of the form All the striking physical features of system of equations

(2) and (4) is observed, i.e., as the initial front

R1  if I < (R) propagates into the rest state the center of hump
J becomes flat and this flat region propagates on both

(13) U(a,[) V(1) if (v) directions untill the front becomes a flat surface.

1R 2  if ., > I(R 2 ) 6 Conclusion
The numerical solutions show that the method is stable

where v is an integral curve of the vector field of the and correctly describes the important physical feature of
corresponding eigenvector connecting the two constant the solution of the model problem. The various choices
states such that the corresponding eigenvalue, t o of random number generators do not have any effect on
increasing between this two on di sntates fom g le to the accuracy of computed solution as long as the random
right. Since the matrix H has three distinct eigenvalues, variable tent toward the equipartitioning of the given
there are three possible rarefaction waves through any interval.
given state. These rarefaction waves are the integral Bibliography
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5 Numerical Experiments
We compared the numerical solutions using the random



Algorithm 609

An Algorithm to Estimate Parameters
for a Stochastic Linear Compartmental System

P. M. Simpson D. M. Allen
Biostatistics, MCV/VCU Statistics, POT, UK

Richmond, VA 23298-0032 Lexington, KY 40506

ABSTRACT. Linear compartmental systems have traditional deterministic model, these are the rate
compartments with flows to and from the compartments. parameters).
Of interest, is the estimation of the constants, 0,
governing the flows. In the particular system considered, Diagram 2 :
only one compartment, out of several, is observed for n er i r t" 82
cases over k time points. A stochastic model is used with Ic6r -Icaat-.Io atI
a maximum likelihood approach taken to the estimation of t 1 Lant S3 rat
9. The algorithm involves iteratively using an estimate of 104

9 to solve differential equations which describe the -

system, and improve on the estimate of 9 by adding a ment0
constant multiple, a, of an increment 6. Allen's results
are incorporated to obtain required derivatives. Due to
non-zero correlations, a modification to Jennrich and It is assumed that a bolus injection is given in compartment
Moore's results is made, involving using both the 1 and only compartment 2 is observed, at times t a,t2 ..

observations and their cross-products, to obtain 50. ct is Let 90 be the initial concentration in compartment 1 and
determined with Fletcher's method. A program in Turbo C(t) be the concentration at time t.Then

Pascal implements the algorithm. C(t) ]  [00'

INTRODUCTION. Compartmental systems have long C(t)= C2 (t) , C( 0) = 0.
been a useful tool in pharmacokinetics (Wagner (1971)).
The body is thought of as a series of compartments, with C3 (t)
a drug moving between any of the compartments. For
example, Gladtke et al. (1979) p. 36, suppose that the
body may be represented as three compartments - plasma, STOCHASTIC MODEL . For the "particle model", as

muscle and extravascular. An initial muscle injection is discussed by Purdue (1974a), it is assumed that there are

given and the levels of the drug in,the plasma are N particles in the system acting independently. Transitions

monitored from time to time. The drugs will flow from between compartments follow a Markov process, with the

muscle to plasma. Additionally, flow will be between the transition probability being constant. The resulting system

extravascular system and plasma, and from plasma to the of equations is as follows:

outside, as depicted in diagram 1. dP(t)/dt -- P(t)AT,... (1)

Diaeram 1:
where P(t) = (pi,(t)) is a nonsingular 3x3 matrix with p4(t),

Fi ntr [" -] ij=1,2,3, the probability of a particle transferring from
[~uscuajrl P ts tarj compartment "i" to compartment "j" in time t and

- 0 0

A=01 -(02+04) 03 =(aj)
For simplicity, this paper will be restricted to a three 0 02 _03

compartmental system of this type, with compartments
1,2,3 and the outside, as compartment 0; flows have a
parameter attached to them as in diagram 2, (In the . (0 0 02 0 )T is to be estimated.

....... . (0 |0 36 Tist ee tm td
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Under these assumptions it can be shown that the exact THE ALGORITHM. Suppose that the kjx5 matrix of
distribution of C(t), given C(O) is a multinomial (since only partial derivatives with respect to 0i, i=0,1,..,4 is denoted
C, (O) is nonzero), but the distribution of C(t), given C(t2), by dp/dO. According to the JMA, for a given 0, replace 0
is a convolution of multinomials. Thus, to write down the by #+abO,where
exact distribution of the concentrations in compartment 2 for
tIt2 ... tk, when k is large is impossible since it would bI= - (O E-1 (y-P)
consist of many sums whose limits are complex. Using a
diffusion approximation, it has been demonstrated that the
concentrations over time have a multivariate normal This requires that
distribution, Lehoczky and Gaver (1977). Hence, the (1) P(.) and its derivatives with respect to e be obtained
distribution of the concentrations in compartment 2 have a (2) 69 be calculated.
(marginal) multivariate distribution, with mean and (3) An appropriate ot be found.
variance-covariance matrix the same as that given by the
particle model. Simpson (1988) has shown that an estimator
derived from the maximum likelihood equations, using this (1) P.) and its derivatives:
approximate normal distribution, is still a consistent For this compartmental system, P(.) and its derivatives can
asymptotically normal estimator, if the particle model is the be calculated analytically. However, to maintain generality
correct one. Thus, an algorithm was written to estimate 9 for the program, it was decided to obtain P(.) and its
using the approximate normal distribution, derivatives by applying the method developed by Allen

(1987) to columns of P(.).
Suppose that X63 is the concentration in compartment 2 for
person i, i=1,2,...n at time , j=l,2 ... k. X, = The steps, for each column of P, are as follows:
(Xi,,Xj2,....X-j are the k observations of ith case. X,,X 2 ,..., (i) Find R so that
X. are independently and identically distributed as a normal - RAR = T , a triangular matrix,
variable with mean and variance which are functions of the - RrR = I, the identity matrix
probability matrix P. By considering a vector comprised of
the sufficient statistics of the covariance of X, it can be seen (ii) Using R, obtain a triangular system of equations;
that a normally distributed random variable is a linear so, a backward solving technique can be used, with
exponential and so the algorithm of Jennrich and Moore the initial condition P(O) = I satisfied.
(1975) ,hence referred to as JMA, can be used to find the
approximate maximum likelihood estimator . We take the For any 0., a=: 1,2,3,4, the equation (1) becomes
kx 1 vector Y, where k = k(k + 3)/2 and

1 fl1 (t)--TV (t) +?.AR RX( t) ,

n IF, XrI I, X12 ' ..... IDIXk, dt

2=

n1 n n M a

r=1 r=l r=1

X2 . and Allen's method can be used again to solve for V.(t),
... ....... 2Xk with V,(O) = 0, as the initial condition

n , (2) Calculation of 60:
Xk. , .- klXk Using Wilkinson's algorithms, Wilkinson (1971), a

1-1 1r- Cholesky decomposition is used to find V , where
n LA(I)T = E. Using this, the following equation is solved to

E X 2 rk ]  obtain 60:Z--1 Pi=E.1/2 dp

Using properties of normality,Y has a mean, tu(O), and yX / (yi')
variance-covariance matrix, E(0), which is a function of the Pg.~1 60 = 5'Vr1
mean and variance-covariance matrix of X, and therefore of
P, also.



Algorithm 611

(3) An a: Wagner, J.C.(1971) Biogharmeics and Relevant
Fletcher's descent method, Fletcher (p.26, 1980) is used to Plrnacokinetics. Hamilton, Illinois.
find a. It uses the first derivatives only. Assuming uniform
continuity conditions, it will achieve, at least, a local Wilkinson, J.H. and Reinch, C. (1971) Linear Algeb.
optimum if an optimum exists and if the starting value is Springer-Verlag, Heidelberg.
close enough.

SUMMARY. A stochastic approach rather than the
traditional deterministic model approach is taken to a
particular compartmental model, where only one
compartment is observed. An algorithm is developed which
uses the JMA to obtain maximum likelihood estimates from
a diffusion approximation. The program is written in Turbo
Pascal and can be generalised:
(i) to other linear compartmental systems,
(ii) for 0 to be functions of time,

Work is being done:
(iii) to incorporate measurement error in the model
(iv) to include people variation

An important step for its general use would be to
incorporate this program in a general pharmacokinetic
program so that, in a user friendly environment, its
estimates could be easily compared to those obtained from
other methods.
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Abstract censored data sets and their frequentists' analyses.
This paper studies a nonparametric Bayesian ap-

Nonp'.ametric Bayesian estimators with Dirichlet pro- proach to the data analysis. This approach allows us
cess priors for doubly censored data can be derived from to incorporate prior belief and frees us from making a
mixtures of Dirichlet distributions. To circumvent the restrictive model assumption for the survival function.
computational difficulties in evaluating these mixtures, Specifically, we assume the survival function is taken
this paper describes the Gibbs sampling approach to from a Ferguson's (1973) Dirichlet process, V(a). The
approximating them. The Gibbs samplers augment the prior parameter, a, may be written a = MF, where
censored data by the number of observations falling into F represents the statistician's prior guess of the dis-
each interval. An example taken from Turnbull (1974) tribution function of the times of incident(death) and
is given to illustrate the approach. M represents the degree of concentration of the true

Keywords: Gibbs sampling; Stochastic substitu- distribution function around F0 .
tion; Dirichlet process priors; Doubly censored data. Due to the doubly censored data, it is usually very

difficult to obtain an explicit expression for the non-

1 Introduction parametric Bayes estimators. Fortunately, it is not
necessary to have this closed form to obtain numerical

Nonparametric Bayesian inference for the survival func- solutions to the problem of computing Bayes estima-

tion with right censored data has been studied by Susar- tors. This paper proposes a Gibbs sampling approach

Phadi- to computing them. The approach augments the dataIa and Van Ryzin (1976), and Ferguson and byuiglaetvribeahadeopoetenubro
a (1979). However, we often encounter the situation by using latent variables that decompose the number of
where some observations are censored from the left and the censored observations into the possible number of

observations falling into each interval. This augmenta-bull (1974) has cited many papers addressing doubly tion facilitates us in specifying the conditional densities
of the survival functions given the latent variables. A

'Research supported by NSF grant DMS-90-08021 and Naval repeated sampling scheme, that uses this conditional
Postgraduate School density and the conditional density of the latent vari-
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ables given the distribution function and the data, al- loss) with Xi = U, or a precisely observed time (death)
lows us to approximate the posterior distribution of the with Xi = Ti.
survival function. Usually, items are examined at discrete times, for

Although we emphasize the doubly censored data example, monthly. We can assume there is a natural
in this paper. The model discussed in the next section discrete time scale 0 < t1 < t2 < ... < tm, and the ob-
is very general. It applies to the data set that includes served deaths are classified into one of the m intervals
only completely observed data and right censored da- (0, t1], (th t2],. (tm-"I t]. Let 6i denote the number
ta. Nonparametric Bayesian estimators in this situation of observed deaths in the period (t,-,, 4], pi denote the
have been derived by Susarla and Van Ryzin (1976), number of late entries at age 4, and Ai denote the num-
and Ferguson and Phadia (1979). Kuo (1991) com- ber of losses at t,. It is assumed that the late entries zji
puted these estimates based on the data from Kaplan all occur at the end of age period (t-_j, 4.1 and the losses
and Meier (1958) using the Gibbs sampling approach. Ai all occur at the beginning of (t, t,+1). The data can
These estimates compare favorably to the estimates ob- be summarized by the following tabulation:
t.ninoc hy Riuarla nnd Van Rvin

The model also includes the situation that none Type\age (0, tiJ (t, t2] ... (t, 1, 4nj

of the completely observed data are available, i.e. all Deaths 61 2 ... 6,
incidents are either right or left censored. The likeli- Late entries ( ) I L2  ... M

hood reduces to that considered in the quantal bioassay. Losses (>) A, A2  ... Am.

Gelfand and Kuo (1991) studies the sampling based ap- Let P = P(;) 1 - F(;) denote the survival
proach to this problem. In addition to the Dirichlet f t e u t T he sro-
process prior, they also consider a product of beta pri- pontionalte
or. They also generalize their results to polytomous portional to
response.

Section 2 discusses the model. Section 3 describes H(Pi - P) (I - p i .

the Gibbs sampling approach. An example using the j=1

data set in Turnbull (1974) is given in Section 4. Let q. = P-1 - P for j - 1,..., m and let qm,+, = P,,.
The Ferguson's process prior assumes that the distri-

2 The Model bution of the q's is the Dirichlet distribution
m+ 1

The model is basically the one studied by Turnbull 7r(q
) = C 1- (qj) -r,

(1974). Turnbull proposes a self-consistent algorithm j=1

for computing the generalized maximum likelihood es- where

timators. This paper adds the Dirichlet process prior a. = M(Fo(;-) - Fo(;-,)),

to the model. for j = 1,.. ,m+ 1, with F(tm+) =1, and
Let T, T..., T,, denote the true survival times F(AM)

of n individuals that could be observed precisely if C = 1+ .
no censoring were present. The T are independent J=
and identically distributed with distribution F; that The posterior distribution of the j (qj, 9,'", q..

is, F(t) = Prob(T < t) for t > 0. We consider the case q,) is a mixture of Dirichlet distributions. The result-
that not all T are observed precisely. For each i, we as- s of Antoniak (1974) can be used to derive this mixture.
sume that there are "windows" of observations L, and The next section will develop the Gibbs sampling tech-
U (Li !5 U) that are either fixed constants or random nique to approximating this mixture.
variables independent of the {T,}. We observe

Xi = max [ min(Th, U,), L,]. 3 Gibbs Sampling

Moreover, for each item, we also know whether it is left To employ the Gibbs sampling technique, we need
censored (late entry) with Xi = L,, or right censored (a to introduce the latent variables that decompose the
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numbers of losses and late entries into the numbers be approximated by
of observations belonging to individual intervals. Let
Ztj, Z2,'" , Zj denote the random variables that count vm+l
the number of observations in i that might fall in the EAliaa -  Beta(Iz, Z /')'
intervals (0, t1), (ti, t2 ],.. , ;- t] respectively. Ob- =1k

serve pj = 71=1 ZIj. Moreover, let Zj+lj,'.' , Zm+l where Beta(a,3) denotes the beta density with param-
denote the number of observations in Aj that might fall eters a and /. Then the posterior estimate of the q, can
in the intervals (;., ;-+J,], .,(t, n-, tm,],(t,, oo] respec- be given by
tively. Observe A, = .,' ZI,,

Our objective is to obtain the posterior distribution
of the 4 given the data. To apply the stochastic aug- = , +l
mentation idea discussed in Tanner and Wong (1987) 8=1 1=1

and in Gelfand and Smith (1990), we can sample from The posterior standard error (S.E.) of 41 and the
two densities recursively. The first density is the poste- naive posterior confidence interval for the q can be com-
rior density of the 4 given the Zs and the data, which puted similarly from the replicated samples.
is an updated Dirichlet distribution depending only on The numbers I and are selected to achieve con-
the Zs. The second one is the postrior density of the vergence to smooth estimates. We can fix a number of
Zs given the 4 and the data, which is the density of a ii, plot the posterior densities of q given the other q's

product of multinomial distributions. (beta distributions) for two different iteration numbers,
Suppose at the ith iteration step of the for example, 5 units apart. We increase the iteration

Gibbs sampling, we have the probabilities = numbers until the two densities come close to each oth-

(q , q ,..., qm,~ 1),wi m 2., o = 1, where j represents er. Then we increase the number of replications for the
an estimate of jI. Then we can update the Z variables final run. Choice of I determines the convergence of the
from the multinomial distributions. That is, for each i, density estimates to the actural marginal posterior den-

= m, we sample Z'+', Z. Z't from the multi-=l 3 sity at an exponential rate (Geman and Geman, 1984;
nomial distribution with sample size lj. and parame- Tanner and Wong, 1987). The order of convergence for

ters rij,..., r where rt = =/ 1 4 for I = 1,-.. ,. the replications is O(v-'). The standard error of theSimilarly, we sample Z i+ ' Z,'+1 rmtemli
i+m l ,", M+'j from the multi- mean and the confidence interm'ls from the replications

nomial distribution with sample size A, and param- could also help us in selecting the desired v.
eters r where r il - for
=j+l,..,m+ . Examp

Having sampled the Z random variables, we can 4 Numerical Examples
update the q variables by the Dirichlet distribution. Let
us compute, for each 1,1 = 1,.. rm+ 1, The data set taken from Turnbull (1974) is summarized

in the following:
m

l~t +1=hi +  £.., 0 "Type of obs.\ age (0, tl] (tl, t2] (t2, ta] (ta, t4]

j=I Deaths 12 6 2 3

Then we could sample (qi . 4' from Late entries 2 4 2 5
T 1e col ;qsm) fle Losses 3 2 0 3

the Dirichlet distribution with parameters (,+I,.I.,
1],A). Now we use the updated q's to continue sam- The likelihood function is

pling until the Ith step.
By starting independent initial choices of the 4a, L(q") = qI2qI(q 2 + t] + q4 + q5)3 x

we can also replicate the iterations v times. Af- + q2) 4(q3 + q4 + q5)2
ter u replications each to the Ith iteration, we have ±(q q) x

q4,, *, , q',+,.,, and 14,,..., Y'n+L,, for s = 1,..., v. 9(q, + q2 + q )' x
The posterior distribution of qI for I = 1,. ., m+ 1 can q(q, + q + qj + q4)q .
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Table 1: Gibbs Approximation to the Bayes Estimates Table 3: Gibbs Approximation to the Bayes Estimates
for a(l) = .00001, 1 = 1,...,5 for a(l) = 5,1 = 1,.. .,5

Statistics \ Cell 1 2 3 4 5
Statistics \ Cell 1 2 3 4 5 .354 .226 .137 .148 .135

.462 .243 .084 .116 .095 S.E. .001 .001 .001 .001 .000

S.E. .001 .002 .001 .001 .001 .644 .420 .283 .134 0

A .538 .295 .211 .095 0
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Abstract The density function is given by

The Generalized Pareto Distribution (GPD) is a a (-- ) k<O, >0

two-parameter family of distributions which can be used
to model exceedences over a threshold. Maximum like- le-,/a k = 0, x > 0
lihood parameter estimates are preferred since they are fGPD(x; k, a) = a
asymptotically normal and asymptotically efficient. Nu-
merical methods are required for maximizing the log- 1 I ( I k >0,
likelihood since the minimal sufficient statistics are the a \ < xa/ < ,

order statistics and there is no obvious simplification of 0 < x <a/k,
the nonlinear likelihood equation. An algorithm is given

to compute GPD maximum likelihood estimates by re- and the quantile function, Q(u) = F-(u), is given by

ducing the two-dimensional numerical search for the ze-
ros of the gradient vector to a one-dimensional numerical QGPD(U; k, a) = -a . g(1 - u; k).

search.
where g(.) is the power transformation (also called the
Box-Cox transformation), defined for z > 0 by

1. Generalized Pareto Distribution

9(z; A) = A
A random variable X is defined to have a General- In z, A = 0.

ized Pareto Distribution (GPD), with parameters k and

a such that -oo < k < oo, a > 0, if the cumulative Pickands (1975) introduced the GPD as a two-

distribution function is given by parameter family of distributions for exceedences over

a threshold. The parameters of the GPD are a, the scale

parameter, and k, the shape parameter. Three special
cases of the GPD are:

(i) if k = 1 the distribution is Uniform (O,a);
Ilk (ii) if k = 0 the distribution is Exponential (1/a);

I _ , k<0, x>0 (iii) if k < 0 the distribution is Pareto.
Maximum likelihood estimation of the parameters

FGpD(X;k, a) 1 - e- /a , k = O, x > 0 (k,a) has been considered by DuMouchel (1983), Davi-

son (1984), R. L. Smith (1984,1987), J. A. Smith (1986),
(1 k > 0, and Joe (1987). R. L. Smith (1984) showed that under

a certain conditions for regularity the maximum likelihood
0 < z < a/k. estimates are asymptotically normal and asymptotically
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efficient. If (kn, &n) denote the maximum likelihood es- There are two values of (k, a) which must be investi-
timates, then for k < , as n - oo gated to compute the GPD maximum likelihood estima-

tor. The first is the local maximum of the log-likelihood
is AN ([k] [(1- k) 2  a(1 - k)) on the space A. The second is at the boundary of A

an sA- aa(1- k) 2a 2(1- k)D where k =1.
2.1. Local Maximum on A. To compute the local

The maximum likelihood estimates must be derived maxima on the space A, consider the gradient vector
numerically since the minimal sufficient statistics for the of the GPD log-likelihood given in the Appendix. The
GPD are the order statistics and there is no obvious solution to the simultaneous equations may be simplified
simplification of the nonlinear likelihood equation. and written as

Hosking and Wallis (1987) proposed a modified
Newton-Raphson algorithm to find the maximum of the 09LGPD(k, a; X) /
log-likelihood. They also propose method of moments Ok 0

and method of probability-weighted moments as alter- 99CGPD(k, a; X)
native parameter estimators for the GPD when a reduc- 0a 0
tion of the parameter space to -1 < p < - is reasonable.
These alternative estimators are inefficient, but are eas- n

ier to compute than the maximum likelihood estimates. n(k -a1)= ln 1-
In this paper an algorithm for computing the i \ a

maximum likelihood estimates is presented. The two- n / ix.-

dimensional numerical search for the zeros of the gra- . + (k -1) E 1i
dient of the GPD log-likelihood is reduced to a one- [=1- a
dimensional numerical search. This simplification is due
to a reparameterization pointed out by Davison (1984). n= - 1)

2. Computing Maximum Likelihood Parameter
Estimates [ ]

1 + (l/n)Eln (I -
Suppose X = {X1,...,Xn} is a random sample r=1

from the GPD with largest value X(n;n). The log- n kilikelihood is given by = •(1I/n)Z 1+ -i-) 1

CGPD(k,a; X) =

-nlna+ -1 In 1 -Q), k<O, a>0 =-1/n In 1--
(n i=1 )Ii=1

-nIna - 1k = 0, a >0 The bivariate search for the zeroes of the gradient
a=1 vector over A can be reduced to a univariate search since

/ ' the second equation is a closed form representation for
-nlna + ( -1 i n (1 -k-X , k>0a, the estimator of k given the ratio k/a, and the first equa-

=k a tion depends only on k/d. Therefore, local maxima of
a > kX(n; n). the log-likelihood of the GPD correspond to zeros of the

If k > 1, there is no maximum likelihood estimate function

since for any k > 1, n

h(O) = 1 + (l/n)Zln(1 - OX)lim ICGPD(k, a; X) --- <3. Ii=1I
alk-X(n;n)+r - (2.1)

In order to obtain a finite maximum of the GPD log- (1/n) E(1-_oxi)l] 1,
likelihood, the constraint k < 1 must be imposed. There- 1 =1 i
fore, computing the GPD maximum likelihood estima-
tors is an optimization on the constrained space

A = {k < O,a < 0) U {O < k < 1,a/k > X(n;n)}. 8B= { 0< I/X(n;n)}. (2.2)
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However, it is important to recognize that not every The first result indicates an upper bound for any
zero of h(O) corresponds to a zero of the gradient vec- zero of h(O) is given by 0 U = 1/X(n;n). Since this is
tor of the GPD log-likelihood. Therefore, while reduc- a limiting result, an algorithm can use Ov - c for some
ing the bivariate search to a univariate search provides c > 0 as the upper bound. The second result, provided
the benefit of simplified computation, it comes with the by an anonymous referee, provides a lower bound, OL,
complication of extraneous zeros. for any zero of h(O). Coupling these two results with the

For example, notice that h(0) = 0. Clearly then fact that 0 = 0 is an extraneous zero, an algorithm must
0 = 0 is a zero of h(O). However, 0 = 0 corresponds to divide the space B into (OL,O) and (0,0u) and numeri-
k = 0 in the log-likelihood equations and it can be shown cally search for zeros of h(O) on these two bounded in-
that the gradient vector at k = 0 has elements tervals. Because bounds are known, modifications of the

O CGPD(k, a; X) n X_ n Xi Newton-Raphson zero search algorithms can be made

lim which limit step size so that iterative solutions remain
k-0 9k i a 2  a within the known boundaries.

lim -GPD (k,-aX) n The third result is the derivative of h(O), required
k--0 8a a a~ Ifor the Newton-Raphson algorithm to search for zeros

which are equal to zero if and only if (1/n) )i"ni X2 of h(O). The fourth result indicates that the extraneous
2f ( 2 . Therefore, the zero 0 = 0 does not correspond to zero of h(O) given by 0 = 0 is either a local maxima or

a local maxima of LGPD(k, a; X). local minima of h(O).

The presence of these extraneous zeros causes two The fifth result can be used to determine whether
significant complications. First, an algorithm must h(0) is a local maxima or local minima. If h"(0) > 0
search the space B for more than one zero. In fact, since then there dre jn roots on (OL, 0) where jn is an odd
it is known 0 = 0 does not correspond to a local max- integer and there are jp roots on (0, Ou) where jp is an
ima of £GPD(k, a; X), the algorithm must be designed odd integer. This follows since h"(0) > 0 implies that
to avoid numerical convergence to 0 = 0. Second, every for some c > 0, h(O - ) > 0, and since h(OL) < 0,
zero of h(O) must be evaluated to determine if it corre- then the number of zeros on (OL, 0) given by jn must
sponds to a local maxima, local minima, or saddle point be an odd integer. The argument for jp odd is similar.
of £GPD(k, a; X), or an extraneous zero of h(0). In the data sets used investigating the GPD maximum

The following theorem states several properties of likelihood estimators, it appears that in = i = 1.
h(O) which are useful in formulating an algorithm for
determining zeros of h(O). If h"(0) < 0 then there are jn roots on (OL, 0) where

Theorem: Consider the function h(O) given in (2.1) de- j, is zero or an even integer and there are jp roots on
(0,Ou) where jp is zero or an even integer. This follows

fined on the space B given in (2.2). Then: since h"(0) < 0 implies that for some e < 0, h(O-c) < 0,

lim h(O) = -oo and since h(OL) < 0, then either there exist no zero of
O-1x(n;n) h(O) on (OL, 0) or the number of zeros on (OL, O) given by

h(O) <20 for all 0 < L = 2[X(1;n) - X] jn must be an even integer. The argument for jp either
[X(1; n)]2  zero or an even integer is similar. In the data sets used

h'(6 = investigating the GPD maximum likelihood estimators,
n 2 it appears that in many cases jn = jp = 0. This result

I{(1/n)1(l _ OXn 2  agrees with the finding in Hosking and Wallis (1987)
1 1- X) indicating that in many cases with k > 0 and n < 25 the

n i1GPD maximum likelihood estimators do not exist. The

( l/n)VIn(I -Ox)] remaining data sets in the investigation indicated that

I l/n lneither j =0, jp =2 or n =2, jp =0 or n =2, jp =2.
1 n

(1/n) (1 - OXi) - ' - (1/n) E--(1 - X,)-2 The possible existence of multiple zeros of h(O) on
i=1 i=1 B complicates the numerical search, but an algorithm

h'(0) = 0 can be designed to find these multiple zeros.

h"(0) = (1/n) X? - 2X 2  Each zero of h(O) indicates a candidate for the local
maxima of the log-likelihood. For each of the in + Jp
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zero(s), denoted by O0°), compute On the space A, the Hessian matrix of the GPD log-
n likelihood has elements

ki =(l/n) Iln(1 - O$°)Xi) n
2 GPD(k'aX) n 13 I --

ki Ok2  V k i=1(

a, -0i( 2 ( 1) F - I1

This value must be evaluated using the Hessian ma- 8=1
trix of the GPD log-likelihood given in the Appendix to 1 1 n _i)-2
determine if it is a local maxima, local minima or saddle - 1--!- 1 1 -L_
point of the GPD log-likelihood. The point (ki, a) is a A i i=1 a

local maxima, and therefore considered a candidate for a2 GPD(k,a;X) n 1 1 ) - X i ( _ )-2

the GPD maximum likelihood estimator, if the Hessian a2 -2  2 k a
matrix evaluated at the estimators is negative definite. Oa

The pair (ki,ai) which has the largest value of 02CGPD(k,a; X) n 1 2

£GPD(ki,ai;X) is identified as the local maximum on OkOa =k2 a k-a -)1 i
the space A and will be denoted by (kn,am). _2

2.2 Boundary Maximum on A. Any local maxima 1 (1 1 k -
of the GPD log-likelihood on the domain A must exceed =. a

the log-likelihood evaluated at the boundary in order to
be the maximum likelihood estimator. Hence, the sec-
ond value which must be investigated is at the bound- References
ary of A where k = 1. Given k = 1, a > X(n;n)

then £GPD(k,a;X) = -nlna. Therefore the boundary
maximum, denoted by (ka, a6 ), is given by kb = 1 and Davison, A. C. (1984), "Modelling excesses over high
ab = X(n; n). The problem is complicated by the opti- thresholds, with an application," in Statistical Ex-

mization being taken over an open set, but it is treated Dordrecht: Reidel, pp. 461-482.
as a maximum taken over a closed set.

The GPD maximum likelihood estimator, denoted DuMouchel, W. (1983), "Estimating the stable index a
by (k, a), is then given by the local maximum (kin, an) in order to measure tail thickness: A Critique," An-
if £GPD(km,an;X) > -nlnX(n;n) and is given by nals of Statistics, 11, 1019-1036.
the boundary maximum (kb, ab) if £GpD(k,,am;X) < Hosking, J. R. M. and Wallis, J. R. (1987), "Parameter
-n In X(n; n). and .. an d ain f. R. (1987), Parete

If no local maximum is found, then there is no GPD and quantile estimation for the Generalized Pareto
maximum likelihood estimate an' the alternative esti- Distribution," Technometrics, 29, 339-349.
mators given by Hosking and Wallis (1987) are recom- Joe, H. (1987), "Estimation of quantiles of the maximum
mended. of N observations," Biometrika, 74, 347-354.

Appendix Pickands, J. (1975), "Statistical inference using extreme

order statistics," Annals of Statistics, 3, 119-131.

Consider the space defined by Smith, J. A. (1986), "Estimating the upper tail of
A<0) U { < k < 1,a/k> X(n;n). flood frequency distributions," Technical Report

{k < 0,a < MS-R8607, Dept. Math. Statist., Centrum voor

On the space A, the gradient vector of the GPD log- Wiskunde en Informatica, Amsterdam.
likelihood has elements Smith, R. L. (1984), "Threshold methods for sample ex-

OCGPD(k,a;X) =-n I In I tremes," in Statistical Extremes and Applications,

0k k ed. J. Tiago de Oliveira, Dordrecht: Reidel, pp.

1 /1 \ "/ kX -1621-638.

- a 1 Z - ' Smith, R. L. (1987), "Estimating tails of probability dis-
- ) tributions," Annals of Statistics, 15, 1174-1207.

O9CGPD (k, a; X) n I ~iOa =-ka a k a
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ABSTRACT. where 0 and 0 are the parameters to be estimated.

This paper discusses asymptotic efficiency of the Denote

maximum likelihood estimator of the parameters of the Interarrival times {L k _ 1}

M/G/1 queueing system for full likelihood and reduced and

likelihood functions. The efficiency of the maximum Service times f 7 k > 1).
likelihood estimator of the reduced likelihood function Initially customers arrive at t equals zero and ob-

relative to full likelihood function is derived, serve the queue until the first n customers departed.
Let the service times of these customers be z1 , X2 , .. •, X,.

1. INTRODUCTION. Let nth departure occur at Dn time. Observe the in-
terarrival times of all customers during the interval

Clarke (1957) discussed the estimation problem (0, Dn). Let their interarrival time be t1, t2 ,... tNA ,
of traflice intensity for M/M/1 queueing system using where
maximum likelihood principles. The problem of statis- NA = NA(Dn) = max(k : tl + t2 + + tk < D,).
tical inference for birth and death processes was con-
sidered as Markov processes by Wolff (1965). A large Here,
sample theory based on maximum liklihood theory for N > tn
Markov processes developed by Likelihood function for estimating the parameters
Billingsley (1961) was applied to make inference for 0 and € is given by
arrival and service rates. Jenkins (1972) estimated the ( N f (i g(x;0) ( F(Z 0)

maximum likelihood estimate of mean waiting time in L(O,4) = f(ti;) ) (1 -
the simple M/M/1 queue under conditions of incom- (1)
plete information. In 1981, Basawa and Prabhu con- where (1- F(Zn; 0)) corresponds to the incomplete ar-
sidered the single server queueing model and obtained rival interval when sampling is terminated at the epoch
estimates for interarrival and service times distribution N
functions without assuming the steady-state. In this Dn; and Zn = Dn - E'i=1 ti.
paper, asymptotic efficiencies of the estimators for the Basawa and Prabhu (1981) considered the follow-

M/G/1 queueing model are derived for full likelihood ing reduced likelihood function:

and reduced likelihood functions based on Lehmann's L(, 4) ) ( (2)
(1983) work. Asymptotic relative efficiency of the es- (ti; )) ngll) (2)

timator is obtained as the square of the correlation Ei n)1
coefficient between estimators. Equation (2) is an approximation of equation (1). Tak-

ing the logarithms in equation (2) and differentiating

2. ESTIMATION PROCEDURES. with respect to 0 and 0 and equating to zero, we get

Let interarrival and service times be independent, =NA In f(ti; 0) = 0 (3)
identically distributed random variables. Their den- '=
sities are defined by f(t,O) and g(z,0), respectively,

*Research Supported by A.R.C. Grant (Queen's University).
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and Now considering equation (6)
--- = : - In Xxzi; 0) = 0. (4) OL' N-A C9O

0 lz "(" NA 0 In(0- exp(-tj/O))
_= 07 =

Let 6 and 42 are the estimates of 0 and 4 based
on reduced likelihood function. Asymptotic properties + 0 ln(exp(-Z./O)) = 0. (10)
of these estimators are given by Basawa and Prabhu n0
(1981). Taking lograithms in full likelihood equation Simplifying equation (10), we get
(1), we have N NA Zn

L' a In L(0,4) = In f(l; 0) +
1 =1 Solving equation (9), we get

+ In(1 - F(Zn; 0)). (5) ' t, (12)
Differentiating equation (5) partially with respect to 0 NA (12)

and 4 and equating to zero, we have Solving equation (11), we have

OL' NA 0 a NA t + Z Dn
L7- -= o nf(ti;0)+ H(Zn;O) =0 (6) +NA - NA (13)

and
nL' n a 3. ASYMPTOTIC EFFICIENCY OF THE ES-

i = n g(zE; 4-) = 0, (7) TIMATORS.

where In this section, asymptotic efficiencies of the esti-

H.(Zn;) ln(1 - F(Zn; 0)). mators are derived for some particular queueing mod-
O els. Some of the preliminary results related to asymp-

Let 0"n and &, are the estimates of 0 and 4 based totic properties of the estimates based on
on the full likelihood function which can be obtained Lehmann's (1983) work are reviewed.
by solving equations (6) and (7). Comparing equations
(6) and (7) with equations (3) and (4), it is clear Preliminary Resudts

& = n and 0" differs from k*. The following theorem establishes that any consis-

It can be shown in the following particular case tent root of the likelihood equation is asymptotically
that in and 0na are asymptotically equivalent, normal and efficient.

M/G/1 queue Theorem 3.1. Suppose that X 1, X 2 , ... ,X, are
independent, identically distributed and satisfy appro-

Let the probability density function of mean in- priate regularity assumptions [Lehmann (1983),
terarrival times 6 be given by pages 406 and 415] then any consistent sequence in =

f(t, 6) = (0) - • exp(-t/O). On(X 1 , X 2 , ... , Xn) of roots of the likelihood equation

Then the distribution function is satisfies

F(t, 6) = I - exp(-t/O). v'i(Of - 6) -- N(O, (1(0))-'), (14)

Let the probability density function of the service time where 2

be g(z, 4). Consider equation (3), we have 1(0) = E -n )
NA L90

T O In(- 1 exp(-t,/0)) = 0. (8) Remark 3.1. Any sequence 0"* of estimators sat-
isfying equation (14) will be said to be asymptotically

Simplification of the left side of equation (8) yields efficient.

1 1 NA Suppose that 6n is any consistent estimator of 0,
-- NA + w2 ti = 0. (9) and the assumptions of Theorem 3.1 hold, then the

s1 root "n of the likelihood equation closest to O, is also
consistent [Lehmann (1983), Theorem 2.2, page 430].
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The usual iterative methods for solving the likeli- Theorem 3.3 can be applied (for fixed number of
hood equation observations) to show that 0"n is asymptotically effi-

L'(0) = 0 cient. [Basawa and Prabhu (1981), page 4791. Rewrit-
are based on replacing the left side by the linear terms ing equation (10), we have
of a Taylor's series expansion about an approximate ft' NA

solution W. If W denotes a root of the likelihood equation T- F ln((O)- exp(-t,/0)) + 1 ln(exp(-Z,,/O))
(L'(0) = 0) then this leads to the approximation 0 =  I

0-= L'(O) L'(W) + (W- W)L"(W) NA + At+IZ

and hence 0 +  2 72

- Lr(6) (15) Therefore,L"(O (b _ ,,N (18)

the procedure is then to iterate by replacing 0 by the (9, ZI0INa(18)
value of W"of the right side of the equation (15) and so and
on. (

The following theorems give conditions on 0 under I = E -Inf(t, )
which the resulting sequence of estimators is consis- (0 2
tent, asymptotically normal and efficient. = E ln((0) 1  =

Theorem 3.2 Suppose that the assumptions of the- E(fi6 exP(-t/0))) (19)
orem 3.1 hold and that 0,, is not only a consistent but Therefore,
a v\/-consistent estimator of 0, that is, that \/ ("n -0) (NA)2heeoe

is bounded in probability so that in tends to 0 at least Ia (NA) 2  (20)

at the rate of (V /)-'. Then the estimator sequence NA t,

L'() (1) Using equation (17), we have
bn=n "W)(16) NA M .-

is asymptotically efficient, that is, it satisfies equation 6= = (NA)- 6 4 + (21)

(14) with 6, in place of On. i=1 NA(IXa(Oj

Theorem 3.3. Suppose that the assumptions of Hence, equation (21) after simplification yields
theorem 3.2 hold and that 1(0) is a continuous function NA Zn NA N. 2
of 0. Then the estimator n=-J-E t, + - (22)NA (17) t,)"

~=W L'kO) (1)=A NA.(NA/ i=i 1 )
nl(OW,) Thus,

is also asymptotically efficient. 1 N Z. D.
5L=n A t + - = N- (23)

M/M/1-queue = VA (23)
Since On. = , e av

The estimates for M/M/1 queue with mean in- S, we have

terarrival time 0 and mean service time 0 using full = "n. (24)
likelihood and reduced likelihood equations are It can be easily seen from Theorem 3.1 that

Dn n - 0) ;6 N 0, _,-6 0 =)Iv (0, 2), (25)
NA

= (NA)_, ti which implies that 0 is asymptotically efficient.

and 4. ASYMPTOTIC EFFICIENCY AND ITS
n RELATIONSHIP WITH CORRELATION CO-

On =  = (n) xi. EFFICIENT.

Let 0' be the likelihood equation estimator such
that

U, = /n(ina - 0) %t N(0, 0.2), (26)
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where Using O-1 = o? and o'22 = 0 2 we have) 2 2

t,2 (2)2 ~ D) ( - Z)2. (27 ((352U But, or 202 shlAEo2 =n wit repet o)

Let 0, be a V/n-consistent estimator such that But2u?/o 2 is the ARE of Vn with respect to U.
Remark 4.1. The theorem 4.1 clearly indicates

Vn = vr4 (O0 - 0) - N(0, o'2), (28) that under sufficiently regular conditions, good effi-

where ciency of {0na } is equivalent to high correlation with

2 nN= NA) •(29) {~n1
The estimate of asymptotic relative efficiency (ARE) Acknowledgement

of Vn with respect to Un is The author is grateful to Professor J. G. C. Tem-

e = - (30) pleton for his comments.
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Z Var[(1 - a)Un + aVn]

= a2 [c2 + o2 - 2o0i2] + a[-21 + 2c 2 ] + o. .
(31)

The quantity Z is nonnegative and approaches the
minimum value when a = 0, since i64 is asymptoti-
cally efficient. Thus, for minimization, differentiating
Z with respect to a, and equating to zero, we have

o= 2a (l + or2 - 2o 12) + (-2(71 + 20'1 2) = 0. (32)

Solving equation (32), we get

o- 12

0 = + o.2 0 12o (33)

Since a = 0, we have
2. = o12. (34)

(34)
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